code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''linear''' SCREAMING_SNAKE_CASE_ ='''cosine''' SCREAMING_SNAKE_CASE_ ='''cosine_with_restarts''' SCREAMING_SNAKE_CASE_ ='''polynomial''' SCREAMING_SNAKE_CASE_ ='''constant''' SCREAMING_SNAKE_CASE_ ='''constant_with_warmup''' SCREAMING_SNAKE_CASE_ ='''piecewise_constant''' def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int = -1 )-> Tuple: '''simple docstring''' return LambdaLR(snake_case , lambda snake_case : 1 , last_epoch=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int , snake_case : int = -1 )-> Tuple: '''simple docstring''' def lr_lambda(snake_case : int ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1.0 , snake_case ) ) return 1.0 return LambdaLR(snake_case , snake_case , last_epoch=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : str , snake_case : int = -1 )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : List[Any] = step_rules.split("," ) for rule_str in rule_list[:-1]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = rule_str.split(":" ) UpperCAmelCase__ : Union[str, Any] = int(snake_case ) UpperCAmelCase__ : Union[str, Any] = float(snake_case ) UpperCAmelCase__ : int = value UpperCAmelCase__ : Any = float(rule_list[-1] ) def create_rules_function(snake_case : Union[str, Any] , snake_case : Optional[Any] ): def rule_func(snake_case : int ) -> float: UpperCAmelCase__ : Any = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func UpperCAmelCase__ : int = create_rules_function(snake_case , snake_case ) return LambdaLR(snake_case , snake_case , last_epoch=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Any=-1 )-> Dict: '''simple docstring''' def lr_lambda(snake_case : int ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int , snake_case : int , snake_case : float = 0.5 , snake_case : int = -1 )-> Optional[Any]: '''simple docstring''' def lr_lambda(snake_case : Dict ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) UpperCAmelCase__ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(snake_case ) * 2.0 * progress )) ) return LambdaLR(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optimizer , snake_case : int , snake_case : int , snake_case : int = 1 , snake_case : int = -1 )-> Any: '''simple docstring''' def lr_lambda(snake_case : List[str] ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) UpperCAmelCase__ : str = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(snake_case ) * progress) % 1.0) )) ) return LambdaLR(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict , snake_case : Union[str, Any]=1E-7 , snake_case : List[str]=1.0 , snake_case : List[Any]=-1 )-> int: '''simple docstring''' UpperCAmelCase__ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(snake_case : int ): if current_step < num_warmup_steps: return float(snake_case ) / float(max(1 , snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: UpperCAmelCase__ : Optional[Any] = lr_init - lr_end UpperCAmelCase__ : List[Any] = num_training_steps - num_warmup_steps UpperCAmelCase__ : Dict = 1 - (current_step - num_warmup_steps) / decay_steps UpperCAmelCase__ : Union[str, Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(snake_case , snake_case , snake_case ) _lowerCAmelCase : Optional[int] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, SchedulerType] , snake_case : Optimizer , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : int = 1 , snake_case : float = 1.0 , snake_case : int = -1 , )-> str: '''simple docstring''' UpperCAmelCase__ : Dict = SchedulerType(snake_case ) UpperCAmelCase__ : Union[str, Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(snake_case , last_epoch=snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(snake_case , step_rules=snake_case , last_epoch=snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(snake_case , num_warmup_steps=snake_case , last_epoch=snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( snake_case , num_warmup_steps=snake_case , num_training_steps=snake_case , num_cycles=snake_case , last_epoch=snake_case , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( snake_case , num_warmup_steps=snake_case , num_training_steps=snake_case , power=snake_case , last_epoch=snake_case , ) return schedule_func( snake_case , num_warmup_steps=snake_case , num_training_steps=snake_case , last_epoch=snake_case )
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase : Dict = logging.get_logger(__name__) # General docstring _lowerCAmelCase : Union[str, Any] = """RegNetConfig""" # Base docstring _lowerCAmelCase : Any = """facebook/regnet-y-040""" _lowerCAmelCase : Tuple = [1, 1_088, 7, 7] # Image classification docstring _lowerCAmelCase : str = """facebook/regnet-y-040""" _lowerCAmelCase : str = """tabby, tabby cat""" _lowerCAmelCase : Union[str, Any] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : int = 3 , snake_case__ : int = 1 , snake_case__ : int = 1 , snake_case__ : Optional[str] = "relu" , **snake_case__ : Optional[Any] , ): '''simple docstring''' super().__init__(**snake_case__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase__ : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase__ : str = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=snake_case__ , strides=snake_case__ , padding="VALID" , groups=snake_case__ , use_bias=snake_case__ , name="convolution" , ) UpperCAmelCase__ : str = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) UpperCAmelCase__ : List[str] = ACTaFN[activation] if activation is not None else tf.identity def __a ( self : str , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.convolution(self.padding(snake_case__ ) ) UpperCAmelCase__ : List[Any] = self.normalization(snake_case__ ) UpperCAmelCase__ : Tuple = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , snake_case__ : RegNetConfig , **snake_case__ : List[Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Optional[int] = config.num_channels UpperCAmelCase__ : Union[str, Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __a ( self : Tuple , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = shape_list(snake_case__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase__ : List[Any] = tf.transpose(snake_case__ , perm=(0, 2, 3, 1) ) UpperCAmelCase__ : str = self.embedder(snake_case__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : int , snake_case__ : int , snake_case__ : int = 2 , **snake_case__ : List[str] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[str] = tf.keras.layers.ConvaD( filters=snake_case__ , kernel_size=1 , strides=snake_case__ , use_bias=snake_case__ , name="convolution" ) UpperCAmelCase__ : List[str] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def __a ( self : Dict , snake_case__ : tf.Tensor , snake_case__ : bool = False ): '''simple docstring''' return self.normalization(self.convolution(snake_case__ ) , training=snake_case__ ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , snake_case__ : int , snake_case__ : int , **snake_case__ : List[str] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) UpperCAmelCase__ : Dict = [ tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=snake_case__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __a ( self : Dict , snake_case__ : Dict ): '''simple docstring''' # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCAmelCase__ : List[Any] = self.pooler(snake_case__ ) for layer_module in self.attention: UpperCAmelCase__ : Dict = layer_module(snake_case__ ) UpperCAmelCase__ : List[Any] = hidden_state * pooled return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : Optional[int] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[str] = in_channels != out_channels or stride != 1 UpperCAmelCase__ : str = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : Tuple = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase__ : Optional[Any] = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.2" ), ] UpperCAmelCase__ : List[Any] = ACTaFN[config.hidden_act] def __a ( self : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Dict = hidden_state for layer_module in self.layers: UpperCAmelCase__ : Tuple = layer_module(snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.shortcut(snake_case__ ) hidden_state += residual UpperCAmelCase__ : Tuple = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 1 , **snake_case__ : List[str] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[str] = in_channels != out_channels or stride != 1 UpperCAmelCase__ : int = max(1 , out_channels // config.groups_width ) UpperCAmelCase__ : List[Any] = ( TFRegNetShortCut(snake_case__ , stride=snake_case__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) UpperCAmelCase__ : List[str] = [ TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( snake_case__ , stride=snake_case__ , groups=snake_case__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(snake_case__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(snake_case__ , kernel_size=1 , activation=snake_case__ , name="layer.3" ), ] UpperCAmelCase__ : str = ACTaFN[config.hidden_act] def __a ( self : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = hidden_state for layer_module in self.layers: UpperCAmelCase__ : int = layer_module(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = self.shortcut(snake_case__ ) hidden_state += residual UpperCAmelCase__ : List[str] = self.activation(snake_case__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Any , snake_case__ : RegNetConfig , snake_case__ : int , snake_case__ : int , snake_case__ : int = 2 , snake_case__ : int = 2 , **snake_case__ : Tuple ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Optional[int] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer UpperCAmelCase__ : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(snake_case__ , snake_case__ , snake_case__ , stride=snake_case__ , name="layers.0" ), *[layer(snake_case__ , snake_case__ , snake_case__ , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def __a ( self : Any , snake_case__ : str ): '''simple docstring''' for layer_module in self.layers: UpperCAmelCase__ : Tuple = layer_module(snake_case__ ) return hidden_state class lowerCAmelCase__ ( tf.keras.layers.Layer ): def __init__( self : Tuple , snake_case__ : RegNetConfig , **snake_case__ : Optional[Any] ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Tuple = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) UpperCAmelCase__ : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case__ , snake_case__ , snake_case__ , depth=snake_case__ , name=f'stages.{i+1}' ) ) def __a ( self : str , snake_case__ : tf.Tensor , snake_case__ : bool = False , snake_case__ : bool = True ): '''simple docstring''' UpperCAmelCase__ : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase__ : List[Any] = hidden_states + (hidden_state,) UpperCAmelCase__ : Tuple = stage_module(snake_case__ ) if output_hidden_states: UpperCAmelCase__ : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) @keras_serializable class lowerCAmelCase__ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ =RegNetConfig def __init__( self : Any , snake_case__ : Any , **snake_case__ : int ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[Any] = config UpperCAmelCase__ : Dict = TFRegNetEmbeddings(snake_case__ , name="embedder" ) UpperCAmelCase__ : Optional[Any] = TFRegNetEncoder(snake_case__ , name="encoder" ) UpperCAmelCase__ : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case__ , name="pooler" ) @unpack_inputs def __a ( self : str , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , ): '''simple docstring''' UpperCAmelCase__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Dict = self.embedder(snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Optional[int] = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = encoder_outputs[0] UpperCAmelCase__ : Optional[Any] = self.pooler(snake_case__ ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase__ : Optional[int] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) UpperCAmelCase__ : Union[str, Any] = tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase__ : Tuple = tuple([tf.transpose(snake_case__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case__ , pooler_output=snake_case__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =RegNetConfig SCREAMING_SNAKE_CASE_ ='''regnet''' SCREAMING_SNAKE_CASE_ ='''pixel_values''' @property def __a ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _lowerCAmelCase : Tuple = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase : str = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __magic_name__ , ) class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , snake_case__ : RegNetConfig , *snake_case__ : List[str] , **snake_case__ : int ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = TFRegNetMainLayer(snake_case__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self : int , snake_case__ : tf.Tensor , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : Any=False , ): '''simple docstring''' UpperCAmelCase__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Dict = self.regnet( pixel_values=snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __magic_name__ , ) class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): def __init__( self : str , snake_case__ : RegNetConfig , *snake_case__ : Optional[int] , **snake_case__ : List[Any] ): '''simple docstring''' super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) UpperCAmelCase__ : Union[str, Any] = config.num_labels UpperCAmelCase__ : Any = TFRegNetMainLayer(snake_case__ , name="regnet" ) # classification head UpperCAmelCase__ : Tuple = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self : Tuple , snake_case__ : tf.Tensor = None , snake_case__ : tf.Tensor = None , snake_case__ : bool = None , snake_case__ : bool = None , snake_case__ : Tuple=False , ): '''simple docstring''' UpperCAmelCase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : Optional[int] = self.regnet( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , training=snake_case__ ) UpperCAmelCase__ : Tuple = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase__ : Any = self.classifier[0](snake_case__ ) UpperCAmelCase__ : Optional[int] = self.classifier[1](snake_case__ ) UpperCAmelCase__ : List[Any] = None if labels is None else self.hf_compute_loss(labels=snake_case__ , logits=snake_case__ ) if not return_dict: UpperCAmelCase__ : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
298
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
1
"""simple docstring""" from __future__ import annotations _lowerCAmelCase : List[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : list[int] , snake_case : list[int] , snake_case : int , snake_case : list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' UpperCAmelCase__ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case ) ) ] # the reference grid UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Dict = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case ) ) ] # the action grid UpperCAmelCase__ : Tuple = init[0] UpperCAmelCase__ : Any = init[1] UpperCAmelCase__ : Optional[Any] = 0 UpperCAmelCase__ : Any = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase__ : Tuple = [[f, g, x, y]] UpperCAmelCase__ : str = False # flag that is set when search is complete UpperCAmelCase__ : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(snake_case ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase__ : Any = cell.pop() UpperCAmelCase__ : Any = next_cell[2] UpperCAmelCase__ : Dict = next_cell[3] UpperCAmelCase__ : str = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase__ : Any = True else: for i in range(len(snake_case ) ): # to try out different valid actions UpperCAmelCase__ : List[str] = x + DIRECTIONS[i][0] UpperCAmelCase__ : Dict = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase__ : List[Any] = g + cost UpperCAmelCase__ : Union[str, Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : Any = i UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Optional[Any] = goal[0] UpperCAmelCase__ : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase__ : Dict = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase__ : Any = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase__ : Any = xa UpperCAmelCase__ : Tuple = ya invpath.append([x, y] ) UpperCAmelCase__ : Dict = [] for i in range(len(snake_case ) ): path.append(invpath[len(snake_case ) - 1 - i] ) return path, action if __name__ == "__main__": _lowerCAmelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowerCAmelCase : str = [0, 0] # all coordinates are given in format [y,x] _lowerCAmelCase : Union[str, Any] = [len(grid) - 1, len(grid[0]) - 1] _lowerCAmelCase : str = 1 # the cost map which pushes the path closer to the goal _lowerCAmelCase : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowerCAmelCase : int = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowerCAmelCase : Dict = 99 _lowerCAmelCase , _lowerCAmelCase : Optional[int] = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
298
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : list )-> list: '''simple docstring''' def merge(snake_case : list , snake_case : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case ) <= 1: return collection UpperCAmelCase__ : str = len(snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() _lowerCAmelCase : Dict = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
298
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
1
"""simple docstring""" import re def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> bool: '''simple docstring''' UpperCAmelCase__ : Dict = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(snake_case , snake_case ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("""+918827897895"""))
298
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
1
"""simple docstring""" import os import sys _lowerCAmelCase : str = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _lowerCAmelCase : List[Any] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : Any )-> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Union[str, Any] , **snake_case : Dict )-> Optional[int]: '''simple docstring''' return AutoTokenizer.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[int] , **snake_case : str )-> Union[str, Any]: '''simple docstring''' return AutoModel.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : str , **snake_case : str )-> Tuple: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : Optional[Any] , **snake_case : Tuple )-> Tuple: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[str] , **snake_case : Any )-> Dict: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*snake_case , **snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *snake_case : List[Any] , **snake_case : int )-> str: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*snake_case , **snake_case )
298
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
1
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case__ ): UpperCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def __a ( self : Tuple ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case__ ): UpperCAmelCase__ : Optional[int] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def __a ( self : Dict ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(snake_case__ ) UpperCAmelCase__ : Optional[int] = FlaxBertModel.from_pretrained(snake_case__ ) UpperCAmelCase__ : Dict = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ : str ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() @slow def __a ( self : Tuple ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(snake_case__ ) UpperCAmelCase__ : List[str] = FlaxRobertaModel.from_pretrained(snake_case__ ) UpperCAmelCase__ : List[Any] = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ : Any ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() def __a ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): UpperCAmelCase__ : List[Any] = FlaxAutoModel.from_pretrained("bert-base" ) def __a ( self : str ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): UpperCAmelCase__ : Tuple = FlaxAutoModel.from_pretrained(snake_case__ , revision="aaaaaa" ) def __a ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case__ , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): UpperCAmelCase__ : Dict = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __a ( self : Any ): '''simple docstring''' with self.assertRaisesRegex(snake_case__ , "Use `from_pt=True` to load this model" ): UpperCAmelCase__ : Tuple = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : int )-> int: '''simple docstring''' if index == number_of_items: return 0 UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Tuple = knapsack(snake_case , snake_case , snake_case , snake_case , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase__ : Union[str, Any] = values[index] + knapsack( snake_case , snake_case , snake_case , max_weight - weights[index] , index + 1 ) return max(snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE_ ='''OwlViTImageProcessor''' SCREAMING_SNAKE_CASE_ =('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : List[Any] , snake_case__ : str=None , snake_case__ : Tuple=None , **snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) UpperCAmelCase__ : List[str] = kwargs.pop("feature_extractor" ) UpperCAmelCase__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : Optional[Any] , snake_case__ : int=None , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None , snake_case__ : str="max_length" , snake_case__ : List[str]="np" , **snake_case__ : Optional[int] ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(snake_case__ , snake_case__ ) or (isinstance(snake_case__ , snake_case__ ) and not isinstance(text[0] , snake_case__ )): UpperCAmelCase__ : Any = [self.tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ , **snake_case__ )] elif isinstance(snake_case__ , snake_case__ ) and isinstance(text[0] , snake_case__ ): UpperCAmelCase__ : List[str] = [] # Maximum number of queries across batch UpperCAmelCase__ : List[Any] = max([len(snake_case__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case__ ) != max_num_queries: UpperCAmelCase__ : Tuple = t + [" "] * (max_num_queries - len(snake_case__ )) UpperCAmelCase__ : List[Any] = self.tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) encodings.append(snake_case__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": UpperCAmelCase__ : str = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : Optional[int] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ : int = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : List[str] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ : Any = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) UpperCAmelCase__ : Union[str, Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ : Tuple = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase__ : Optional[Any] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) UpperCAmelCase__ : Tuple = BatchEncoding() UpperCAmelCase__ : Union[str, Any] = input_ids UpperCAmelCase__ : Optional[Any] = attention_mask if query_images is not None: UpperCAmelCase__ : Optional[Any] = BatchEncoding() UpperCAmelCase__ : List[str] = self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ ).pixel_values UpperCAmelCase__ : Dict = query_pixel_values if images is not None: UpperCAmelCase__ : Tuple = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: UpperCAmelCase__ : int = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def __a ( self : Tuple , *snake_case__ : Tuple , **snake_case__ : Tuple ): '''simple docstring''' return self.image_processor.post_process(*snake_case__ , **snake_case__ ) def __a ( self : Any , *snake_case__ : int , **snake_case__ : Optional[Any] ): '''simple docstring''' return self.image_processor.post_process_object_detection(*snake_case__ , **snake_case__ ) def __a ( self : int , *snake_case__ : List[str] , **snake_case__ : Optional[int] ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*snake_case__ , **snake_case__ ) def __a ( self : Dict , *snake_case__ : str , **snake_case__ : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def __a ( self : str , *snake_case__ : str , **snake_case__ : Dict ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def __a ( self : Any ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class @property def __a ( self : List[str] ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , ) return self.image_processor
298
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Tuple , snake_case__ : List[str]=7 , snake_case__ : List[str]=3 , snake_case__ : List[str]=3_0 , snake_case__ : Any=4_0_0 , snake_case__ : str=True , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=[0.5, 0.5, 0.5] , snake_case__ : List[str]=[0.5, 0.5, 0.5] , snake_case__ : int=True , snake_case__ : Optional[Any]=1 / 2_5_5 , snake_case__ : Optional[Any]=True , ): '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : Optional[int] = size if size is not None else {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : str = min_resolution UpperCAmelCase__ : Union[str, Any] = max_resolution UpperCAmelCase__ : Optional[Any] = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : List[str] = do_normalize UpperCAmelCase__ : List[Any] = image_mean UpperCAmelCase__ : List[Any] = image_std UpperCAmelCase__ : List[str] = do_rescale UpperCAmelCase__ : Dict = rescale_factor UpperCAmelCase__ : Dict = do_pad def __a ( self : Tuple ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : int = image_inputs[0] if isinstance(snake_case__ , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size["shortest_edge"] * h / w ) UpperCAmelCase__ : Tuple = self.size["shortest_edge"] elif w > h: UpperCAmelCase__ : Optional[int] = self.size["shortest_edge"] UpperCAmelCase__ : Any = int(self.size["shortest_edge"] * w / h ) else: UpperCAmelCase__ : Union[str, Any] = self.size["shortest_edge"] UpperCAmelCase__ : Tuple = self.size["shortest_edge"] else: UpperCAmelCase__ : List[str] = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : str = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] UpperCAmelCase__ : List[str] = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =DeformableDetrImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = DeformableDetrImageProcessingTester(self ) @property def __a ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "do_rescale" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 1_8, "longest_edge": 1_3_3_3} ) self.assertEqual(image_processor.do_pad , snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2, "longest_edge": 8_4} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' # Initialize image_processing UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) UpperCAmelCase__ : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : str = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self : List[Any] ): '''simple docstring''' # prepare image and target UpperCAmelCase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCAmelCase__ : Optional[Any] = json.loads(f.read() ) UpperCAmelCase__ : Optional[Any] = {"image_id": 3_9_7_6_9, "annotations": target} # encode them UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessor() UpperCAmelCase__ : Tuple = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) UpperCAmelCase__ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Union[str, Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd UpperCAmelCase__ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size UpperCAmelCase__ : Tuple = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size UpperCAmelCase__ : Tuple = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' # prepare image, target and masks_path UpperCAmelCase__ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCAmelCase__ : List[str] = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {"file_name": "000000039769.png", "image_id": 3_9_7_6_9, "segments_info": target} UpperCAmelCase__ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="coco_panoptic" ) UpperCAmelCase__ : List[Any] = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values UpperCAmelCase__ : int = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) UpperCAmelCase__ : List[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Optional[int] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd UpperCAmelCase__ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels UpperCAmelCase__ : List[str] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks UpperCAmelCase__ : List[Any] = 8_2_2_8_7_3 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
1
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase__ ( __magic_name__ ): # to overwrite at feature extractactor specific tests SCREAMING_SNAKE_CASE_ =None SCREAMING_SNAKE_CASE_ =None @property def __a ( self : List[Any] ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case__ , "feature_size" ) ) self.assertTrue(hasattr(snake_case__ , "sampling_rate" ) ) self.assertTrue(hasattr(snake_case__ , "padding_value" ) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case__ ) == len(snake_case__ ) for x, y in zip(snake_case__ , processed_features[input_name] ) ) ) UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case__ ) UpperCAmelCase__ : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCAmelCase__ : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Optional[Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : int = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCAmelCase__ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : List[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) UpperCAmelCase__ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __a ( self : Union[str, Any] , snake_case__ : Any=False ): '''simple docstring''' def _inputs_have_equal_length(snake_case__ : Union[str, Any] ): UpperCAmelCase__ : Union[str, Any] = len(input[0] ) for input_slice in input[1:]: if len(snake_case__ ) != length: return False return True def _inputs_are_equal(snake_case__ : str , snake_case__ : List[str] ): if len(snake_case__ ) != len(snake_case__ ): return False for input_slice_a, input_slice_a in zip(snake_case__ , snake_case__ ): if not np.allclose(np.asarray(snake_case__ ) , np.asarray(snake_case__ ) , atol=1e-3 ): return False return True UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case__ ) UpperCAmelCase__ : Any = feat_extract.model_input_names[0] UpperCAmelCase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[str] = self.feat_extract_tester.seq_length_diff UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase__ : Dict = self.feat_extract_tester.min_seq_length UpperCAmelCase__ : Dict = self.feat_extract_tester.batch_size UpperCAmelCase__ : Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase__ : List[Any] = feat_extract.pad(snake_case__ , padding=snake_case__ ) UpperCAmelCase__ : Any = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="longest" ) UpperCAmelCase__ : List[Any] = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="max_length" , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase__ : Optional[int] = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" ) UpperCAmelCase__ : Dict = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="max_length" )[input_name] UpperCAmelCase__ : Optional[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=snake_case__ , return_tensors="np" ) UpperCAmelCase__ : Any = input_a[input_name] self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_are_equal(snake_case__ , snake_case__ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ : List[Any] = feat_extract.pad(snake_case__ , pad_to_multiple_of=1_0 ) UpperCAmelCase__ : str = input_a[input_name] UpperCAmelCase__ : int = feat_extract.pad(snake_case__ , padding="longest" , pad_to_multiple_of=1_0 ) UpperCAmelCase__ : List[str] = input_a[input_name] UpperCAmelCase__ : Optional[int] = feat_extract.pad( snake_case__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=snake_case__ ) UpperCAmelCase__ : int = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad( snake_case__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=snake_case__ , return_tensors="np" , ) UpperCAmelCase__ : List[Any] = input_a[input_name] self.assertTrue(all(len(snake_case__ ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Tuple = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(snake_case__ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase__ : str = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def __a ( self : List[Any] , snake_case__ : Dict=False ): '''simple docstring''' def _inputs_have_equal_length(snake_case__ : Optional[int] ): UpperCAmelCase__ : Dict = len(input[0] ) for input_slice in input[1:]: if len(snake_case__ ) != length: return False return True def _inputs_are_equal(snake_case__ : Optional[int] , snake_case__ : str ): if len(snake_case__ ) != len(snake_case__ ): return False for input_slice_a, input_slice_a in zip(snake_case__ , snake_case__ ): if not np.allclose(np.asarray(snake_case__ ) , np.asarray(snake_case__ ) , atol=1e-3 ): return False return True UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=snake_case__ ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase__ : List[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=snake_case__ ) UpperCAmelCase__ : Any = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) ) UpperCAmelCase__ : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) # truncate to smallest with np UpperCAmelCase__ : Tuple = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=snake_case__ , ) UpperCAmelCase__ : Dict = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) UpperCAmelCase__ : Optional[int] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) # truncate to middle UpperCAmelCase__ : Union[str, Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=snake_case__ , return_tensors="np" , ) UpperCAmelCase__ : int = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=snake_case__ ) UpperCAmelCase__ : int = input_a[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) UpperCAmelCase__ : Optional[Any] = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(_inputs_are_equal(snake_case__ , snake_case__ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , truncation=snake_case__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="longest" , truncation=snake_case__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="longest" , truncation=snake_case__ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(snake_case__ ): feat_extract.pad(snake_case__ , padding="max_length" , truncation=snake_case__ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ : List[Any] = 1_2 UpperCAmelCase__ : Any = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=snake_case__ , truncation=snake_case__ , ) UpperCAmelCase__ : Tuple = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad( snake_case__ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=snake_case__ , ) UpperCAmelCase__ : Any = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase__ : str = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase__ : Optional[int] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(snake_case__ ) ) self.assertFalse(_inputs_have_equal_length(snake_case__ ) ) def __a ( self : Dict ): '''simple docstring''' self._check_padding(numpify=snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' self._check_padding(numpify=snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' self._check_truncation(numpify=snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' self._check_truncation(numpify=snake_case__ ) @require_torch def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : List[str] = feat_extract.model_input_names[0] UpperCAmelCase__ : int = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[Any] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ : List[str] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : int = feat_extract.model_input_names[0] UpperCAmelCase__ : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Dict = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase__ : int = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.feat_extract_dict UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : Tuple = self.feature_extraction_class(**snake_case__ ) UpperCAmelCase__ : Tuple = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : str = [len(snake_case__ ) for x in speech_inputs] UpperCAmelCase__ : Union[str, Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[str] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , snake_case__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.feat_extract_dict UpperCAmelCase__ : str = True UpperCAmelCase__ : Dict = self.feature_extraction_class(**snake_case__ ) UpperCAmelCase__ : Dict = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Optional[Any] = [len(snake_case__ ) for x in speech_inputs] UpperCAmelCase__ : Optional[int] = feat_extract.model_input_names[0] UpperCAmelCase__ : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Optional[int] = min(snake_case__ ) UpperCAmelCase__ : Dict = feat_extract.pad( snake_case__ , padding="max_length" , max_length=snake_case__ , truncation=snake_case__ , return_tensors="np" ) self.assertIn("attention_mask" , snake_case__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
298
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowerCAmelCase : Any = False try: _lowerCAmelCase : List[str] = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowerCAmelCase__ : def __init__( self : Dict , snake_case__ : str = None , snake_case__ : list = [] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : List[str] = choices UpperCAmelCase__ : Optional[int] = prompt if sys.platform == "win32": UpperCAmelCase__ : Optional[Any] = "*" else: UpperCAmelCase__ : List[str] = "➔ " def __a ( self : int , snake_case__ : int , snake_case__ : str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 3_2 , snake_case__ ) else: forceWrite(self.choices[index] , snake_case__ ) def __a ( self : List[str] , snake_case__ : int ): '''simple docstring''' if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(snake_case__ ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def __a ( self : Optional[int] , snake_case__ : Direction , snake_case__ : int = 1 ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(snake_case__ ) move_cursor(snake_case__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def __a ( self : Dict ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def __a ( self : str ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def __a ( self : str ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def __a ( self : Union[str, Any] ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(snake_case__ )] for number in range(1_0 )] ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = int(chr(self.current_selection ) ) UpperCAmelCase__ : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , snake_case__ ) else: return else: return def __a ( self : List[str] , snake_case__ : int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) UpperCAmelCase__ : List[str] = default_choice for i in range(len(self.choices ) ): self.print_choice(snake_case__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: UpperCAmelCase__ : Dict = int(builtins.input() ) except ValueError: UpperCAmelCase__ : Tuple = default_choice else: UpperCAmelCase__ : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(snake_case__ , "\n" ) return choice
298
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
1
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) _lowerCAmelCase : str = parser.parse_args() _lowerCAmelCase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
298
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
1
"""simple docstring""" from functools import lru_cache @lru_cache def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> int: '''simple docstring''' if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : int = 100 )-> int: '''simple docstring''' UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : Any = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
298
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''levit''' def __init__( self : List[Any] , snake_case__ : int=2_2_4 , snake_case__ : Dict=3 , snake_case__ : Optional[int]=3 , snake_case__ : Dict=2 , snake_case__ : Dict=1 , snake_case__ : Tuple=1_6 , snake_case__ : Optional[Any]=[1_2_8, 2_5_6, 3_8_4] , snake_case__ : Optional[int]=[4, 8, 1_2] , snake_case__ : List[str]=[4, 4, 4] , snake_case__ : Optional[Any]=[1_6, 1_6, 1_6] , snake_case__ : List[str]=0 , snake_case__ : Dict=[2, 2, 2] , snake_case__ : List[Any]=[2, 2, 2] , snake_case__ : Dict=0.02 , **snake_case__ : int , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : List[Any] = kernel_size UpperCAmelCase__ : List[str] = stride UpperCAmelCase__ : Tuple = padding UpperCAmelCase__ : Union[str, Any] = hidden_sizes UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Optional[Any] = depths UpperCAmelCase__ : List[str] = key_dim UpperCAmelCase__ : Optional[Any] = drop_path_rate UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[int] = attention_ratio UpperCAmelCase__ : List[Any] = mlp_ratio UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Union[str, Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =version.parse('''1.11''' ) @property def __a ( self : Dict ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __a ( self : Optional[int] ): '''simple docstring''' return 1e-4
298
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = """▁""" _lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """prophetnet.tokenizer"""} _lowerCAmelCase : Union[str, Any] = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } _lowerCAmelCase : str = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } _lowerCAmelCase : List[str] = { """microsoft/xprophetnet-large-wiki100-cased""": 512, } def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = collections.OrderedDict() with open(snake_case , "r" , encoding="utf-8" ) as reader: UpperCAmelCase__ : Optional[int] = reader.readlines() for index, token in enumerate(snake_case ): UpperCAmelCase__ : List[str] = token.rstrip("\n" ) UpperCAmelCase__ : Optional[Any] = index return vocab class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ =['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , snake_case__ : Any , snake_case__ : int="[SEP]" , snake_case__ : Tuple="[SEP]" , snake_case__ : int="[SEP]" , snake_case__ : str="[UNK]" , snake_case__ : str="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : List[str]="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : List[Any] , ): '''simple docstring''' UpperCAmelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise UpperCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) UpperCAmelCase__ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab UpperCAmelCase__ : Dict = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(1_0 ): UpperCAmelCase__ : List[Any] = f'[unused{i}]' UpperCAmelCase__ : Tuple = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab UpperCAmelCase__ : Tuple = 1_2 UpperCAmelCase__ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.__dict__.copy() UpperCAmelCase__ : int = None return state def __setstate__( self : Any , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Dict , snake_case__ : str ): '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Any = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __a ( self : Tuple , snake_case__ : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __a ( self : Optional[int] , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def __a ( self : int , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def __a ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
298
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
1
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE__ ( snake_case : Any="" )-> str: '''simple docstring''' UpperCAmelCase__ : int = tempfile.mkdtemp() return os.path.join(snake_case , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase__ : Optional[Any] = AgentAudio(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase__ , UpperCAmelCase__ : str = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , torch.tensor(snake_case__ ) , atol=1e-4 ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase__ : List[str] = get_new_path(suffix=".wav" ) sf.write(snake_case__ , snake_case__ , 1_6_0_0_0 ) UpperCAmelCase__ : Optional[int] = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case__ ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) UpperCAmelCase__ : str = AgentImage(snake_case__ ) UpperCAmelCase__ : int = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase__ : str = Image.open(snake_case__ ) UpperCAmelCase__ : Any = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase__ : str = Image.open(snake_case__ ) UpperCAmelCase__ : int = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = "Hey!" UpperCAmelCase__ : Dict = AgentText(snake_case__ ) self.assertEqual(snake_case__ , agent_type.to_string() ) self.assertEqual(snake_case__ , agent_type.to_raw() ) self.assertEqual(snake_case__ , snake_case__ )
298
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : Any = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
1
"""simple docstring""" import math class lowerCAmelCase__ : def __init__( self : List[Any] , snake_case__ : Tuple=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = n UpperCAmelCase__ : Optional[int] = [ [math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ ) ] # adjacency matrix for weight UpperCAmelCase__ : Any = [ [math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ ) ] # dp[i][j] stores minimum distance from i to j def __a ( self : Optional[Any] , snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Any = w def __a ( self : Tuple ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase__ : int = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFInpaintingPipeline SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : List[str] ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Optional[int] , snake_case__ : List[str] , snake_case__ : Optional[int]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : List[Any] ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : int ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : List[Any] ): '''simple docstring''' self._test_save_load_local() def __a ( self : str ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
298
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : List[Any] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : str = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] UpperCAmelCase__ : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] UpperCAmelCase__ : Any = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Any , **snake_case__ : Optional[int] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def __a ( self : str , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "adapt act apte" UpperCAmelCase__ : Dict = "adapt act apte" return input_text, output_text def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Optional[int] = "adapt act apte" UpperCAmelCase__ : Optional[int] = ["adapt", "act", "ap@@", "te"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCAmelCase__ : Optional[int] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_3_8_4] UpperCAmelCase__ : Any = "I am a small frog." UpperCAmelCase__ : str = tok([src_text] , padding=snake_case__ , truncation=snake_case__ )["input_ids"] UpperCAmelCase__ : Optional[int] = tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) UpperCAmelCase__ : List[str] = "I am a small frog ." UpperCAmelCase__ : Optional[Any] = "." UpperCAmelCase__ : Optional[Any] = tok(snake_case__ )["input_ids"] UpperCAmelCase__ : List[Any] = tok(snake_case__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
298
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 3 UpperCAmelCase__ : List[Any] = 2_5_0 UpperCAmelCase__ : List[str] = ids_tensor((batch_size, length) , snake_case__ ) UpperCAmelCase__ : Any = torch.ones((batch_size, length) , device=snake_case__ , dtype=torch.float ) / length return input_ids, scores def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self._get_tensors(5 ) UpperCAmelCase__ : List[Any] = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(9 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(1_0 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = MaxLengthCriteria(max_length=1_0 ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_tensors(9 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(1_0 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_tensors(5 ) UpperCAmelCase__ : Union[str, Any] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Union[str, Any] = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(snake_case__ , snake_case__ ) ) def __a ( self : str ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(snake_case__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) UpperCAmelCase__ : Optional[int] = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(snake_case__ ) , 1 )
298
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCAmelCase__ : str = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCAmelCase__ : Optional[Any] = {"unk_token": "<unk>"} UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) UpperCAmelCase__ : Tuple = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(snake_case__ , snake_case__ ) def __a ( self : Tuple , **snake_case__ : Any ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def __a ( self : Optional[int] , **snake_case__ : Optional[int] ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def __a ( self : Tuple , **snake_case__ : Optional[Any] ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCAmelCase__ : int = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : List[Any] = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = self.get_image_processor() UpperCAmelCase__ : int = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ ) UpperCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case__ ) self.assertIsInstance(processor_fast.tokenizer , snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case__ ) self.assertIsInstance(processor_fast.image_processor , snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase__ : Optional[int] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) UpperCAmelCase__ : Optional[int] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_image_processor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : List[str] = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase__ : str = self.prepare_image_inputs() UpperCAmelCase__ : Union[str, Any] = image_processor(snake_case__ , return_tensors="np" ) UpperCAmelCase__ : List[str] = processor(images=snake_case__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_image_processor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : str = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase__ : Dict = "lower newer" UpperCAmelCase__ : Dict = processor(text=snake_case__ ) UpperCAmelCase__ : Optional[int] = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_image_processor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase__ : Optional[int] = "lower newer" UpperCAmelCase__ : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase__ : Optional[int] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_image_processor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : List[Any] = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ : List[Any] = processor.batch_decode(snake_case__ ) UpperCAmelCase__ : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_image_processor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : List[str] = CLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) UpperCAmelCase__ : List[str] = "lower newer" UpperCAmelCase__ : Optional[int] = self.prepare_image_inputs() UpperCAmelCase__ : Dict = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
298
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__ ( unittest.TestCase , __magic_name__ ): def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = load_tool("text-classification" ) self.tool.setup() UpperCAmelCase__ : Dict = load_tool("text-classification" , remote=snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(snake_case__ , "positive" )
298
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE_ ='''ViTImageProcessor''' SCREAMING_SNAKE_CASE_ =('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : str , snake_case__ : List[str]=None , snake_case__ : str=None , **snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) UpperCAmelCase__ : Tuple = kwargs.pop("feature_extractor" ) UpperCAmelCase__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : str , snake_case__ : Optional[int]=None , snake_case__ : List[str]=None , snake_case__ : Optional[int]=None , snake_case__ : List[str]=None , **snake_case__ : Union[str, Any] ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: UpperCAmelCase__ : List[Any] = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if visual_prompt is not None: UpperCAmelCase__ : Optional[int] = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: UpperCAmelCase__ : int = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if visual_prompt is not None and images is not None: UpperCAmelCase__ : Tuple = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase__ : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase__ : List[Any] = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def __a ( self : Any , *snake_case__ : Dict , **snake_case__ : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def __a ( self : int , *snake_case__ : Dict , **snake_case__ : List[str] ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def __a ( self : Tuple ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class @property def __a ( self : Dict ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , ) return self.image_processor
298
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = RobertaPreLayerNormConfig.from_pretrained( snake_case , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict UpperCAmelCase__ : Optional[Any] = torch.load(hf_hub_download(repo_id=snake_case , filename="pytorch_model.bin" ) ) UpperCAmelCase__ : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): UpperCAmelCase__ : Dict = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue UpperCAmelCase__ : List[Any] = tensor_value UpperCAmelCase__ : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=snake_case , config=snake_case , state_dict=snake_case ) model.save_pretrained(snake_case ) # convert tokenizer UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(snake_case ) tokenizer.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
1
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' UpperCAmelCase__ : Tuple = num - 1 UpperCAmelCase__ : Any = 0 while s % 2 == 0: UpperCAmelCase__ : Optional[int] = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase__ : str = random.randrange(2 , num - 1 ) UpperCAmelCase__ : Union[str, Any] = pow(snake_case , snake_case , snake_case ) if v != 1: UpperCAmelCase__ : int = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase__ : Optional[int] = i + 1 UpperCAmelCase__ : List[str] = (v**2) % num return True def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' if num < 2: return False UpperCAmelCase__ : List[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1024 )-> int: '''simple docstring''' while True: UpperCAmelCase__ : str = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case ): return num if __name__ == "__main__": _lowerCAmelCase : Dict = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
"""simple docstring""" from collections.abc import Iterable from typing import Any class lowerCAmelCase__ : def __init__( self : List[Any] , snake_case__ : int | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Dict ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'{self.value}': (self.left, self.right)} , indent=1 ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = root def __str__( self : Any ): '''simple docstring''' return str(self.root ) def __a ( self : int , snake_case__ : Node , snake_case__ : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : List[Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children UpperCAmelCase__ : int = new_children else: UpperCAmelCase__ : int = new_children else: UpperCAmelCase__ : Tuple = new_children def __a ( self : Optional[Any] , snake_case__ : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def __a ( self : List[Any] ): '''simple docstring''' return self.root is None def __a ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : str = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : Optional[int] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Any = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : List[Any] = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : List[str] = new_node break else: UpperCAmelCase__ : Any = parent_node.right UpperCAmelCase__ : int = parent_node def __a ( self : Dict , *snake_case__ : Union[str, Any] ): '''simple docstring''' for value in values: self.__insert(snake_case__ ) def __a ( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: UpperCAmelCase__ : Union[str, Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : Union[str, Any] = node.left if value < node.value else node.right return node def __a ( self : str , snake_case__ : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : List[Any] = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Any = node.right return node def __a ( self : Optional[int] , snake_case__ : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Union[str, Any] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : List[Any] = self.root while node.left is not None: UpperCAmelCase__ : List[Any] = node.left return node def __a ( self : Tuple , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ , snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ , node.left ) else: UpperCAmelCase__ : Optional[int] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : int = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __a ( self : Union[str, Any] , snake_case__ : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __a ( self : Any , snake_case__ : Tuple=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __a ( self : int , snake_case__ : list , snake_case__ : Node | None ): '''simple docstring''' if node: self.inorder(snake_case__ , node.left ) arr.append(node.value ) self.inorder(snake_case__ , node.right ) def __a ( self : Optional[Any] , snake_case__ : int , snake_case__ : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> list[Node]: '''simple docstring''' UpperCAmelCase__ : Dict = [] if curr_node is not None: UpperCAmelCase__ : List[str] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Dict = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(snake_case ) # Prints all the elements of the list in order traversal print(snake_case ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(snake_case ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
298
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
1
"""simple docstring""" from statistics import mean, stdev def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int = 3 )-> list: '''simple docstring''' UpperCAmelCase__ : Tuple = min(snake_case ) UpperCAmelCase__ : Optional[int] = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int = 3 )-> list: '''simple docstring''' UpperCAmelCase__ : Dict = mean(snake_case ) UpperCAmelCase__ : Tuple = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
298
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
1
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =0 SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =3.0 class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): '''simple docstring''' # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def __a ( self : Optional[Any] ): '''simple docstring''' # If no defaults are changed, `to_kwargs` returns an empty dict. UpperCAmelCase__ : str = GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase__ : Optional[int] = Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase__ : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ["torchrun", f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase : str = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _lowerCAmelCase : Any = Accelerator(kwargs_handlers=[ddp_scaler]) _lowerCAmelCase : List[str] = torch.nn.Linear(100, 200) _lowerCAmelCase : Tuple = accelerator.prepare(model) # Check the values changed in kwargs _lowerCAmelCase : int = """""" _lowerCAmelCase : List[str] = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
298
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int , snake_case : int , snake_case : int )-> list: '''simple docstring''' UpperCAmelCase__ : Dict = [] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase__ : Any = result + left + right return input_list def SCREAMING_SNAKE_CASE__ ( snake_case : list )-> list: '''simple docstring''' if len(snake_case ) <= 1: return input_list UpperCAmelCase__ : Dict = list(snake_case ) # iteration for two-way merging UpperCAmelCase__ : Union[str, Any] = 2 while p <= len(snake_case ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(snake_case ) , snake_case ): UpperCAmelCase__ : Optional[int] = i UpperCAmelCase__ : int = i + p - 1 UpperCAmelCase__ : int = (low + high + 1) // 2 UpperCAmelCase__ : Union[str, Any] = merge(snake_case , snake_case , snake_case , snake_case ) # final merge of last two parts if p * 2 >= len(snake_case ): UpperCAmelCase__ : Union[str, Any] = i UpperCAmelCase__ : Any = merge(snake_case , 0 , snake_case , len(snake_case ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCAmelCase : Dict = input("""Enter numbers separated by a comma:\n""").strip() if user_input == "": _lowerCAmelCase : Union[str, Any] = [] else: _lowerCAmelCase : List[Any] = [int(item.strip()) for item in user_input.split(""",""")] print(iter_merge_sort(unsorted))
298
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(snake_case__ , "num_attention_heads" ) ) class lowerCAmelCase__ : def __init__( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=1_3 , snake_case__ : Tuple=6_4 , snake_case__ : int=3 , snake_case__ : Union[str, Any]=3 , snake_case__ : List[Any]=2 , snake_case__ : int=1 , snake_case__ : Dict=1_6 , snake_case__ : Dict=[1_2_8, 2_5_6, 3_8_4] , snake_case__ : str=[4, 6, 8] , snake_case__ : Optional[int]=[2, 3, 4] , snake_case__ : Union[str, Any]=[1_6, 1_6, 1_6] , snake_case__ : Optional[Any]=0 , snake_case__ : Optional[int]=[2, 2, 2] , snake_case__ : List[str]=[2, 2, 2] , snake_case__ : Optional[Any]=0.02 , snake_case__ : Union[str, Any]=True , snake_case__ : str=True , snake_case__ : List[Any]=2 , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = image_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Optional[Any] = kernel_size UpperCAmelCase__ : Optional[Any] = stride UpperCAmelCase__ : List[Any] = padding UpperCAmelCase__ : str = hidden_sizes UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : Dict = depths UpperCAmelCase__ : int = key_dim UpperCAmelCase__ : Dict = drop_path_rate UpperCAmelCase__ : str = patch_size UpperCAmelCase__ : Any = attention_ratio UpperCAmelCase__ : List[Any] = mlp_ratio UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Dict = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase__ : int = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Optional[Any] = num_labels UpperCAmelCase__ : Optional[Any] = initializer_range def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def __a ( self : List[Any] ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __a ( self : int , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = LevitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : str = model(snake_case__ ) UpperCAmelCase__ : List[str] = (self.image_size, self.image_size) UpperCAmelCase__ , UpperCAmelCase__ : Dict = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase__ : int = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCAmelCase__ : Optional[Any] = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __a ( self : List[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.num_labels UpperCAmelCase__ : Tuple = LevitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = config_and_inputs UpperCAmelCase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = LevitModelTester(self ) UpperCAmelCase__ : Tuple = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : Dict ): '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __a ( self : int ): '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __a ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def __a ( self : Any ): '''simple docstring''' pass def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' def check_hidden_states_output(snake_case__ : int , snake_case__ : Dict , snake_case__ : Dict ): UpperCAmelCase__ : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : Any = outputs.hidden_states UpperCAmelCase__ : Union[str, Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(snake_case__ ) , snake_case__ ) UpperCAmelCase__ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase__ : Union[str, Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCAmelCase__ : Dict = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=False ): '''simple docstring''' UpperCAmelCase__ : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase__ : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : List[str] = model(**snake_case__ ).loss loss.backward() def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase__ : Union[str, Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : int = model(**snake_case__ ).loss loss.backward() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): UpperCAmelCase__ : List[Any] = problem_type["title"] UpperCAmelCase__ : Dict = problem_type["num_labels"] UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: UpperCAmelCase__ : Tuple = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase__ : Any = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: UpperCAmelCase__ : Any = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __a ( self : str ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = LevitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case__ ) UpperCAmelCase__ : List[str] = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : List[Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**snake_case__ ) # verify the logits UpperCAmelCase__ : Optional[int] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : str = torch.tensor([1.0448, -0.3745, -1.8317] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
298
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowerCAmelCase__ : def __init__( self : str , snake_case__ : List[Any] , snake_case__ : Union[str, Any]=1_3 , snake_case__ : Any=7 , snake_case__ : str=False , snake_case__ : Union[str, Any]=True , snake_case__ : int=False , snake_case__ : List[str]=False , snake_case__ : List[Any]=1_9 , snake_case__ : List[str]=3_2 , snake_case__ : int=5 , snake_case__ : Dict=4 , snake_case__ : str=3_7 , snake_case__ : Any="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=1_6 , snake_case__ : List[Any]=2 , snake_case__ : int=0.02 , snake_case__ : Optional[Any]=3 , snake_case__ : Tuple=4 , snake_case__ : List[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : Optional[Any] = seq_length UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : Tuple = use_input_mask UpperCAmelCase__ : Dict = use_token_type_ids UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Tuple = num_choices UpperCAmelCase__ : Optional[Any] = scope def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : List[Any] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : str = None UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=snake_case__ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def __a ( self : Any , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = EsmForProteinFolding(config=snake_case__ ).float() model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase__ : Tuple = model(snake_case__ ) UpperCAmelCase__ : List[str] = model(snake_case__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =(EsmForProteinFolding,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ =False def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = EsmFoldModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @unittest.skip("Does not support attention outputs" ) def __a ( self : Dict ): '''simple docstring''' pass @unittest.skip def __a ( self : Dict ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def __a ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def __a ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!" ) def __a ( self : int ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def __a ( self : Any ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def __a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def __a ( self : List[str] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def __a ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def __a ( self : List[str] ): '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def __a ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def __a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold only has one output format." ) def __a ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def __a ( self : Any ): '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking." ) def __a ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def __a ( self : Any ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __a ( self : Tuple ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __a ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def __a ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support data parallel." ) def __a ( self : List[str] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self : Dict ): '''simple docstring''' pass @require_torch class lowerCAmelCase__ ( __magic_name__ ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() UpperCAmelCase__ : Tuple = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) UpperCAmelCase__ : Any = model(snake_case__ )["positions"] UpperCAmelCase__ : Tuple = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , snake_case__ , atol=1e-4 ) )
298
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _lowerCAmelCase : Optional[int] = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _lowerCAmelCase : List[str] = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ _lowerCAmelCase : str = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Tuple ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def __a ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Dict , snake_case__ : int = CHRF.CHAR_ORDER , snake_case__ : int = CHRF.WORD_ORDER , snake_case__ : int = CHRF.BETA , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , ): '''simple docstring''' UpperCAmelCase__ : Any = len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) UpperCAmelCase__ : int = [[refs[i] for refs in references] for i in range(snake_case__ )] UpperCAmelCase__ : str = CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
298
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None SCREAMING_SNAKE_CASE_ =None def SCREAMING_SNAKE_CASE__ ( )-> Node | None: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = Node(1 ) UpperCAmelCase__ : Any = Node(2 ) UpperCAmelCase__ : Dict = Node(3 ) UpperCAmelCase__ : Union[str, Any] = Node(4 ) UpperCAmelCase__ : Optional[int] = Node(5 ) return tree def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> Sequence[Node | None]: '''simple docstring''' UpperCAmelCase__ : list[Any] = [] if root is None: return output UpperCAmelCase__ : List[str] = deque([root] ) while process_queue: UpperCAmelCase__ : Dict = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None , snake_case : int )-> Sequence[Node | None]: '''simple docstring''' UpperCAmelCase__ : list[Any] = [] def populate_output(snake_case : Node | None , snake_case : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(snake_case , snake_case ) return output def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None , snake_case : int )-> Sequence[Node | None]: '''simple docstring''' UpperCAmelCase__ : list[Any] = [] def populate_output(snake_case : Node | None , snake_case : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(snake_case , snake_case ) return output def SCREAMING_SNAKE_CASE__ ( snake_case : Node | None )-> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] UpperCAmelCase__ : list[Sequence[Node | None]] = [] UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Any = height(snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case , snake_case ) ) UpperCAmelCase__ : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(snake_case , snake_case ) ) UpperCAmelCase__ : List[Any] = 0 return output def SCREAMING_SNAKE_CASE__ ( )-> None: # Main function for testing. '''simple docstring''' UpperCAmelCase__ : Optional[Any] = make_tree() print(f'In-order Traversal: {inorder(snake_case )}' ) print(f'Pre-order Traversal: {preorder(snake_case )}' ) print(f'Post-order Traversal: {postorder(snake_case )}' , "\n" ) print(f'Height of Tree: {height(snake_case )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(snake_case ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(snake_case ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(snake_case , level=snake_case ) ) print("\nZigZag order Traversal: " ) print(zigzag(snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
298
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[str] = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
1
"""simple docstring""" import random def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : float , snake_case : bool = False )-> dict: '''simple docstring''' UpperCAmelCase__ : dict = {i: [] for i in range(snake_case )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case ): for j in range(i + 1 , snake_case ): if random.random() < probability: graph[i].append(snake_case ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case ) return graph def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> dict: '''simple docstring''' return { i: [j for j in range(snake_case ) if i != j] for i in range(snake_case ) } if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _lowerCAmelCase : Optional[int] = """scheduler_config.json""" class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =1 SCREAMING_SNAKE_CASE_ =2 SCREAMING_SNAKE_CASE_ =3 SCREAMING_SNAKE_CASE_ =4 SCREAMING_SNAKE_CASE_ =5 @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =SCHEDULER_CONFIG_NAME SCREAMING_SNAKE_CASE_ =['''dtype'''] SCREAMING_SNAKE_CASE_ =[] SCREAMING_SNAKE_CASE_ =True @classmethod def __a ( cls : Dict , snake_case__ : Dict[str, Any] = None , snake_case__ : Optional[str] = None , snake_case__ : Dict=False , **snake_case__ : str , ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = cls.load_config( pretrained_model_name_or_path=snake_case__ , subfolder=snake_case__ , return_unused_kwargs=snake_case__ , **snake_case__ , ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cls.from_config(snake_case__ , return_unused_kwargs=snake_case__ , **snake_case__ ) if hasattr(snake_case__ , "create_state" ) and getattr(snake_case__ , "has_state" , snake_case__ ): UpperCAmelCase__ : List[str] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __a ( self : Optional[Any] , snake_case__ : Union[str, os.PathLike] , snake_case__ : bool = False , **snake_case__ : str ): '''simple docstring''' self.save_config(save_directory=snake_case__ , push_to_hub=snake_case__ , **snake_case__ ) @property def __a ( self : Dict ): '''simple docstring''' return self._get_compatibles() @classmethod def __a ( cls : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(set([cls.__name__] + cls._compatibles ) ) UpperCAmelCase__ : Tuple = importlib.import_module(__name__.split("." )[0] ) UpperCAmelCase__ : Optional[Any] = [ getattr(snake_case__ , snake_case__ ) for c in compatible_classes_str if hasattr(snake_case__ , snake_case__ ) ] return compatible_classes def SCREAMING_SNAKE_CASE__ ( snake_case : jnp.ndarray , snake_case : Tuple[int] )-> jnp.ndarray: '''simple docstring''' assert len(snake_case ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(snake_case ) - x.ndim) ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any]=0.999 , snake_case : Optional[int]=jnp.floataa )-> jnp.ndarray: '''simple docstring''' def alpha_bar(snake_case : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 UpperCAmelCase__ : Any = [] for i in range(snake_case ): UpperCAmelCase__ : Optional[int] = i / num_diffusion_timesteps UpperCAmelCase__ : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(snake_case ) / alpha_bar(snake_case ) , snake_case ) ) return jnp.array(snake_case , dtype=snake_case ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 @classmethod def __a ( cls : List[str] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = scheduler.config if config.trained_betas is not None: UpperCAmelCase__ : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCAmelCase__ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase__ : Any = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase__ : Tuple = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) UpperCAmelCase__ : Dict = 1.0 - betas UpperCAmelCase__ : str = jnp.cumprod(snake_case__ , axis=0 ) return cls( alphas=snake_case__ , betas=snake_case__ , alphas_cumprod=snake_case__ , ) def SCREAMING_SNAKE_CASE__ ( snake_case : CommonSchedulerState , snake_case : jnp.ndarray , snake_case : jnp.ndarray , snake_case : jnp.ndarray )-> Dict: '''simple docstring''' UpperCAmelCase__ : List[str] = state.alphas_cumprod UpperCAmelCase__ : Tuple = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ : Union[str, Any] = sqrt_alpha_prod.flatten() UpperCAmelCase__ : List[str] = broadcast_to_shape_from_left(snake_case , original_samples.shape ) UpperCAmelCase__ : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ : List[Any] = sqrt_one_minus_alpha_prod.flatten() UpperCAmelCase__ : Union[str, Any] = broadcast_to_shape_from_left(snake_case , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def SCREAMING_SNAKE_CASE__ ( snake_case : CommonSchedulerState , snake_case : jnp.ndarray , snake_case : jnp.ndarray , snake_case : jnp.ndarray )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Tuple = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def SCREAMING_SNAKE_CASE__ ( snake_case : CommonSchedulerState , snake_case : jnp.ndarray , snake_case : jnp.ndarray , snake_case : jnp.ndarray )-> int: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = get_sqrt_alpha_prod(snake_case , snake_case , snake_case , snake_case ) UpperCAmelCase__ : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
298
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
1
"""simple docstring""" import colorsys from PIL import Image # type: ignore def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : int )-> float: '''simple docstring''' UpperCAmelCase__ : Dict = x UpperCAmelCase__ : int = y for step in range(snake_case ): # noqa: B007 UpperCAmelCase__ : Any = a * a - b * b + x UpperCAmelCase__ : Optional[int] = 2 * a * b + y UpperCAmelCase__ : Tuple = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def SCREAMING_SNAKE_CASE__ ( snake_case : float )-> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def SCREAMING_SNAKE_CASE__ ( snake_case : float )-> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case , 1 , 1 ) ) def SCREAMING_SNAKE_CASE__ ( snake_case : int = 800 , snake_case : int = 600 , snake_case : float = -0.6 , snake_case : float = 0 , snake_case : float = 3.2 , snake_case : int = 50 , snake_case : bool = True , )-> Image.Image: '''simple docstring''' UpperCAmelCase__ : Any = Image.new("RGB" , (image_width, image_height) ) UpperCAmelCase__ : Tuple = img.load() # loop through the image-coordinates for image_x in range(snake_case ): for image_y in range(snake_case ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase__ : int = figure_width / image_width * image_height UpperCAmelCase__ : Optional[int] = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase__ : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase__ : Optional[int] = get_distance(snake_case , snake_case , snake_case ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase__ : Any = get_color_coded_rgb(snake_case ) else: UpperCAmelCase__ : Optional[int] = get_black_and_white_rgb(snake_case ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowerCAmelCase : Optional[int] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
298
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =1 @register_to_config def __init__( self : List[str] , snake_case__ : int = 1_0_0_0 , snake_case__ : Optional[Union[np.ndarray, List[float]]] = None ): '''simple docstring''' # set `betas`, `alphas`, `timesteps` self.set_timesteps(snake_case__ ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Union[str, Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase__ : List[str] = 4 # running values UpperCAmelCase__ : List[str] = [] def __a ( self : Tuple , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): '''simple docstring''' UpperCAmelCase__ : int = num_inference_steps UpperCAmelCase__ : str = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase__ : Any = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase__ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase__ : Optional[Any] = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase__ : Optional[int] = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase__ : Dict = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase__ : List[Any] = timesteps.to(snake_case__ ) UpperCAmelCase__ : Optional[Any] = [] def __a ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) UpperCAmelCase__ : List[Any] = (self.timesteps == timestep).nonzero().item() UpperCAmelCase__ : str = timestep_index + 1 UpperCAmelCase__ : List[str] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case__ ) if len(self.ets ) == 1: UpperCAmelCase__ : str = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase__ : int = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase__ : Any = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCAmelCase__ : Optional[int] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase__ : Optional[Any] = self._get_prev_sample(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def __a ( self : List[str] , snake_case__ : torch.FloatTensor , *snake_case__ : Union[str, Any] , **snake_case__ : Union[str, Any] ): '''simple docstring''' return sample def __a ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.alphas[timestep_index] UpperCAmelCase__ : str = self.betas[timestep_index] UpperCAmelCase__ : Optional[int] = self.alphas[prev_timestep_index] UpperCAmelCase__ : Dict = self.betas[prev_timestep_index] UpperCAmelCase__ : Union[str, Any] = (sample - sigma * ets) / max(snake_case__ , 1e-8 ) UpperCAmelCase__ : List[str] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
1
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : @staticmethod def __a ( *snake_case__ : List[Any] , **snake_case__ : int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( snake_case : Image )-> str: '''simple docstring''' UpperCAmelCase__ : List[str] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def SCREAMING_SNAKE_CASE__ ( snake_case : Image )-> Dict: '''simple docstring''' UpperCAmelCase__ : int = np.array(snake_case ) UpperCAmelCase__ : Tuple = npimg.shape return {"hash": hashimage(snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __a ( self : List[str] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = MaskGenerationPipeline(model=snake_case__ , image_processor=snake_case__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __a ( self : Dict ): '''simple docstring''' pass @slow @require_torch def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCAmelCase__ : Any = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_5_6 ) # Shortening by hashing UpperCAmelCase__ : Any = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ] , ) # fmt: on @require_torch @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = "facebook/sam-vit-huge" UpperCAmelCase__ : Union[str, Any] = pipeline("mask-generation" , model=snake_case__ ) UpperCAmelCase__ : List[str] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_5_6 ) # Shortening by hashing UpperCAmelCase__ : List[str] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ] , )
298
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
1
"""simple docstring""" import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _lowerCAmelCase : Optional[int] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _lowerCAmelCase : Optional[int] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") _lowerCAmelCase : Dict = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowerCAmelCase : List[str] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _lowerCAmelCase : List[Any] = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , snake_case ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( )-> str: '''simple docstring''' UpperCAmelCase__ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase__ : int = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase__ : Optional[int] = collections.defaultdict(snake_case ) UpperCAmelCase__ : Dict = collections.defaultdict(snake_case ) UpperCAmelCase__ : Optional[int] = collections.defaultdict(snake_case ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(snake_case ): UpperCAmelCase__ : int = None if _re_tf_models.match(snake_case ) is not None: UpperCAmelCase__ : Optional[int] = tf_models UpperCAmelCase__ : Optional[Any] = _re_tf_models.match(snake_case ).groups()[0] elif _re_flax_models.match(snake_case ) is not None: UpperCAmelCase__ : Union[str, Any] = flax_models UpperCAmelCase__ : Any = _re_flax_models.match(snake_case ).groups()[0] elif _re_pt_models.match(snake_case ) is not None: UpperCAmelCase__ : Any = pt_models UpperCAmelCase__ : Optional[int] = _re_pt_models.match(snake_case ).groups()[0] if lookup_dict is not None: while len(snake_case ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase__ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase__ : List[Any] = "".join(camel_case_split(snake_case )[:-1] ) UpperCAmelCase__ : Dict = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase__ : int = list(snake_case ) all_models.sort() UpperCAmelCase__ : str = {"model_type": all_models} UpperCAmelCase__ : List[Any] = [pt_models[t] for t in all_models] UpperCAmelCase__ : Optional[int] = [tf_models[t] for t in all_models] UpperCAmelCase__ : List[str] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase__ : Tuple = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase__ : str = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase__ : List[str] = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase__ : Tuple = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase__ : str = "AutoTokenizer" UpperCAmelCase__ : List[str] = [processors[t] for t in all_models] return pd.DataFrame(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> Dict: '''simple docstring''' UpperCAmelCase__ : Dict = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase__ : str = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] UpperCAmelCase__ : List[str] = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(snake_case , snake_case , snake_case ): # The type of pipeline may not exist in this framework if not hasattr(snake_case , snake_case ): continue # First extract all model_names UpperCAmelCase__ : List[str] = [] for name in getattr(snake_case , snake_case ).values(): if isinstance(snake_case , snake_case ): model_names.append(snake_case ) else: model_names.extend(list(snake_case ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Dict )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = get_frameworks_table() UpperCAmelCase__ : Dict = Dataset.from_pandas(snake_case ) UpperCAmelCase__ : List[Any] = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=snake_case ) UpperCAmelCase__ : int = Dataset.from_json(snake_case ) UpperCAmelCase__ : Dict = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(snake_case ) ) } UpperCAmelCase__ : List[Any] = update_pipeline_and_auto_class_table(snake_case ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase__ : int = sorted(table.keys() ) UpperCAmelCase__ : Union[str, Any] = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) UpperCAmelCase__ : List[Any] = Dataset.from_pandas(snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(snake_case , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(snake_case , "pipeline_tags.json" ) ) if commit_sha is not None: UpperCAmelCase__ : Optional[int] = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: UpperCAmelCase__ : List[Any] = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=snake_case , repo_type="dataset" , token=snake_case , commit_message=snake_case , ) def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase__ : str = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase__ : Tuple = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase__ : Optional[Any] = pipeline_tasks[key]["pt"] if isinstance(snake_case , (list, tuple) ): UpperCAmelCase__ : List[str] = model[0] UpperCAmelCase__ : Any = model.__name__ if model not in in_table.values(): missing.append(snake_case ) if len(snake_case ) > 0: UpperCAmelCase__ : Tuple = ", ".join(snake_case ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") _lowerCAmelCase : Optional[int] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
298
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ =frozenset([] ) def __a ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , ) UpperCAmelCase__ : Tuple = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) UpperCAmelCase__ : Dict = CLIPTextModel(snake_case__ ) UpperCAmelCase__ : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Any = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __a ( self : Dict , snake_case__ : List[str] , snake_case__ : Optional[int]=0 ): '''simple docstring''' # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched UpperCAmelCase__ : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Dict = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) UpperCAmelCase__ : str = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((6_4, 6_4) ) if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : Dict = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : str = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = StableDiffusionInpaintPipeline(**snake_case__ ) UpperCAmelCase__ : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Dict = self.get_dummy_inputs(snake_case__ ) UpperCAmelCase__ : Dict = sd_pipe(**snake_case__ ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase__ : str = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self : Optional[int] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : Tuple ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase__ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase__ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) UpperCAmelCase__ : List[Any] = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase__ : Tuple = StableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase__ : int = torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) UpperCAmelCase__ : int = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase__ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Optional[Any] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase__ : List[str] = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __a ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase__ : Any = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase__ : Optional[Any] = PNDMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) UpperCAmelCase__ : Dict = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , scheduler=snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : int = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : List[Any] = b.T UpperCAmelCase__ : List[Any] = np.sum(np.square(snake_case ) , axis=1 ) UpperCAmelCase__ : Dict = np.sum(np.square(snake_case ) , axis=0 ) UpperCAmelCase__ : Optional[int] = np.matmul(snake_case , snake_case ) UpperCAmelCase__ : Dict = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : str = x.reshape(-1 , 3 ) UpperCAmelCase__ : str = squared_euclidean_distance(snake_case , snake_case ) return np.argmin(snake_case , axis=1 ) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =['''pixel_values'''] def __init__( self : Union[str, Any] , snake_case__ : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : bool = True , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = size if size is not None else {"height": 2_5_6, "width": 2_5_6} UpperCAmelCase__ : Union[str, Any] = get_size_dict(snake_case__ ) UpperCAmelCase__ : Tuple = np.array(snake_case__ ) if clusters is not None else None UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : Optional[Any] = size UpperCAmelCase__ : Dict = resample UpperCAmelCase__ : Any = do_normalize UpperCAmelCase__ : List[Any] = do_color_quantize def __a ( self : Optional[int] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ): '''simple docstring''' UpperCAmelCase__ : str = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( snake_case__ , size=(size["height"], size["width"]) , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def __a ( self : Tuple , snake_case__ : np.ndarray , snake_case__ : Optional[Union[str, ChannelDimension]] = None , ): '''simple docstring''' UpperCAmelCase__ : Dict = rescale(image=snake_case__ , scale=1 / 127.5 , data_format=snake_case__ ) UpperCAmelCase__ : List[str] = image - 1 return image def __a ( self : List[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[Union[List[List[int]], np.ndarray]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **snake_case__ : List[str] , ): '''simple docstring''' UpperCAmelCase__ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : str = size if size is not None else self.size UpperCAmelCase__ : int = get_size_dict(snake_case__ ) UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Optional[int] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase__ : Dict = clusters if clusters is not None else self.clusters UpperCAmelCase__ : List[str] = np.array(snake_case__ ) UpperCAmelCase__ : List[Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. UpperCAmelCase__ : str = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase__ : Any = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase__ : List[Any] = [self.normalize(image=snake_case__ ) for image in images] if do_color_quantize: UpperCAmelCase__ : Dict = [to_channel_dimension_format(snake_case__ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase__ : Optional[Any] = np.array(snake_case__ ) UpperCAmelCase__ : List[str] = color_quantize(snake_case__ , snake_case__ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase__ : Dict = images.shape[0] UpperCAmelCase__ : str = images.reshape(snake_case__ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase__ : Optional[Any] = list(snake_case__ ) else: UpperCAmelCase__ : Tuple = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase__ : List[Any] = {"input_ids": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
298
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _lowerCAmelCase : Any = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase__ : Optional[Any] = parser.parse_args() return args.f class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(snake_case__ , "argv" , snake_case__ ): UpperCAmelCase__ : Any = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case__ , 0.666 ) @slow @require_torch_non_multi_gpu def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(snake_case__ ) UpperCAmelCase__ : Tuple = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case__ ) UpperCAmelCase__ : List[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case__ )
298
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : Union[str, Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", F"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", F"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", F"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", F"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.weight""", F"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", F"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", F"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", F"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.weight""", F"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", F"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", F"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", F"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", F"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", F"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.sa_v_proj.bias""", F"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", F"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", F"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", F"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.ca_v_proj.bias""", F"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", F"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : List[Any] , snake_case : Optional[Any] )-> int: '''simple docstring''' UpperCAmelCase__ : int = state_dict.pop(snake_case ) UpperCAmelCase__ : str = val def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> int: '''simple docstring''' UpperCAmelCase__ : Dict = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ : Optional[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) UpperCAmelCase__ : Dict = value else: UpperCAmelCase__ : str = value return new_state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : List[str]=False )-> Any: '''simple docstring''' UpperCAmelCase__ : Dict = "" if is_panoptic: UpperCAmelCase__ : List[Any] = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ : List[str] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase__ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Optional[Any] = in_proj_weight[:256, :] UpperCAmelCase__ : List[str] = in_proj_bias[:256] UpperCAmelCase__ : int = in_proj_weight[256:512, :] UpperCAmelCase__ : Any = in_proj_bias[256:512] UpperCAmelCase__ : List[str] = in_proj_weight[-256:, :] UpperCAmelCase__ : List[Any] = in_proj_bias[-256:] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ : str = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : List[Any] )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCAmelCase__ : Optional[Any] = "resnet101" if "dc5" in model_name: UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Tuple = "panoptic" in model_name if is_panoptic: UpperCAmelCase__ : Any = 250 else: UpperCAmelCase__ : str = 91 UpperCAmelCase__ : Optional[int] = "huggingface/label-files" UpperCAmelCase__ : Tuple = "coco-detection-id2label.json" UpperCAmelCase__ : Tuple = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ : Dict = {int(snake_case ): v for k, v in idalabel.items()} UpperCAmelCase__ : Optional[int] = idalabel UpperCAmelCase__ : Tuple = {v: k for k, v in idalabel.items()} # load image processor UpperCAmelCase__ : str = "coco_panoptic" if is_panoptic else "coco_detection" UpperCAmelCase__ : Tuple = ConditionalDetrImageProcessor(format=snake_case ) # prepare image UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case , return_tensors="pt" ) UpperCAmelCase__ : Optional[int] = encoding["pixel_values"] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub UpperCAmelCase__ : List[str] = torch.hub.load("DeppMeng/ConditionalDETR" , snake_case , pretrained=snake_case ).eval() UpperCAmelCase__ : List[Any] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCAmelCase__ : Optional[Any] = "conditional_detr." + src rename_key(snake_case , snake_case , snake_case ) UpperCAmelCase__ : Tuple = rename_backbone_keys(snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case , is_panoptic=snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ : List[str] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(snake_case ) UpperCAmelCase__ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase__ : str = state_dict.pop(snake_case ) UpperCAmelCase__ : List[str] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: UpperCAmelCase__ : List[str] = state_dict.pop(snake_case ) UpperCAmelCase__ : List[str] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): UpperCAmelCase__ : Optional[Any] = state_dict.pop(snake_case ) UpperCAmelCase__ : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase__ : str = ConditionalDetrForSegmentation(snake_case ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case ) model.load_state_dict(snake_case ) model.eval() model.push_to_hub(repo_id=snake_case , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion UpperCAmelCase__ : List[str] = conditional_detr(snake_case ) UpperCAmelCase__ : Union[str, Any] = model(snake_case ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) image_processor.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
1
"""simple docstring""" import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case : np.ndarray , snake_case : np.ndarray , snake_case : float = 1E-1_2 , snake_case : int = 100 , )-> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(snake_case )[0] == np.shape(snake_case )[1] # Ensure proper dimensionality. assert np.shape(snake_case )[0] == np.shape(snake_case )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case ) == np.iscomplexobj(snake_case ) UpperCAmelCase__ : Dict = np.iscomplexobj(snake_case ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : int = 1E1_2 while not convergence: # Multiple matrix by the vector. UpperCAmelCase__ : Union[str, Any] = np.dot(snake_case , snake_case ) # Normalize the resulting output vector. UpperCAmelCase__ : Optional[Any] = w / np.linalg.norm(snake_case ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCAmelCase__ : Union[str, Any] = vector.conj().T if is_complex else vector.T UpperCAmelCase__ : List[Any] = np.dot(snake_case , np.dot(snake_case , snake_case ) ) # Check convergence. UpperCAmelCase__ : Tuple = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = lambda_ if is_complex: UpperCAmelCase__ : List[str] = np.real(lambda_ ) return lambda_, vector def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCAmelCase__ : Optional[Any] = np.array([41, 4, 20] ) UpperCAmelCase__ : Dict = real_input_matrix.astype(np.complexaaa ) UpperCAmelCase__ : Union[str, Any] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCAmelCase__ : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCAmelCase__ : int = real_input_matrix UpperCAmelCase__ : Dict = real_vector elif problem_type == "complex": UpperCAmelCase__ : Optional[Any] = complex_input_matrix UpperCAmelCase__ : Dict = complex_vector # Our implementation. UpperCAmelCase__ , UpperCAmelCase__ : Tuple = power_iteration(snake_case , snake_case ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCAmelCase__ , UpperCAmelCase__ : str = np.linalg.eigh(snake_case ) # Last eigenvalue is the maximum one. UpperCAmelCase__ : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCAmelCase__ : List[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case ) - np.abs(snake_case ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _lowerCAmelCase : int = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _lowerCAmelCase : Tuple = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ _lowerCAmelCase : Optional[Any] = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _lowerCAmelCase : Any = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ _lowerCAmelCase : Union[str, Any] = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def __a ( self : Any , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : Union[str, Any]=[1, 1_0, 1_0_0] , snake_case__ : Optional[int]=4 , snake_case__ : Optional[int]=3.0 ): '''simple docstring''' if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=snake_case__ ) as executor: UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Union[str, Any] = Counter() UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : List[str] = defaultdict(snake_case__ ) for task_id, (candidates, test_case) in enumerate(zip(snake_case__ , snake_case__ ) ): for candidate in candidates: UpperCAmelCase__ : Dict = candidate + "\n" + test_case UpperCAmelCase__ : Optional[Any] = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase__ : Optional[int] = executor.submit(snake_case__ , *snake_case__ ) futures.append(snake_case__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case__ ): UpperCAmelCase__ : str = future.result() results[result["task_id"]].append((result["completion_id"], result) ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = [], [] for result in results.values(): result.sort() UpperCAmelCase__ : int = [r[1]["passed"] for r in result] total.append(len(snake_case__ ) ) correct.append(sum(snake_case__ ) ) UpperCAmelCase__ : Optional[Any] = np.array(snake_case__ ) UpperCAmelCase__ : Optional[Any] = np.array(snake_case__ ) UpperCAmelCase__ : Tuple = k UpperCAmelCase__ : Tuple = {f'pass@{k}': estimate_pass_at_k(snake_case__ , snake_case__ , snake_case__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Any )-> List[str]: '''simple docstring''' def estimator(snake_case : int , snake_case : int , snake_case : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case , snake_case ): UpperCAmelCase__ : List[str] = itertools.repeat(snake_case , len(snake_case ) ) else: assert len(snake_case ) == len(snake_case ) UpperCAmelCase__ : Union[str, Any] = iter(snake_case ) return np.array([estimator(int(snake_case ) , int(snake_case ) , snake_case ) for n, c in zip(snake_case , snake_case )] )
298
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : int = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''blenderbot-small''' SCREAMING_SNAKE_CASE_ =['''past_key_values'''] SCREAMING_SNAKE_CASE_ ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , snake_case__ : str=5_0_2_6_5 , snake_case__ : int=5_1_2 , snake_case__ : Optional[int]=8 , snake_case__ : int=2_0_4_8 , snake_case__ : List[str]=1_6 , snake_case__ : Optional[int]=8 , snake_case__ : Optional[int]=2_0_4_8 , snake_case__ : int=1_6 , snake_case__ : Tuple=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]="gelu" , snake_case__ : Any=5_1_2 , snake_case__ : List[Any]=0.1 , snake_case__ : int=0.0 , snake_case__ : Dict=0.0 , snake_case__ : List[str]=0.02 , snake_case__ : Optional[int]=1 , snake_case__ : Union[str, Any]=False , snake_case__ : Optional[Any]=0 , snake_case__ : Union[str, Any]=1 , snake_case__ : str=2 , snake_case__ : List[str]=2 , **snake_case__ : int , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[Any] = d_model UpperCAmelCase__ : Any = encoder_ffn_dim UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_ffn_dim UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : Any = decoder_attention_heads UpperCAmelCase__ : Optional[int] = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : str = activation_dropout UpperCAmelCase__ : List[Any] = activation_function UpperCAmelCase__ : List[Any] = init_std UpperCAmelCase__ : Any = encoder_layerdrop UpperCAmelCase__ : Tuple = decoder_layerdrop UpperCAmelCase__ : Any = use_cache UpperCAmelCase__ : List[Any] = encoder_layers UpperCAmelCase__ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) class lowerCAmelCase__ ( __magic_name__ ): @property def __a ( self : Dict ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Dict = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase__ : Any = {0: "batch"} UpperCAmelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCAmelCase__ : str = {0: "batch", 1: "decoder_sequence"} UpperCAmelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.num_layers for i in range(snake_case__ ): UpperCAmelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase__ : List[Any] = {0: "batch", 2: "past_sequence + sequence"} else: UpperCAmelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __a ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : List[str] = super().outputs else: UpperCAmelCase__ : Tuple = super(snake_case__ , self ).outputs if self.use_past: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.num_layers for i in range(snake_case__ ): UpperCAmelCase__ : List[str] = {0: "batch", 2: "past_sequence + sequence"} UpperCAmelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __a ( self : str , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Generate decoder inputs UpperCAmelCase__ : Dict = seq_length if not self.use_past else 1 UpperCAmelCase__ : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[int] = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase__ : str = dict(**snake_case__ , **snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : Tuple = common_inputs["input_ids"].shape UpperCAmelCase__ : Dict = common_inputs["decoder_input_ids"].shape[1] UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_attention_heads UpperCAmelCase__ : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : int = decoder_seq_length + 3 UpperCAmelCase__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase__ : Union[str, Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(snake_case__ , snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.num_layers UpperCAmelCase__ : Union[str, Any] = min(snake_case__ , snake_case__ ) UpperCAmelCase__ : int = max(snake_case__ , snake_case__ ) - min_num_layers UpperCAmelCase__ : Tuple = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(snake_case__ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), torch.zeros(snake_case__ ), ) ) # TODO: test this. UpperCAmelCase__ : str = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(snake_case__ , snake_case__ ): common_inputs["past_key_values"].append((torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) ) return common_inputs def __a ( self : List[Any] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase__ : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCAmelCase__ : List[str] = seqlen + 2 UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.num_layers UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.num_attention_heads UpperCAmelCase__ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase__ : str = common_inputs["attention_mask"].dtype UpperCAmelCase__ : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) UpperCAmelCase__ : List[str] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(snake_case__ ) ] return common_inputs def __a ( self : Optional[int] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ : Optional[int] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ : List[Any] = tokenizer.num_special_tokens_to_add(snake_case__ ) UpperCAmelCase__ : Any = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ : List[str] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase__ : List[str] = dict(tokenizer(snake_case__ , return_tensors=snake_case__ ) ) return common_inputs def __a ( self : Optional[int] , snake_case__ : PreTrainedTokenizer , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) elif self.task == "causal-lm": UpperCAmelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) else: UpperCAmelCase__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) return common_inputs def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase__ : List[str] = super()._flatten_past_key_values_(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: UpperCAmelCase__ : List[str] = super(snake_case__ , self )._flatten_past_key_values_( snake_case__ , snake_case__ , snake_case__ , snake_case__ )
298
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple )-> int: '''simple docstring''' UpperCAmelCase__ : Any = tf.convert_to_tensor(snake_case ) UpperCAmelCase__ : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Any = tf.convert_to_tensor(snake_case ) UpperCAmelCase__ : Optional[int] = tf.cast(math.pi , x.dtype ) UpperCAmelCase__ : List[str] = tf.cast(0.04_4715 , x.dtype ) UpperCAmelCase__ : int = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case , 3 )) )) return x * cdf def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> Any: '''simple docstring''' UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(snake_case ) return x * tf.tanh(tf.math.softplus(snake_case ) ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : Any = tf.convert_to_tensor(snake_case ) UpperCAmelCase__ : Tuple = tf.cast(0.04_4715 , x.dtype ) UpperCAmelCase__ : Dict = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def SCREAMING_SNAKE_CASE__ ( snake_case : Dict )-> List[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = tf.convert_to_tensor(snake_case ) UpperCAmelCase__ : List[str] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' return tf.clip_by_value(_gelu(snake_case ) , -10 , 10 ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : List[Any]=-1 )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = tf.split(snake_case , 2 , axis=snake_case ) return a * tf.math.sigmoid(snake_case ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> int: '''simple docstring''' return tf.keras.activations.gelu(snake_case , approximate=snake_case ) _lowerCAmelCase : List[str] = tf.keras.activations.gelu _lowerCAmelCase : int = approximate_gelu_wrap else: _lowerCAmelCase : Union[str, Any] = _gelu _lowerCAmelCase : Optional[Any] = _gelu_new _lowerCAmelCase : Union[str, Any] = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> Dict: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
298
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger() @dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) def __a ( self : int , snake_case__ : Optional[int] , snake_case__ : Tensor , snake_case__ : Tensor ): '''simple docstring''' UpperCAmelCase__ : int = len(list(m.modules() ) ) == 1 or isinstance(snake_case__ , nn.Convad ) or isinstance(snake_case__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case__ ) def __call__( self : Union[str, Any] , snake_case__ : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case__ ) [x.remove() for x in self.handles] return self @property def __a ( self : Dict ): '''simple docstring''' # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =0 SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) SCREAMING_SNAKE_CASE_ =field(default_factory=__magic_name__ ) def __call__( self : Union[str, Any] , snake_case__ : Tensor ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Tracker(self.dest )(snake_case__ ).parametrized UpperCAmelCase__ : List[str] = Tracker(self.src )(snake_case__ ).parametrized UpperCAmelCase__ : Tuple = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.src_skip , snake_case__ ) ) UpperCAmelCase__ : Optional[Any] = list(filter(lambda snake_case__ : type(snake_case__ ) not in self.dest_skip , snake_case__ ) ) if len(snake_case__ ) != len(snake_case__ ): raise Exception( f'Numbers of operations are different. Source module has {len(snake_case__ )} operations while' f' destination module has {len(snake_case__ )}.' ) for dest_m, src_m in zip(snake_case__ , snake_case__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : ResNetConfig , snake_case : Path , snake_case : bool = True )-> int: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): UpperCAmelCase__ : Any = timm.create_model(snake_case , pretrained=snake_case ).eval() UpperCAmelCase__ : Any = ResNetForImageClassification(snake_case ).eval() UpperCAmelCase__ : Any = ModuleTransfer(src=snake_case , dest=snake_case ) UpperCAmelCase__ : Union[str, Any] = torch.randn((1, 3, 224, 224) ) module_transfer(snake_case ) assert torch.allclose(from_model(snake_case ) , our_model(snake_case ).logits ), "The model logits don't match the original one." UpperCAmelCase__ : Tuple = f'resnet{"-".join(name.split("resnet" ) )}' print(snake_case ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=snake_case , ) # we can use the convnext one UpperCAmelCase__ : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=snake_case , ) print(f'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : Path , snake_case : str = None , snake_case : bool = True )-> Any: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = "imagenet-1k-id2label.json" UpperCAmelCase__ : Union[str, Any] = 1000 UpperCAmelCase__ : List[Any] = (1, num_labels) UpperCAmelCase__ : Optional[int] = "huggingface/label-files" UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : str = json.load(open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) ) UpperCAmelCase__ : Optional[Any] = {int(snake_case ): v for k, v in idalabel.items()} UpperCAmelCase__ : Dict = idalabel UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : Optional[Any] = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) UpperCAmelCase__ : int = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(snake_case , names_to_config[model_name] , snake_case , snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case , snake_case , snake_case , snake_case ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() _lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
298
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase : Optional[int] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } _lowerCAmelCase : str = { """facebook/mbart-large-en-ro""": 1_024, """facebook/mbart-large-cc25""": 1_024, } # fmt: off _lowerCAmelCase : Tuple = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE_ =MBartTokenizer SCREAMING_SNAKE_CASE_ =[] SCREAMING_SNAKE_CASE_ =[] def __init__( self : List[Any] , snake_case__ : List[Any]=None , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]="<s>" , snake_case__ : int="</s>" , snake_case__ : Dict="</s>" , snake_case__ : Optional[int]="<s>" , snake_case__ : List[str]="<unk>" , snake_case__ : Tuple="<pad>" , snake_case__ : List[Any]="<mask>" , snake_case__ : List[Any]=None , snake_case__ : Dict=None , snake_case__ : Tuple=None , **snake_case__ : int , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Optional[int] = vocab_file UpperCAmelCase__ : int = False if not self.vocab_file else True UpperCAmelCase__ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) UpperCAmelCase__ : int = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCAmelCase__ : Dict = src_lang if src_lang is not None else "en_XX" UpperCAmelCase__ : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCAmelCase__ : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __a ( self : Tuple ): '''simple docstring''' return self._src_lang @src_lang.setter def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Any = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __a ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[str] , snake_case__ : Optional[str] , **snake_case__ : Optional[int] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) UpperCAmelCase__ : Optional[int] = src_lang UpperCAmelCase__ : int = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) UpperCAmelCase__ : int = self.convert_tokens_to_ids(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tgt_lang_id return inputs def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : str = "en_XX" , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "ro_RO" , **snake_case__ : Dict , ): '''simple docstring''' UpperCAmelCase__ : int = src_lang UpperCAmelCase__ : Dict = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __a ( self : Any ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.convert_tokens_to_ids(snake_case__ ) UpperCAmelCase__ : str = [] UpperCAmelCase__ : Any = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase__ : Any = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase__ : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __a ( self : int , snake_case__ : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.convert_tokens_to_ids(snake_case__ ) UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : int = [self.eos_token_id, self.cur_lang_code] UpperCAmelCase__ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCAmelCase__ : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCAmelCase__ : Any = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory.' ) return UpperCAmelCase__ : int = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
298
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase__ : def __a ( self : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any ): '''simple docstring''' return None class lowerCAmelCase__ : def __a ( self : List[Any] , snake_case__ : Any , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : int ): '''simple docstring''' return None class lowerCAmelCase__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ =[ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self : List[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case__ , "tf" , 1_2 , **snake_case__ ) @require_torch @slow def __a ( self : int ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case__ , "pt" , 1_2 , **snake_case__ ) @require_torch @slow def __a ( self : Optional[int] ): '''simple docstring''' from transformers import BertModel UpperCAmelCase__ : str = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(snake_case__ ) ) vocab_file.flush() UpperCAmelCase__ : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCAmelCase__ : int = BertModel(BertConfig(vocab_size=len(snake_case__ ) ) ) model.save_pretrained(snake_case__ ) self._test_export(snake_case__ , "pt" , 1_2 , snake_case__ ) @require_tf @slow def __a ( self : str ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase__ : Union[str, Any] = self._test_export(snake_case__ , "tf" , 1_2 , **snake_case__ ) UpperCAmelCase__ : Dict = quantize(Path(snake_case__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case__ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def __a ( self : Optional[Any] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase__ : Dict = self._test_export(snake_case__ , "pt" , 1_2 , **snake_case__ ) UpperCAmelCase__ : List[Any] = quantize(snake_case__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case__ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def __a ( self : int , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Optional[Any]=None , **snake_case__ : Optional[Any] ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: UpperCAmelCase__ : int = Path(snake_case__ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) return path except Exception as e: self.fail(snake_case__ ) @require_torch @require_tokenizers @slow def __a ( self : Optional[Any] ): '''simple docstring''' from transformers import BertModel UpperCAmelCase__ : Optional[Any] = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) UpperCAmelCase__ : Tuple = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(snake_case__ , snake_case__ , "pt" ) @require_tf @require_tokenizers @slow def __a ( self : List[str] ): '''simple docstring''' from transformers import TFBertModel UpperCAmelCase__ : Optional[int] = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) UpperCAmelCase__ : List[str] = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(snake_case__ , snake_case__ , "tf" ) def __a ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = FeatureExtractionPipeline(snake_case__ , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = infer_shapes(snake_case__ , snake_case__ ) # Assert all variables are present self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case__ ) self.assertSequenceEqual(variable_names[3:] , snake_case__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask", "token_type_ids"] UpperCAmelCase__ : Union[str, Any] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} UpperCAmelCase__ , UpperCAmelCase__ : Any = ensure_valid_input(FuncContiguousArgs() , snake_case__ , snake_case__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case__ ) , set(snake_case__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case__ , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCAmelCase__ , UpperCAmelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs() , snake_case__ , snake_case__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case__ ) , 1 ) self.assertEqual(len(snake_case__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
298
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def SCREAMING_SNAKE_CASE__ ( snake_case : Namespace )-> Tuple: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase : Tuple = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class lowerCAmelCase__ ( __magic_name__ ): @staticmethod def __a ( snake_case__ : ArgumentParser ): '''simple docstring''' UpperCAmelCase__ : List[str] = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=snake_case__ , required=snake_case__ , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=snake_case__ , required=snake_case__ , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=snake_case__ , required=snake_case__ , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=snake_case__ , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=snake_case__ , default=snake_case__ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=snake_case__ ) def __init__( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : str , *snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Any = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'Loading model {model_type}' ) UpperCAmelCase__ : Any = model_type UpperCAmelCase__ : Tuple = tf_checkpoint UpperCAmelCase__ : Union[str, Any] = pytorch_dump_output UpperCAmelCase__ : List[str] = config UpperCAmelCase__ : Dict = finetuning_task_name def __a ( self : Optional[int] ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ : Optional[int] = self._tf_checkpoint UpperCAmelCase__ : List[str] = "" else: UpperCAmelCase__ : Union[str, Any] = self._tf_checkpoint UpperCAmelCase__ : Optional[Any] = "" convert_transfo_xl_checkpoint_to_pytorch( snake_case__ , self._config , self._pytorch_dump_output , snake_case__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
298
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : List[str]="shi-labs/oneformer_demo" )-> int: '''simple docstring''' with open(hf_hub_download(snake_case , snake_case , repo_type="dataset" ) , "r" ) as f: UpperCAmelCase__ : List[str] = json.load(snake_case ) UpperCAmelCase__ : int = {} UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Any = [] for key, info in class_info.items(): UpperCAmelCase__ : Dict = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(snake_case ) ) UpperCAmelCase__ : Tuple = thing_ids UpperCAmelCase__ : List[Any] = class_names return metadata class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[str] , snake_case__ : int , snake_case__ : List[str]=7 , snake_case__ : Any=3 , snake_case__ : Optional[int]=3_0 , snake_case__ : Tuple=4_0_0 , snake_case__ : Union[str, Any]=None , snake_case__ : Union[str, Any]=True , snake_case__ : Any=True , snake_case__ : Optional[Any]=[0.5, 0.5, 0.5] , snake_case__ : Optional[int]=[0.5, 0.5, 0.5] , snake_case__ : Any=1_0 , snake_case__ : List[Any]=False , snake_case__ : int=2_5_5 , snake_case__ : Optional[int]="shi-labs/oneformer_demo" , snake_case__ : int="ade20k_panoptic.json" , snake_case__ : Any=1_0 , ): '''simple docstring''' UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Dict = {"shortest_edge": 3_2, "longest_edge": 1_3_3_3} if size is None else size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : Optional[int] = image_mean UpperCAmelCase__ : Any = image_std UpperCAmelCase__ : int = class_info_file UpperCAmelCase__ : Tuple = prepare_metadata(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[int] = num_text UpperCAmelCase__ : Dict = repo_path # for the post_process_functions UpperCAmelCase__ : List[str] = 2 UpperCAmelCase__ : Optional[int] = 1_0 UpperCAmelCase__ : List[str] = 1_0 UpperCAmelCase__ : Dict = 3 UpperCAmelCase__ : List[Any] = 4 UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : Union[str, Any] = do_reduce_labels UpperCAmelCase__ : Any = ignore_index def __a ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __a ( self : int , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Any = image_inputs[0] if isinstance(snake_case__ , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : List[Any] = int(self.size["shortest_edge"] * h / w ) UpperCAmelCase__ : Any = self.size["shortest_edge"] elif w > h: UpperCAmelCase__ : Optional[Any] = self.size["shortest_edge"] UpperCAmelCase__ : List[Any] = int(self.size["shortest_edge"] * w / h ) else: UpperCAmelCase__ : str = self.size["shortest_edge"] UpperCAmelCase__ : Dict = self.size["shortest_edge"] else: UpperCAmelCase__ : Optional[int] = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : str = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] UpperCAmelCase__ : int = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width def __a ( self : Dict ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string SCREAMING_SNAKE_CASE_ =image_processing_class def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = OneFormerImageProcessorTester(self ) @property def __a ( self : List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "ignore_index" ) ) self.assertTrue(hasattr(snake_case__ , "class_info_file" ) ) self.assertTrue(hasattr(snake_case__ , "num_text" ) ) self.assertTrue(hasattr(snake_case__ , "repo_path" ) ) self.assertTrue(hasattr(snake_case__ , "metadata" ) ) self.assertTrue(hasattr(snake_case__ , "do_reduce_labels" ) ) def __a ( self : Optional[int] ): '''simple docstring''' pass def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.image_processing_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.image_processing_tester.get_expected_values(snake_case__ , batched=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = image_processor( snake_case__ , ["semantic"] * len(snake_case__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCAmelCase__ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.image_processing_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processing_tester.get_expected_values(snake_case__ , batched=snake_case__ ) UpperCAmelCase__ : Any = image_processor( snake_case__ , ["semantic"] * len(snake_case__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processing_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processing_tester.get_expected_values(snake_case__ , batched=snake_case__ ) UpperCAmelCase__ : Dict = image_processor( snake_case__ , ["semantic"] * len(snake_case__ ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] , snake_case__ : Dict=False , snake_case__ : Any=False , snake_case__ : Optional[int]="np" ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCAmelCase__ : int = self.image_processing_tester.num_labels UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : int = None UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case__ ) if with_segmentation_maps: UpperCAmelCase__ : Tuple = num_labels if is_instance_map: UpperCAmelCase__ : Any = list(range(snake_case__ ) ) * 2 UpperCAmelCase__ : int = dict(enumerate(snake_case__ ) ) UpperCAmelCase__ : Dict = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCAmelCase__ : Dict = [Image.fromarray(snake_case__ ) for annotation in annotations] UpperCAmelCase__ : str = image_processor( snake_case__ , ["semantic"] * len(snake_case__ ) , snake_case__ , return_tensors="pt" , instance_id_to_semantic_id=snake_case__ , pad_and_return_pixel_mask=snake_case__ , ) return inputs def __a ( self : Any ): '''simple docstring''' pass def __a ( self : Optional[int] ): '''simple docstring''' def common(snake_case__ : List[str]=False , snake_case__ : List[Any]=None ): UpperCAmelCase__ : int = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case__ , is_instance_map=snake_case__ , segmentation_type=snake_case__ ) UpperCAmelCase__ : Optional[int] = inputs["mask_labels"] UpperCAmelCase__ : Dict = inputs["class_labels"] UpperCAmelCase__ : Any = inputs["pixel_values"] UpperCAmelCase__ : List[str] = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case__ , snake_case__ , snake_case__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case__ ) common(is_instance_map=snake_case__ , segmentation_type="pil" ) common(is_instance_map=snake_case__ , segmentation_type="pil" ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = np.zeros((2_0, 5_0) ) UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[str] = 1 UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : List[Any] = binary_mask_to_rle(snake_case__ ) self.assertEqual(len(snake_case__ ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCAmelCase__ : Tuple = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase__ : Any = fature_extractor.post_process_semantic_segmentation(snake_case__ ) self.assertEqual(len(snake_case__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCAmelCase__ : Union[str, Any] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCAmelCase__ : Optional[int] = fature_extractor.post_process_semantic_segmentation(snake_case__ , target_sizes=snake_case__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCAmelCase__ : Any = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase__ : Dict = image_processor.post_process_instance_segmentation(snake_case__ , threshold=0 ) self.assertTrue(len(snake_case__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) UpperCAmelCase__ : int = self.image_processing_tester.get_fake_oneformer_outputs() UpperCAmelCase__ : List[str] = image_processor.post_process_panoptic_segmentation(snake_case__ , threshold=0 ) self.assertTrue(len(snake_case__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case__ ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
298
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
1
"""simple docstring""" _lowerCAmelCase : Optional[int] = 0 # The first color of the flag. _lowerCAmelCase : str = 1 # The second color of the flag. _lowerCAmelCase : Optional[int] = 2 # The third color of the flag. _lowerCAmelCase : List[str] = (red, white, blue) def SCREAMING_SNAKE_CASE__ ( snake_case : list )-> list: '''simple docstring''' if not sequence: return [] if len(snake_case ) == 1: return list(snake_case ) UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : List[str] = len(snake_case ) - 1 UpperCAmelCase__ : str = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCAmelCase__ , UpperCAmelCase__ : Any = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCAmelCase__ , UpperCAmelCase__ : str = sequence[high], sequence[mid] high -= 1 else: UpperCAmelCase__ : Any = f'The elements inside the sequence must contains only {colors} values' raise ValueError(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Union[str, Any] = input("""Enter numbers separated by commas:\n""").strip() _lowerCAmelCase : Union[str, Any] = [int(item.strip()) for item in user_input.split(""",""")] print(F"""{dutch_national_flag_sort(unsorted)}""")
298
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : int = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
1
"""simple docstring""" from pathlib import Path import fire def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : int )-> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Path(snake_case ) UpperCAmelCase__ : str = Path(snake_case ) dest_dir.mkdir(exist_ok=snake_case ) for path in src_dir.iterdir(): UpperCAmelCase__ : List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] UpperCAmelCase__ : Tuple = dest_dir.joinpath(path.name ) print(snake_case ) dest_path.open("w" ).write("\n".join(snake_case ) ) if __name__ == "__main__": fire.Fire(minify)
298
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any]=None )-> Any: '''simple docstring''' if subparsers is not None: UpperCAmelCase__ : Optional[int] = subparsers.add_parser("test" ) else: UpperCAmelCase__ : Any = argparse.ArgumentParser("Accelerate test command" ) parser.add_argument( "--config_file" , default=snake_case , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : int = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] ) if args.config_file is None: UpperCAmelCase__ : Optional[int] = script_name else: UpperCAmelCase__ : Optional[Any] = f'--config_file={args.config_file} {script_name}' UpperCAmelCase__ : Optional[Any] = ["accelerate-launch"] + test_args.split() UpperCAmelCase__ : str = execute_subprocess_async(snake_case , env=os.environ.copy() ) if result.returncode == 0: print("Test is a success! You are ready for your distributed training!" ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' UpperCAmelCase__ : int = test_command_parser() UpperCAmelCase__ : List[Any] = parser.parse_args() test_command(snake_case ) if __name__ == "__main__": main()
298
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =(PNDMScheduler,) SCREAMING_SNAKE_CASE_ =(('''num_inference_steps''', 50),) def __a ( self : Optional[int] , **snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**snake_case__ ) return config def __a ( self : int , snake_case__ : str=0 , **snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = dict(self.forward_default_kwargs ) UpperCAmelCase__ : Tuple = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCAmelCase__ : List[str] = self.dummy_sample UpperCAmelCase__ : Dict = 0.1 * sample UpperCAmelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config(**snake_case__ ) UpperCAmelCase__ : str = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCAmelCase__ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCAmelCase__ : Tuple = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals UpperCAmelCase__ : List[Any] = dummy_past_residuals[:] UpperCAmelCase__ : List[Any] = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase__ : Dict = new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ : str = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase__ : Optional[int] = new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __a ( self : List[Any] ): '''simple docstring''' pass def __a ( self : Optional[int] , snake_case__ : int=0 , **snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = dict(self.forward_default_kwargs ) UpperCAmelCase__ : Dict = kwargs.pop("num_inference_steps" , snake_case__ ) UpperCAmelCase__ : Tuple = self.dummy_sample UpperCAmelCase__ : List[str] = 0.1 * sample UpperCAmelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config() UpperCAmelCase__ : List[Any] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) UpperCAmelCase__ : int = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ : Tuple = dummy_past_residuals[:] UpperCAmelCase__ : str = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase__ : Any = new_scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase__ : int = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase__ : Optional[int] = new_scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __a ( self : Dict , **snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase__ : int = self.get_scheduler_config(**snake_case__ ) UpperCAmelCase__ : Tuple = scheduler_class(**snake_case__ ) UpperCAmelCase__ : str = 1_0 UpperCAmelCase__ : int = self.dummy_model() UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ : List[Any] = model(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[int] = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ : Any = model(snake_case__ , snake_case__ ) UpperCAmelCase__ : Any = scheduler.step_plms(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase__ : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : List[Any] = self.get_scheduler_config() UpperCAmelCase__ : List[str] = scheduler_class(**snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.dummy_sample UpperCAmelCase__ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): UpperCAmelCase__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ : Any = dummy_past_residuals[:] UpperCAmelCase__ : Tuple = scheduler.step_prk(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase__ : List[Any] = scheduler.step_prk(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ : Tuple = scheduler.step_plms(snake_case__ , 0 , snake_case__ , **snake_case__ ).prev_sample UpperCAmelCase__ : List[str] = scheduler.step_plms(snake_case__ , 1 , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __a ( self : Tuple ): '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case__ ) UpperCAmelCase__ : int = self.scheduler_classes[0] UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ : Tuple = scheduler_class(**snake_case__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def __a ( self : str ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def __a ( self : str ): '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=snake_case__ ) def __a ( self : Any ): '''simple docstring''' # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase__ : Optional[Any] = 2_7 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ : Optional[int] = self.dummy_sample UpperCAmelCase__ : List[Any] = 0.1 * sample UpperCAmelCase__ : List[Any] = self.get_scheduler_config() UpperCAmelCase__ : str = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ : Dict = scheduler.step_prk(snake_case__ , snake_case__ , snake_case__ ).prev_sample def __a ( self : Any ): '''simple docstring''' with self.assertRaises(snake_case__ ): UpperCAmelCase__ : Dict = self.scheduler_classes[0] UpperCAmelCase__ : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase__ : List[str] = scheduler_class(**snake_case__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.full_loop() UpperCAmelCase__ : Optional[int] = torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase__ : List[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase__ : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def __a ( self : Optional[Any] ): '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ : Any = self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) UpperCAmelCase__ : Tuple = torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase__ : int = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def __a ( self : Dict ): '''simple docstring''' # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase__ : Union[str, Any] = self.full_loop(set_alpha_to_one=snake_case__ , beta_start=0.01 ) UpperCAmelCase__ : Tuple = torch.sum(torch.abs(snake_case__ ) ) UpperCAmelCase__ : Tuple = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
298
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> list[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = str(snake_case ) UpperCAmelCase__ : Union[str, Any] = [n] for i in range(1 , len(snake_case ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' if len(str(snake_case ) ) > 3: if not is_prime(int(str(snake_case )[-3:] ) ) or not is_prime(int(str(snake_case )[:3] ) ): return False return True def SCREAMING_SNAKE_CASE__ ( snake_case : int = 11 )-> list[int]: '''simple docstring''' UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : Dict = 13 while len(snake_case ) != count: if validate(snake_case ): UpperCAmelCase__ : Any = list_truncated_nums(snake_case ) if all(is_prime(snake_case ) for i in list_nums ): list_truncated_primes.append(snake_case ) num += 2 return list_truncated_primes def SCREAMING_SNAKE_CASE__ ( )-> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
298
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
1
"""simple docstring""" from math import ceil def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1001 )-> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase__ : Tuple = 2 * i + 1 UpperCAmelCase__ : Dict = 2 * i UpperCAmelCase__ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowerCAmelCase : Union[str, Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
298
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } _lowerCAmelCase : Any = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : str , snake_case : Any , snake_case : Any )-> str: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ : int = getattr(snake_case , snake_case ) if weight_type is not None: UpperCAmelCase__ : List[Any] = getattr(snake_case , snake_case ).shape else: UpperCAmelCase__ : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCAmelCase__ : List[Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : str = value elif weight_type == "weight_v": UpperCAmelCase__ : int = value elif weight_type == "bias": UpperCAmelCase__ : Optional[int] = value elif weight_type == "running_mean": UpperCAmelCase__ : Dict = value elif weight_type == "running_var": UpperCAmelCase__ : Tuple = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : Any = value elif weight_type == "inv_freq": UpperCAmelCase__ : Any = value else: UpperCAmelCase__ : Dict = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Any , snake_case : Optional[int] )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Union[str, Any] = fairseq_model.state_dict() UpperCAmelCase__ : Optional[int] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Dict = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase__ : List[str] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : Optional[int] = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ : str = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(snake_case )[0].split("." )[-2] UpperCAmelCase__ : Optional[Any] = mapped_key.replace("*" , snake_case ) if "pos_bias_u" in name: UpperCAmelCase__ : Dict = None elif "pos_bias_v" in name: UpperCAmelCase__ : Any = None elif "weight_g" in name: UpperCAmelCase__ : Optional[Any] = "weight_g" elif "weight_v" in name: UpperCAmelCase__ : Optional[Any] = "weight_v" elif "bias" in name: UpperCAmelCase__ : int = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : List[Any] = "weight" elif "running_mean" in name: UpperCAmelCase__ : Optional[Any] = "running_mean" elif "inv_freq" in name: UpperCAmelCase__ : Dict = "inv_freq" elif "running_var" in name: UpperCAmelCase__ : List[str] = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ : List[Any] = "num_batches_tracked" else: UpperCAmelCase__ : Any = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : List[str] )-> Dict: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = full_name.split("conv_layers." )[-1] UpperCAmelCase__ : int = name.split("." ) UpperCAmelCase__ : Tuple = int(items[0] ) UpperCAmelCase__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCAmelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCAmelCase__ : Dict = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) UpperCAmelCase__ : Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCAmelCase__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(snake_case ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any]=None , snake_case : Tuple=None , snake_case : str=True )-> str: '''simple docstring''' if config_path is not None: UpperCAmelCase__ : Any = WavaVecaConformerConfig.from_pretrained(snake_case , hidden_act="swish" ) else: UpperCAmelCase__ : List[str] = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ : int = "rotary" if is_finetuned: if dict_path: UpperCAmelCase__ : str = Dictionary.load(snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ : Optional[int] = target_dict.pad_index UpperCAmelCase__ : str = target_dict.bos_index UpperCAmelCase__ : Tuple = target_dict.eos_index UpperCAmelCase__ : str = len(target_dict.symbols ) UpperCAmelCase__ : Dict = os.path.join(snake_case , "vocab.json" ) if not os.path.isdir(snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case ) ) return os.makedirs(snake_case , exist_ok=snake_case ) UpperCAmelCase__ : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : int = 1 with open(snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(snake_case , snake_case ) UpperCAmelCase__ : Tuple = WavaVecaCTCTokenizer( snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=snake_case , ) UpperCAmelCase__ : int = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=snake_case , return_attention_mask=snake_case , ) UpperCAmelCase__ : Any = WavaVecaProcessor(feature_extractor=snake_case , tokenizer=snake_case ) processor.save_pretrained(snake_case ) UpperCAmelCase__ : str = WavaVecaConformerForCTC(snake_case ) else: UpperCAmelCase__ : List[Any] = WavaVecaConformerForPreTraining(snake_case ) if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ : Optional[Any] = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ : Any = fairseq.tasks.setup_task(snake_case ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(snake_case , snake_case , not is_finetuned ) hf_wavavec.save_pretrained(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
298
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =KandinskyImgaImgPipeline SCREAMING_SNAKE_CASE_ =['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] SCREAMING_SNAKE_CASE_ =[ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] SCREAMING_SNAKE_CASE_ =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE_ =False @property def __a ( self : str ): '''simple docstring''' return 3_2 @property def __a ( self : str ): '''simple docstring''' return 3_2 @property def __a ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def __a ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self : int ): '''simple docstring''' return 1_0_0 @property def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase__ : List[Any] = MultilingualCLIP(snake_case__ ) UpperCAmelCase__ : Tuple = text_encoder.eval() return text_encoder @property def __a ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase__ : Any = UNetaDConditionModel(**snake_case__ ) return model @property def __a ( self : Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.dummy_text_encoder UpperCAmelCase__ : Tuple = self.dummy_tokenizer UpperCAmelCase__ : List[str] = self.dummy_unet UpperCAmelCase__ : Dict = self.dummy_movq UpperCAmelCase__ : Optional[Any] = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase__ : Dict = DDIMScheduler(**snake_case__ ) UpperCAmelCase__ : List[Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __a ( self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any]=0 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case__ ) # create init_image UpperCAmelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : int = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Dict = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = "cpu" UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : Optional[Any] = self.pipeline_class(**snake_case__ ) UpperCAmelCase__ : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase__ : Any = output.images UpperCAmelCase__ : Optional[int] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] UpperCAmelCase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase__ : Tuple = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : int ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) UpperCAmelCase__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase__ : Union[str, Any] = "A red cartoon frog, 4k" UpperCAmelCase__ : Dict = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase__ : Any = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Tuple = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase__ : Any = pipeline( snake_case__ , image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
"""simple docstring""" import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Optional[int] , snake_case__ : Dict , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 3_2 , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_5_5 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = [0.4814_5466, 0.457_8275, 0.4082_1073] , snake_case__ : Optional[Union[float, List[float]]] = [0.2686_2954, 0.2613_0258, 0.2757_7711] , snake_case__ : bool = True , snake_case__ : Tuple=7 , snake_case__ : List[str]=3_0 , snake_case__ : Optional[int]=4_0_0 , snake_case__ : Optional[Any]=3 , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : List[Any] = do_resize UpperCAmelCase__ : Optional[Any] = size if size is not None else {"shortest_edge": 2_8_8} UpperCAmelCase__ : Tuple = size_divisor UpperCAmelCase__ : int = do_rescale UpperCAmelCase__ : List[str] = rescale_factor UpperCAmelCase__ : List[str] = do_normalize UpperCAmelCase__ : Optional[int] = do_center_crop UpperCAmelCase__ : List[Any] = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Optional[Any] = do_pad UpperCAmelCase__ : Any = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : Optional[int] = min_resolution UpperCAmelCase__ : List[str] = max_resolution def __a ( self : Optional[int] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Tuple = self.size["shortest_edge"] UpperCAmelCase__ : List[str] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : Dict = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = image.shape[1], image.shape[2] UpperCAmelCase__ : Optional[Any] = size / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = scale * h, size UpperCAmelCase__ : Optional[Any] = int((1_3_3_3 / 8_0_0) * size ) if max(snake_case__ , snake_case__ ) > max_size: UpperCAmelCase__ : int = max_size / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = newh * scale UpperCAmelCase__ : Union[str, Any] = neww * scale UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase__ : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] UpperCAmelCase__ : Tuple = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BridgeTowerImageProcessingTester(self ) @property def __a ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "size_divisor" ) ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : int ): '''simple docstring''' # Initialize image processor UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Any = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : str ): '''simple docstring''' # Initialize image processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
298
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLNetTokenizer SCREAMING_SNAKE_CASE_ =XLNetTokenizerFast SCREAMING_SNAKE_CASE_ =True SCREAMING_SNAKE_CASE_ =True def __a ( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Any = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = "<s>" UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(snake_case__ ) , 1_0_0_6 ) def __a ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = XLNetTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] ) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = XLNetTokenizer(snake_case__ , do_lower_case=snake_case__ ) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) UpperCAmelCase__ : List[str] = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __a ( self : Optional[Any] ): '''simple docstring''' # fmt: off UpperCAmelCase__ : Tuple = {"input_ids": [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
298
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
1
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : List[Any] = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
1
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Any = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCAmelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mask2former''' SCREAMING_SNAKE_CASE_ =['''swin'''] SCREAMING_SNAKE_CASE_ ={'''hidden_size''': '''hidden_dim'''} def __init__( self : int , snake_case__ : Optional[Dict] = None , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : int = 1_0_2_4 , snake_case__ : str = "relu" , snake_case__ : int = 6 , snake_case__ : int = 1_0 , snake_case__ : int = 8 , snake_case__ : float = 0.0 , snake_case__ : int = 2_0_4_8 , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : int = 4 , snake_case__ : int = 2_5_5 , snake_case__ : int = 1_0_0 , snake_case__ : float = 0.1 , snake_case__ : float = 2.0 , snake_case__ : float = 5.0 , snake_case__ : float = 5.0 , snake_case__ : int = 1_2_5_4_4 , snake_case__ : float = 3.0 , snake_case__ : float = 0.75 , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : bool = True , snake_case__ : List[int] = [4, 8, 1_6, 3_2] , snake_case__ : bool = None , **snake_case__ : int , ): '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) UpperCAmelCase__ : Dict = CONFIG_MAPPING["swin"]( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=snake_case__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Union[str, Any] = backbone_config.pop("model_type" ) UpperCAmelCase__ : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ : Optional[int] = config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) UpperCAmelCase__ : List[str] = backbone_config UpperCAmelCase__ : Union[str, Any] = feature_size UpperCAmelCase__ : Dict = mask_feature_size UpperCAmelCase__ : Optional[int] = hidden_dim UpperCAmelCase__ : List[Any] = encoder_feedforward_dim UpperCAmelCase__ : Optional[int] = activation_function UpperCAmelCase__ : int = encoder_layers UpperCAmelCase__ : Dict = decoder_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[str] = dropout UpperCAmelCase__ : Optional[int] = dim_feedforward UpperCAmelCase__ : Tuple = pre_norm UpperCAmelCase__ : Any = enforce_input_projection UpperCAmelCase__ : Union[str, Any] = common_stride UpperCAmelCase__ : List[str] = ignore_value UpperCAmelCase__ : Any = num_queries UpperCAmelCase__ : Any = no_object_weight UpperCAmelCase__ : Optional[int] = class_weight UpperCAmelCase__ : List[Any] = mask_weight UpperCAmelCase__ : List[Any] = dice_weight UpperCAmelCase__ : Optional[Any] = train_num_points UpperCAmelCase__ : Dict = oversample_ratio UpperCAmelCase__ : Optional[int] = importance_sample_ratio UpperCAmelCase__ : Any = init_std UpperCAmelCase__ : str = init_xavier_std UpperCAmelCase__ : List[str] = use_auxiliary_loss UpperCAmelCase__ : Optional[int] = feature_strides UpperCAmelCase__ : List[str] = output_auxiliary_logits UpperCAmelCase__ : Tuple = decoder_layers super().__init__(**snake_case__ ) @classmethod def __a ( cls : str , snake_case__ : PretrainedConfig , **snake_case__ : Any ): '''simple docstring''' return cls( backbone_config=snake_case__ , **snake_case__ , ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : int = self.backbone_config.to_dict() UpperCAmelCase__ : Optional[Any] = self.__class__.model_type return output
298
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=1_3 , snake_case__ : List[str]=7 , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=9_9 , snake_case__ : List[Any]=1_6 , snake_case__ : Any=3_6 , snake_case__ : Union[str, Any]=6 , snake_case__ : Tuple=6 , snake_case__ : List[str]=6 , snake_case__ : List[str]=3_7 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Dict=1_6 , snake_case__ : str=2 , snake_case__ : Optional[Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Any=4 , snake_case__ : int=None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Union[str, Any] = use_input_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : Any = embedding_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : int = num_hidden_groups UpperCAmelCase__ : Union[str, Any] = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = num_labels UpperCAmelCase__ : List[str] = num_choices UpperCAmelCase__ : Union[str, Any] = scope def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_input_mask: UpperCAmelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Any ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __a ( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = AlbertModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase__ : Optional[int] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForPreTraining(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , sentence_order_label=snake_case__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __a ( self : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AlbertForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Dict , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : int = AlbertForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Dict , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Any = AlbertForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[str] = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : Dict , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_choices UpperCAmelCase__ : Optional[Any] = AlbertForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ : Tuple = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =True def __a ( self : Tuple , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=False ): '''simple docstring''' UpperCAmelCase__ : List[str] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case__ ) UpperCAmelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = AlbertModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : Dict = type self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = AlbertModel.from_pretrained("albert-base-v2" ) UpperCAmelCase__ : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCAmelCase__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ : int = model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase__ : Dict = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase__ : Union[str, Any] = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 ) )
298
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Any )-> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = list(range(snake_case ) ) # Find permutation while factorials: UpperCAmelCase__ : str = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ : int = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
"""simple docstring""" import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _lowerCAmelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : Dict , snake_case__ : Optional[int] , snake_case__ : List[str]=7 , snake_case__ : int=3 , snake_case__ : Any=1_8 , snake_case__ : List[Any]=3_0 , snake_case__ : int=4_0_0 , snake_case__ : Dict=None , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = size if size is not None else {"height": 2_0, "width": 2_0} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : int = min_resolution UpperCAmelCase__ : Tuple = max_resolution UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Optional[int] = do_normalize UpperCAmelCase__ : str = do_convert_rgb UpperCAmelCase__ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase__ : Union[str, Any] = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def __a ( self : str ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" UpperCAmelCase__ : List[str] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = PixaStructImageProcessingTester(self ) @property def __a ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Dict = 2_0_4_8 UpperCAmelCase__ : int = image_processor(snake_case__ , return_tensors="pt" , max_patches=snake_case__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : List[Any] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase__ : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(snake_case__ ): UpperCAmelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches UpperCAmelCase__ : Optional[Any] = "Hello" UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ , header_text=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Dict ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : List[str] = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCAmelCase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : str = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =PixaStructImageProcessor if is_vision_available() else None def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase__ : Optional[int] = 3 @property def __a ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def __a ( self : int ): '''simple docstring''' # Initialize image_processor UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCAmelCase__ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase__ : Dict = image_processor( snake_case__ , return_tensors="pt" , max_patches=snake_case__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''git_vision_model''' def __init__( self : Tuple , snake_case__ : Tuple=7_6_8 , snake_case__ : Optional[Any]=3_0_7_2 , snake_case__ : List[str]=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Tuple=3 , snake_case__ : List[str]=2_2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[int]="quick_gelu" , snake_case__ : Any=1e-5 , snake_case__ : Tuple=0.0 , snake_case__ : List[str]=0.02 , **snake_case__ : Dict , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Any = intermediate_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : str = image_size UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Dict = attention_dropout UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : List[Any] = hidden_act @classmethod def __a ( cls : Union[str, Any] , snake_case__ : Union[str, os.PathLike] , **snake_case__ : int ): '''simple docstring''' cls._set_token_in_kwargs(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ : int = cls.get_config_dict(snake_case__ , **snake_case__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": UpperCAmelCase__ : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case__ , **snake_case__ ) class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''git''' def __init__( self : Union[str, Any] , snake_case__ : int=None , snake_case__ : List[Any]=3_0_5_2_2 , snake_case__ : Any=7_6_8 , snake_case__ : List[Any]=6 , snake_case__ : List[str]=1_2 , snake_case__ : List[Any]=3_0_7_2 , snake_case__ : int="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : List[Any]=1_0_2_4 , snake_case__ : Tuple=0.02 , snake_case__ : Union[str, Any]=1e-12 , snake_case__ : Tuple=0 , snake_case__ : List[str]="absolute" , snake_case__ : List[Any]=True , snake_case__ : Any=False , snake_case__ : int=1_0_1 , snake_case__ : str=1_0_2 , snake_case__ : Dict=None , **snake_case__ : Dict , ): '''simple docstring''' super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , pad_token_id=snake_case__ , **snake_case__ ) if vision_config is None: UpperCAmelCase__ : str = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) UpperCAmelCase__ : List[Any] = GitVisionConfig(**snake_case__ ) UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : int = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Dict = use_cache UpperCAmelCase__ : str = tie_word_embeddings UpperCAmelCase__ : List[Any] = num_image_with_embedding UpperCAmelCase__ : Any = bos_token_id UpperCAmelCase__ : List[Any] = eos_token_id def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : Union[str, Any] = self.vision_config.to_dict() UpperCAmelCase__ : Union[str, Any] = self.__class__.model_type return output
298
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] )-> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase__ : int = "mock-s3-bucket" UpperCAmelCase__ : Any = f's3://{mock_bucket}' UpperCAmelCase__ : Tuple = extract_path_from_uri(snake_case ) assert dataset_path.startswith("s3://" ) is False UpperCAmelCase__ : str = "./local/path" UpperCAmelCase__ : Union[str, Any] = extract_path_from_uri(snake_case ) assert dataset_path == new_dataset_path def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is True UpperCAmelCase__ : str = fsspec.filesystem("file" ) UpperCAmelCase__ : Optional[Any] = is_remote_filesystem(snake_case ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Union[str, Any] , snake_case : Any , snake_case : List[str] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCAmelCase__ : Dict = input_paths[compression_fs_class.protocol] if input_path is None: UpperCAmelCase__ : Optional[Any] = f'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(snake_case ) UpperCAmelCase__ : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=snake_case ) assert isinstance(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = os.path.basename(snake_case ) UpperCAmelCase__ : Optional[int] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(snake_case , "r" , encoding="utf-8" ) as f, open(snake_case , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Dict , snake_case : Tuple )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[str] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCAmelCase__ : int = compressed_file_paths[protocol] UpperCAmelCase__ : Any = "dataset.jsonl" UpperCAmelCase__ : Any = f'{protocol}://{member_file_path}::{compressed_file_path}' UpperCAmelCase__ , *UpperCAmelCase__ : Optional[int] = fsspec.get_fs_token_paths(snake_case ) assert fs.isfile(snake_case ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : Dict , snake_case : Dict , snake_case : Dict )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = hf_api.dataset_info(snake_case , token=snake_case ) UpperCAmelCase__ : str = HfFileSystem(repo_info=snake_case , token=snake_case ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(snake_case ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def SCREAMING_SNAKE_CASE__ ( )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(snake_case , snake_case , clobber=snake_case ) with pytest.warns(snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(snake_case ) == 1 assert ( str(warning_info[0].message ) == f'A filesystem protocol was already set for {protocol} and will be overwritten.' )
298
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''ctrl''' SCREAMING_SNAKE_CASE_ =['''past_key_values'''] SCREAMING_SNAKE_CASE_ ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Dict , snake_case__ : Optional[int]=2_4_6_5_3_4 , snake_case__ : str=2_5_6 , snake_case__ : Optional[Any]=1_2_8_0 , snake_case__ : List[Any]=8_1_9_2 , snake_case__ : List[str]=4_8 , snake_case__ : Any=1_6 , snake_case__ : Optional[int]=0.1 , snake_case__ : str=0.1 , snake_case__ : Optional[int]=1e-6 , snake_case__ : str=0.02 , snake_case__ : Any=True , **snake_case__ : Tuple , ): '''simple docstring''' UpperCAmelCase__ : List[str] = vocab_size UpperCAmelCase__ : Tuple = n_positions UpperCAmelCase__ : List[Any] = n_embd UpperCAmelCase__ : List[str] = n_layer UpperCAmelCase__ : Tuple = n_head UpperCAmelCase__ : Dict = dff UpperCAmelCase__ : Optional[Any] = resid_pdrop UpperCAmelCase__ : int = embd_pdrop UpperCAmelCase__ : int = layer_norm_epsilon UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Dict = use_cache super().__init__(**snake_case__ )
298
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''megatron-bert''' def __init__( self : Optional[Any] , snake_case__ : Dict=2_9_0_5_6 , snake_case__ : Optional[int]=1_0_2_4 , snake_case__ : int=2_4 , snake_case__ : str=1_6 , snake_case__ : Optional[Any]=4_0_9_6 , snake_case__ : List[str]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : str=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Any=1e-12 , snake_case__ : Any=0 , snake_case__ : str="absolute" , snake_case__ : Optional[Any]=True , **snake_case__ : int , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Tuple = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : int = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : Any = use_cache
298
1
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple , snake_case : Any )-> str: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 1.5 UpperCAmelCase__ : Dict = int(factor * num_class_images ) UpperCAmelCase__ : List[str] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=snake_case , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=snake_case ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase__ : Any = client.query(text=snake_case ) if len(snake_case ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase__ : Union[str, Any] = int(factor * num_images ) UpperCAmelCase__ : Union[str, Any] = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=snake_case , aesthetic_weight=0.1 , ) UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Optional[Any] = tqdm(desc="downloading real regularization images" , total=snake_case ) with open(f'{class_data_dir}/caption.txt' , "w" ) as fa, open(f'{class_data_dir}/urls.txt' , "w" ) as fa, open( f'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: UpperCAmelCase__ : str = class_images[count] count += 1 try: UpperCAmelCase__ : List[str] = requests.get(images["url"] ) if img.status_code == 200: UpperCAmelCase__ : Tuple = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser("" , add_help=snake_case ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=snake_case , type=snake_case ) parser.add_argument("--class_data_dir" , help="path to save images" , required=snake_case , type=snake_case ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=snake_case ) return parser.parse_args() if __name__ == "__main__": _lowerCAmelCase : Optional[int] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
298
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> str | Literal[False]: '''simple docstring''' UpperCAmelCase__ : int = list(snake_case ) UpperCAmelCase__ : Dict = list(snake_case ) UpperCAmelCase__ : Optional[Any] = 0 for i in range(len(snake_case ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase__ : Any = "_" if count > 1: return False else: return "".join(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : list[str] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] while True: UpperCAmelCase__ : List[Any] = ["$"] * len(snake_case ) UpperCAmelCase__ : Tuple = [] for i in range(len(snake_case ) ): for j in range(i + 1 , len(snake_case ) ): UpperCAmelCase__ : Dict = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase__ : List[Any] = "*" UpperCAmelCase__ : Dict = "*" temp.append("X" ) for i in range(len(snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case ) == 0: return pi UpperCAmelCase__ : Any = list(set(snake_case ) ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Sequence[float] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : str = [] for minterm in minterms: UpperCAmelCase__ : str = "" for _ in range(snake_case ): UpperCAmelCase__ : List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : int )-> bool: '''simple docstring''' UpperCAmelCase__ : List[str] = list(snake_case ) UpperCAmelCase__ : Optional[Any] = list(snake_case ) UpperCAmelCase__ : int = 0 for i in range(len(snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : list[str] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = [0] * len(snake_case ) for i in range(len(chart[0] ) ): UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : List[str] = -1 for j in range(len(snake_case ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase__ : Tuple = j if count == 1: UpperCAmelCase__ : Optional[Any] = 1 for i in range(len(snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case ) ): UpperCAmelCase__ : str = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Any = -1 UpperCAmelCase__ : Any = 0 for i in range(len(snake_case ) ): UpperCAmelCase__ : str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase__ : Dict = count_n UpperCAmelCase__ : List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case ) ): UpperCAmelCase__ : Optional[int] = 0 def SCREAMING_SNAKE_CASE__ ( snake_case : list[str] , snake_case : list[str] )-> list[list[int]]: '''simple docstring''' UpperCAmelCase__ : Tuple = [[0 for x in range(len(snake_case ) )] for x in range(len(snake_case ) )] for i in range(len(snake_case ) ): UpperCAmelCase__ : Any = prime_implicants[i].count("_" ) for j in range(len(snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case ): UpperCAmelCase__ : Dict = 1 return chart def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Tuple = int(input("Enter the no. of variables\n" ) ) UpperCAmelCase__ : List[str] = [ float(snake_case ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCAmelCase__ : List[Any] = decimal_to_binary(snake_case , snake_case ) UpperCAmelCase__ : Tuple = check(snake_case ) print("Prime Implicants are:" ) print(snake_case ) UpperCAmelCase__ : int = prime_implicant_chart(snake_case , snake_case ) UpperCAmelCase__ : Any = selection(snake_case , snake_case ) print("Essential Prime Implicants are:" ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
298
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : int = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''ibert''' def __init__( self : Any , snake_case__ : Dict=3_0_5_2_2 , snake_case__ : Any=7_6_8 , snake_case__ : Any=1_2 , snake_case__ : Tuple=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : Dict="gelu" , snake_case__ : int=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : int=2 , snake_case__ : Dict=0.02 , snake_case__ : Union[str, Any]=1e-12 , snake_case__ : List[str]=1 , snake_case__ : str=0 , snake_case__ : Dict=2 , snake_case__ : Dict="absolute" , snake_case__ : List[Any]=False , snake_case__ : Dict="none" , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Tuple = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : List[str] = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps UpperCAmelCase__ : List[Any] = position_embedding_type UpperCAmelCase__ : Any = quant_mode UpperCAmelCase__ : int = force_dequant class lowerCAmelCase__ ( __magic_name__ ): @property def __a ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
298
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : str=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : Any = "bilinear" UpperCAmelCase__ : Any = max_size UpperCAmelCase__ : Any = short_edge_length def __call__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : int = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Dict = size * 1.0 / min(snake_case__ , snake_case__ ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : int = scale * h, size if max(snake_case__ , snake_case__ ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = newh * scale UpperCAmelCase__ : int = neww * scale UpperCAmelCase__ : List[Any] = int(neww + 0.5 ) UpperCAmelCase__ : Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : Any = Image.fromarray(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Optional[int] = np.asarray(snake_case__ ) else: UpperCAmelCase__ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Tuple = nn.functional.interpolate( snake_case__ , (newh, neww) , mode=self.interp_method , align_corners=snake_case__ ).squeeze(0 ) img_augs.append(snake_case__ ) return img_augs class lowerCAmelCase__ : def __init__( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Any = cfg.INPUT.FORMAT UpperCAmelCase__ : Optional[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : str = cfg.PAD_VALUE UpperCAmelCase__ : List[Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : Dict = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda snake_case__ : (x - self.pixel_mean) / self.pixel_std def __a ( self : Optional[int] , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tuple(max(snake_case__ ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Tuple = [im.shape[-2:] for im in images] UpperCAmelCase__ : int = [ nn.functional.pad( snake_case__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(snake_case__ , snake_case__ ) ] return torch.stack(snake_case__ ), torch.tensor(snake_case__ ) def __call__( self : str , snake_case__ : int , snake_case__ : int=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(snake_case__ , snake_case__ ): UpperCAmelCase__ : Dict = [images] if single_image: assert len(snake_case__ ) == 1 for i in range(len(snake_case__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(snake_case__ , images.pop(snake_case__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( snake_case__ , torch.as_tensor(img_tensorize(images.pop(snake_case__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Tuple = self.aug(snake_case__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Optional[int] = [self.normalizer(snake_case__ ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.pad(snake_case__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : Tuple = torch.true_divide(snake_case__ , snake_case__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : str )-> List[Any]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Tuple[int, int] )-> int: '''simple docstring''' assert torch.isfinite(snake_case ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : Dict = box_size tensor[:, 0].clamp_(min=0 , max=snake_case ) tensor[:, 1].clamp_(min=0 , max=snake_case ) tensor[:, 2].clamp_(min=0 , max=snake_case ) tensor[:, 3].clamp_(min=0 , max=snake_case )
298
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case : list[int] )-> list[int]: # This function is recursive '''simple docstring''' UpperCAmelCase__ : Tuple = len(snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase__ : List[Any] = array[0] UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : List[Any] = [element for element in array[i:] if element >= array[i]] UpperCAmelCase__ : Any = longest_subsequence(snake_case ) if len(snake_case ) > len(snake_case ): UpperCAmelCase__ : Optional[Any] = temp_array else: i += 1 UpperCAmelCase__ : str = [element for element in array[1:] if element >= pivot] UpperCAmelCase__ : List[Any] = [pivot, *longest_subsequence(snake_case )] if len(snake_case ) > len(snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" import qiskit def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> qiskit.result.counts.Counts: '''simple docstring''' UpperCAmelCase__ : str = qiskit.Aer.get_backend("aer_simulator" ) UpperCAmelCase__ : Optional[int] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : Optional[int] = qiskit.execute(snake_case , snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
298
1
"""simple docstring""" _lowerCAmelCase : str = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def SCREAMING_SNAKE_CASE__ ( snake_case : dict , snake_case : Dict , snake_case : Optional[int] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = set() # keep track of all the paths to be checked UpperCAmelCase__ : Tuple = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase__ : Dict = queue.pop(0 ) # get the last node from the path UpperCAmelCase__ : List[Any] = path[-1] if node not in explored: UpperCAmelCase__ : Tuple = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase__ : Optional[int] = list(snake_case ) new_path.append(snake_case ) queue.append(snake_case ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(snake_case ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE__ ( snake_case : dict , snake_case : Dict , snake_case : Tuple )-> int: '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase__ : Union[str, Any] = [start] UpperCAmelCase__ : Tuple = set(snake_case ) # Keep tab on distances from `start` node. UpperCAmelCase__ : str = {start: 0, target: -1} while queue: UpperCAmelCase__ : str = queue.pop(0 ) if node == target: UpperCAmelCase__ : str = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(snake_case ) queue.append(snake_case ) UpperCAmelCase__ : List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
298
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''efficientformer''' def __init__( self : List[Any] , snake_case__ : List[int] = [3, 2, 6, 4] , snake_case__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , snake_case__ : List[bool] = [True, True, True, True] , snake_case__ : int = 4_4_8 , snake_case__ : int = 3_2 , snake_case__ : int = 4 , snake_case__ : int = 7 , snake_case__ : int = 5 , snake_case__ : int = 8 , snake_case__ : int = 4 , snake_case__ : float = 0.0 , snake_case__ : int = 1_6 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : float = 0.0 , snake_case__ : int = 1 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : float = 1e-5 , snake_case__ : str = "gelu" , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : int = 2_2_4 , snake_case__ : float = 1e-05 , **snake_case__ : str , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : List[str] = hidden_sizes UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : List[Any] = layer_norm_eps UpperCAmelCase__ : Optional[int] = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Optional[int] = depths UpperCAmelCase__ : Union[str, Any] = mlp_expansion_ratio UpperCAmelCase__ : Dict = downsamples UpperCAmelCase__ : Any = dim UpperCAmelCase__ : str = key_dim UpperCAmelCase__ : List[Any] = attention_ratio UpperCAmelCase__ : Optional[Any] = resolution UpperCAmelCase__ : Optional[Any] = pool_size UpperCAmelCase__ : Any = downsample_patch_size UpperCAmelCase__ : int = downsample_stride UpperCAmelCase__ : Dict = downsample_pad UpperCAmelCase__ : List[Any] = drop_path_rate UpperCAmelCase__ : Optional[Any] = num_metaad_blocks UpperCAmelCase__ : List[str] = distillation UpperCAmelCase__ : Dict = use_layer_scale UpperCAmelCase__ : List[Any] = layer_scale_init_value UpperCAmelCase__ : Optional[Any] = image_size UpperCAmelCase__ : Optional[int] = batch_norm_eps
298
1
"""simple docstring""" import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase__ ( unittest.TestCase ): def __init__( self : List[str] , snake_case__ : Optional[Any] , snake_case__ : Any=2 , snake_case__ : Optional[Any]=5_6 , snake_case__ : Tuple=True , snake_case__ : List[str]=True , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[int]=3_2 , snake_case__ : List[str]=2 , snake_case__ : List[str]=2 , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]="gelu_new" , snake_case__ : Optional[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : int=5_1_2 , snake_case__ : Union[str, Any]=1_6 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]=0.02 , snake_case__ : Optional[Any]=4 , snake_case__ : str="block_sparse" , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=False , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=3 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : List[str] = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[str] = use_attention_mask UpperCAmelCase__ : List[Any] = use_token_type_ids UpperCAmelCase__ : Union[str, Any] = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : List[str] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : List[str] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : int = max_position_embeddings UpperCAmelCase__ : Dict = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : int = num_choices UpperCAmelCase__ : List[Any] = rescale_embeddings UpperCAmelCase__ : Tuple = attention_type UpperCAmelCase__ : Union[str, Any] = use_bias UpperCAmelCase__ : Optional[int] = block_size UpperCAmelCase__ : List[Any] = num_random_blocks def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : str = None if self.use_attention_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : List[str] = None if self.use_token_type_ids: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : Union[str, Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : List[Any] ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : Tuple ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : int ): '''simple docstring''' super().test_hidden_states_output() @slow def __a ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(snake_case__ ) def __a ( self : Optional[int] ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : str = model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ : str , snake_case__ : List[str]=None , **snake_case__ : Optional[int] ): return model(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) with self.subTest("JIT Enabled" ): UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase__ : List[str] = model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self : Tuple , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any]=1e-5 , snake_case__ : str="outputs" , snake_case__ : Any=None ): '''simple docstring''' # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
298
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE__ ( snake_case : Dataset , snake_case : Dict[str, str] )-> Any: '''simple docstring''' UpperCAmelCase__ : str = args.log_outputs UpperCAmelCase__ : str = "_".join(args.dataset.split("/" ) + [args.config, args.split] ) # load metric UpperCAmelCase__ : List[str] = load_metric("wer" ) UpperCAmelCase__ : Tuple = load_metric("cer" ) # compute metrics UpperCAmelCase__ : List[str] = wer.compute(references=result["target"] , predictions=result["prediction"] ) UpperCAmelCase__ : Tuple = cer.compute(references=result["target"] , predictions=result["prediction"] ) # print & log results UpperCAmelCase__ : Union[str, Any] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case ) with open(f'{dataset_id}_eval_results.txt' , "w" ) as f: f.write(snake_case ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ : str = f'log_{dataset_id}_predictions.txt' UpperCAmelCase__ : List[str] = f'log_{dataset_id}_targets.txt' with open(snake_case , "w" ) as p, open(snake_case , "w" ) as t: # mapping function to write output def write_to_file(snake_case : List[Any] , snake_case : List[str] ): p.write(f'{i}' + "\n" ) p.write(batch["prediction"] + "\n" ) t.write(f'{i}' + "\n" ) t.write(batch["target"] + "\n" ) result.map(snake_case , with_indices=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : str )-> str: '''simple docstring''' UpperCAmelCase__ : str = "[,?.!\-\;\:\"“%‘”�—’…–]" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ : str = re.sub(snake_case , "" , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ : Tuple = ["\n\n", "\n", " ", " "] for t in token_sequences_to_ignore: UpperCAmelCase__ : List[Any] = " ".join(text.split(snake_case ) ) return text def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ : str = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ : Dict = dataset.cast_column("audio" , Audio(sampling_rate=snake_case ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ : List[str] = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ : Optional[int] = pipeline("automatic-speech-recognition" , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(snake_case : Any ): UpperCAmelCase__ : List[str] = asr( batch["audio"]["array"] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ : List[Any] = prediction["text"] UpperCAmelCase__ : Optional[int] = normalize_text(batch["sentence"] ) return batch # run inference on all examples UpperCAmelCase__ : Dict = dataset.map(snake_case , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case , snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCAmelCase : Tuple = parser.parse_args() main(args)
298
1
"""simple docstring""" _lowerCAmelCase : Optional[Any] = 8.31_44_62 # Unit - J mol-1 K-1 def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float )-> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float )-> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
298
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Union[str, Any] , snake_case__ : str=1_0_0 , snake_case__ : str=1_3 , snake_case__ : Optional[int]=3_0 , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=True , snake_case__ : List[Any]=True , snake_case__ : Any=3_2 , snake_case__ : List[str]=4 , snake_case__ : Any=4 , snake_case__ : Dict=3_7 , snake_case__ : str="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[Any]=1_0 , snake_case__ : Any=0.02 , snake_case__ : List[str]=3 , snake_case__ : Tuple=None , snake_case__ : Tuple=[0, 1, 2, 3] , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[str] = 1_0_0 UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : int = image_size UpperCAmelCase__ : List[Any] = patch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : int = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = scope UpperCAmelCase__ : Optional[Any] = out_indices UpperCAmelCase__ : int = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ : List[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : Optional[int] = num_patches + 1 def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None UpperCAmelCase__ : Optional[int] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self : int ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __a ( self : int , snake_case__ : str , snake_case__ : str , snake_case__ : Dict , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : int = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : int = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : int = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ =( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __a ( self : List[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self : List[str] ): '''simple docstring''' pass def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(snake_case__ ) UpperCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : str = [*signature.parameters.keys()] UpperCAmelCase__ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def __a ( self : List[Any] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Tuple = model(**snake_case__ ).loss loss.backward() def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase__ : List[Any] = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(**snake_case__ ).loss loss.backward() def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Union[str, Any] = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: UpperCAmelCase__ : int = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __a ( self : Any ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ): '''simple docstring''' return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(snake_case__ ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Dict = image_processor(images=snake_case__ , return_tensors="pt" ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos UpperCAmelCase__ : Union[str, Any] = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) UpperCAmelCase__ : str = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Any = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ ) UpperCAmelCase__ : Any = outputs.logits # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : List[str] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( snake_case__ ) UpperCAmelCase__ : Tuple = self.default_image_processor UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits # verify the logits UpperCAmelCase__ : int = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : int = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) UpperCAmelCase__ : Any = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : List[Any] = model.to(snake_case__ ) UpperCAmelCase__ : int = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Any = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : List[Any] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : str = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**snake_case__ ) UpperCAmelCase__ : Dict = outputs.logits # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) UpperCAmelCase__ : List[str] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: UpperCAmelCase__ : Optional[Any] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: UpperCAmelCase__ : int = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Dict = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) UpperCAmelCase__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) UpperCAmelCase__ : Optional[int] = Image.open(ds[0]["file"] ) UpperCAmelCase__ : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(**snake_case__ ) UpperCAmelCase__ : int = outputs.logits.detach().cpu() UpperCAmelCase__ : str = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) UpperCAmelCase__ : List[Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) UpperCAmelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) UpperCAmelCase__ : int = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : float , snake_case : float , snake_case : float , snake_case : float , snake_case : float , )-> float: '''simple docstring''' UpperCAmelCase__ : int = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: UpperCAmelCase__ : Any = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Optional[int] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase : List[str] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
298
"""simple docstring""" import functools def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> int: '''simple docstring''' UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : str = len(snake_case ) @functools.cache def min_distance(snake_case : int , snake_case : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase__ : Optional[int] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> list: '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence UpperCAmelCase__ : Optional[int] = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): UpperCAmelCase__ : str = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> list: '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase__ : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase__ : Tuple = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase__ : Optional[int] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase__ : Optional[Any] = "0" + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase__ : str = "1" + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase__ ( __magic_name__ ): def __a ( self : List[Any] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : List[Any] = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ : Tuple = input_file.read() UpperCAmelCase__ : Tuple = regexp.search(snake_case__ ) return match def __a ( self : List[str] , snake_case__ : str ): '''simple docstring''' with open(snake_case__ , encoding="utf-8" ) as input_file: UpperCAmelCase__ : Union[str, Any] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ : Dict = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ : int = regexp.finditer(snake_case__ ) UpperCAmelCase__ : Dict = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path("./datasets" ) UpperCAmelCase__ : Any = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(snake_case__ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = Path("./datasets" ) UpperCAmelCase__ : int = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(snake_case__ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
298
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): def __init__( self : Union[str, Any] , *snake_case__ : Any , **snake_case__ : Dict ): '''simple docstring''' warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
298
"""simple docstring""" import numpy as np import datasets _lowerCAmelCase : Optional[int] = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _lowerCAmelCase : Tuple = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _lowerCAmelCase : Optional[int] = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __a ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): '''simple docstring''' # convert to numpy arrays UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = np.array(snake_case__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction UpperCAmelCase__ : Optional[Any] = X - np.mean(snake_case__ ) UpperCAmelCase__ : Tuple = np.cov(reference_distribution.T ) try: UpperCAmelCase__ : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: UpperCAmelCase__ : Optional[Any] = np.linalg.pinv(snake_case__ ) UpperCAmelCase__ : List[Any] = np.dot(snake_case__ , snake_case__ ) UpperCAmelCase__ : Tuple = np.dot(snake_case__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
298
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : str , snake_case : Optional[int] , snake_case : List[Any] , snake_case : List[Any] )-> int: '''simple docstring''' with open(snake_case ) as metadata_file: UpperCAmelCase__ : List[Any] = json.load(snake_case ) UpperCAmelCase__ : List[Any] = LukeConfig(use_entity_aware_attention=snake_case , **metadata["model_config"] ) # Load in the weights from the checkpoint_path UpperCAmelCase__ : Dict = torch.load(snake_case , map_location="cpu" )["module"] # Load the entity vocab file UpperCAmelCase__ : Dict = load_original_entity_vocab(snake_case ) # add an entry for [MASK2] UpperCAmelCase__ : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks UpperCAmelCase__ : Optional[int] = AddedToken("<ent>" , lstrip=snake_case , rstrip=snake_case ) UpperCAmelCase__ : Any = AddedToken("<ent2>" , lstrip=snake_case , rstrip=snake_case ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case ) with open(os.path.join(snake_case , "tokenizer_config.json" ) , "r" ) as f: UpperCAmelCase__ : Any = json.load(snake_case ) UpperCAmelCase__ : Optional[Any] = "MLukeTokenizer" with open(os.path.join(snake_case , "tokenizer_config.json" ) , "w" ) as f: json.dump(snake_case , snake_case ) with open(os.path.join(snake_case , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(snake_case , snake_case ) UpperCAmelCase__ : Tuple = MLukeTokenizer.from_pretrained(snake_case ) # Initialize the embeddings of the special tokens UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(["@"] )[0] UpperCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(["#"] )[0] UpperCAmelCase__ : List[Any] = state_dict["embeddings.word_embeddings.weight"] UpperCAmelCase__ : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) UpperCAmelCase__ : Tuple = word_emb[enta_init_index].unsqueeze(0 ) UpperCAmelCase__ : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCAmelCase__ : List[Any] = state_dict[bias_name] UpperCAmelCase__ : List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCAmelCase__ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCAmelCase__ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCAmelCase__ : Union[str, Any] = f'encoder.layer.{layer_index}.attention.self.' UpperCAmelCase__ : List[str] = state_dict[prefix + matrix_name] UpperCAmelCase__ : Optional[int] = state_dict[prefix + matrix_name] UpperCAmelCase__ : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCAmelCase__ : Optional[Any] = state_dict["entity_embeddings.entity_embeddings.weight"] UpperCAmelCase__ : Union[str, Any] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) UpperCAmelCase__ : Dict = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCAmelCase__ : List[Any] = state_dict["entity_predictions.bias"] UpperCAmelCase__ : Optional[int] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) UpperCAmelCase__ : Tuple = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCAmelCase__ : List[str] = LukeForMaskedLM(config=snake_case ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) UpperCAmelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): UpperCAmelCase__ : Optional[Any] = state_dict[key] else: UpperCAmelCase__ : Tuple = state_dict[key] UpperCAmelCase__ , UpperCAmelCase__ : Dict = model.load_state_dict(snake_case , strict=snake_case ) if set(snake_case ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(snake_case ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCAmelCase__ : List[Any] = MLukeTokenizer.from_pretrained(snake_case , task="entity_classification" ) UpperCAmelCase__ : Any = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." UpperCAmelCase__ : List[Any] = (0, 9) UpperCAmelCase__ : Optional[int] = tokenizer(snake_case , entity_spans=[span] , return_tensors="pt" ) UpperCAmelCase__ : Dict = model(**snake_case ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase__ : Tuple = torch.Size((1, 33, 768) ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCAmelCase__ : Tuple = torch.Size((1, 1, 768) ) UpperCAmelCase__ : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction UpperCAmelCase__ : Any = MLukeTokenizer.from_pretrained(snake_case ) UpperCAmelCase__ : Any = "Tokyo is the capital of <mask>." UpperCAmelCase__ : str = (24, 30) UpperCAmelCase__ : Any = tokenizer(snake_case , entity_spans=[span] , return_tensors="pt" ) UpperCAmelCase__ : List[str] = model(**snake_case ) UpperCAmelCase__ : Tuple = encoding["input_ids"][0].tolist() UpperCAmelCase__ : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) UpperCAmelCase__ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(snake_case ) UpperCAmelCase__ : Optional[Any] = outputs.entity_logits[0][0].argmax().item() UpperCAmelCase__ : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(snake_case ) ) model.save_pretrained(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ["[MASK]", "[PAD]", "[UNK]"] UpperCAmelCase__ : Union[str, Any] = [json.loads(snake_case ) for line in open(snake_case )] UpperCAmelCase__ : List[str] = {} for entry in data: UpperCAmelCase__ : List[Any] = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCAmelCase__ : str = entity_id break UpperCAmelCase__ : Optional[Any] = f'{language}:{entity_name}' UpperCAmelCase__ : Optional[int] = entity_id return new_mapping if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _lowerCAmelCase : Any = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
298
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =IFPipeline SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} SCREAMING_SNAKE_CASE_ =TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __a ( self : Dict ): '''simple docstring''' return self._get_dummy_components() def __a ( self : Any , snake_case__ : Dict , snake_case__ : Optional[Any]=0 ): '''simple docstring''' if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : str = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self : Tuple ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __a ( self : Tuple ): '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def __a ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __a ( self : int ): '''simple docstring''' self._test_save_load_local() def __a ( self : Any ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __a ( self : Optional[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : str ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' # if UpperCAmelCase__ : Any = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case__ , tokenizer=snake_case__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) UpperCAmelCase__ , UpperCAmelCase__ : Any = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : List[Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ : List[str] = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ : List[str] = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ : List[str] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : str = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : List[str] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : List[str] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def __a ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : int , snake_case__ : Optional[int] ): '''simple docstring''' # pipeline 1 _start_torch_memory_measurement() UpperCAmelCase__ : str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : int = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , num_inference_steps=2 , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (6_4, 6_4, 3) UpperCAmelCase__ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 UpperCAmelCase__ : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ : int = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(snake_case__ ) UpperCAmelCase__ : List[Any] = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = pipe_a( prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , image=snake_case__ , mask_image=snake_case__ , original_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : Tuple = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 UpperCAmelCase__ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
298
1
"""simple docstring""" _lowerCAmelCase : Union[str, Any] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> int: '''simple docstring''' UpperCAmelCase__ : Any = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowerCAmelCase : list[bool | None] = [None] * 10_000_000 _lowerCAmelCase : Any = True _lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase__ : int = chain(next_number(snake_case ) ) UpperCAmelCase__ : List[Any] = number_chain while number < 1000_0000: UpperCAmelCase__ : Optional[int] = number_chain number *= 10 return number_chain def SCREAMING_SNAKE_CASE__ ( snake_case : int = 1000_0000 )-> int: '''simple docstring''' for i in range(1 , snake_case ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( )-> int: '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(snake_case , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
298
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCAmelCase__ : SCREAMING_SNAKE_CASE_ =42 # setable values SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =42 SCREAMING_SNAKE_CASE_ =None @classmethod def __a ( cls : Optional[int] , snake_case__ : CommonSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray ): '''simple docstring''' return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =42 class lowerCAmelCase__ ( __magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ =[e.name for e in FlaxKarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ =42 @property def __a ( self : Union[str, Any] ): '''simple docstring''' return True @register_to_config def __init__( self : Tuple , snake_case__ : int = 1_0_0_0 , snake_case__ : float = 0.0001 , snake_case__ : float = 0.02 , snake_case__ : str = "linear" , snake_case__ : Optional[jnp.ndarray] = None , snake_case__ : str = "fixed_small" , snake_case__ : bool = True , snake_case__ : str = "epsilon" , snake_case__ : jnp.dtype = jnp.floataa , ): '''simple docstring''' UpperCAmelCase__ : Tuple = dtype def __a ( self : Any , snake_case__ : Optional[CommonSchedulerState] = None ): '''simple docstring''' if common is None: UpperCAmelCase__ : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase__ : Tuple = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase__ : Optional[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def __a ( self : int , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Tuple = () ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase__ : Tuple = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def __a ( self : List[str] , snake_case__ : DDPMSchedulerState , snake_case__ : int , snake_case__ : Any=None , snake_case__ : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase__ : int = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ : int = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase__ : int = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase__ : Union[str, Any] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase__ : List[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase__ : Optional[int] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase__ : List[str] = variance UpperCAmelCase__ : Optional[Any] = state.common.betas[t] UpperCAmelCase__ : Any = (predicted_variance + 1) / 2 UpperCAmelCase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def __a ( self : Dict , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : int , snake_case__ : jnp.ndarray , snake_case__ : Optional[jax.random.KeyArray] = None , snake_case__ : bool = True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = timestep if key is None: UpperCAmelCase__ : Optional[int] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: UpperCAmelCase__ : int = None # 1. compute alphas, betas UpperCAmelCase__ : Union[str, Any] = state.common.alphas_cumprod[t] UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase__ : List[str] = 1 - alpha_prod_t UpperCAmelCase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase__ : int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ : Optional[Any] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase__ : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase__ : List[str] = jax.random.split(snake_case__ , num=1 ) UpperCAmelCase__ : List[str] = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise UpperCAmelCase__ : Optional[int] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def __a ( self : List[Any] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Optional[int] , snake_case__ : DDPMSchedulerState , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , snake_case__ : jnp.ndarray , ): '''simple docstring''' return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
298
1
"""simple docstring""" import math def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> bool: '''simple docstring''' UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Optional[Any] = n while left <= right: UpperCAmelCase__ : Optional[Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ : Any = mid - 1 else: UpperCAmelCase__ : Optional[int] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
298
"""simple docstring""" import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__ : def __init__( self : str , snake_case__ : Optional[Any] , snake_case__ : List[Any]=1_3 , snake_case__ : str=7 , snake_case__ : Optional[int]=6 , snake_case__ : Union[str, Any]=1_7 , snake_case__ : Optional[Any]=2_3 , snake_case__ : int=1_1 , snake_case__ : Dict=True , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Union[str, Any] = act_dim UpperCAmelCase__ : Dict = state_dim UpperCAmelCase__ : Optional[Any] = hidden_size UpperCAmelCase__ : List[str] = max_length UpperCAmelCase__ : int = is_training def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) UpperCAmelCase__ : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) UpperCAmelCase__ : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : Optional[int] = floats_tensor((self.batch_size, self.seq_length, 1) ) UpperCAmelCase__ : int = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) UpperCAmelCase__ : Optional[int] = random_attention_mask((self.batch_size, self.seq_length) ) UpperCAmelCase__ : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __a ( self : int ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __a ( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase__ : Dict = model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[int] = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(DecisionTransformerModel,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ =() SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids SCREAMING_SNAKE_CASE_ =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = DecisionTransformerModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __a ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def __a ( self : List[str] ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = DecisionTransformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : str = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 2 # number of steps of autoregressive prediction we will perform UpperCAmelCase__ : Tuple = 1_0 # defined by the RL environment, may be normalized UpperCAmelCase__ : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) UpperCAmelCase__ : Any = model.to(snake_case__ ) UpperCAmelCase__ : Optional[int] = model.config torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ) # env.reset() UpperCAmelCase__ : Optional[Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=snake_case__ ) UpperCAmelCase__ : List[str] = torch.tensor(snake_case__ , device=snake_case__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) UpperCAmelCase__ : Union[str, Any] = state UpperCAmelCase__ : Dict = torch.zeros(1 , 0 , config.act_dim , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Any = torch.zeros(1 , 0 , device=snake_case__ , dtype=torch.floataa ) UpperCAmelCase__ : Optional[int] = torch.tensor(0 , device=snake_case__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(snake_case__ ): UpperCAmelCase__ : List[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Optional[int] = torch.cat([rewards, torch.zeros(1 , 1 , device=snake_case__ )] , dim=1 ) UpperCAmelCase__ : Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = model( states=snake_case__ , actions=snake_case__ , rewards=snake_case__ , returns_to_go=snake_case__ , timesteps=snake_case__ , attention_mask=snake_case__ , return_dict=snake_case__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=snake_case__ , dtype=torch.floataa ), 1.0, False, {}, ) UpperCAmelCase__ : Union[str, Any] = action_pred[0, -1] UpperCAmelCase__ : int = torch.cat([states, state] , dim=1 ) UpperCAmelCase__ : Dict = returns_to_go[0, -1] - reward UpperCAmelCase__ : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) UpperCAmelCase__ : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=snake_case__ , dtype=torch.long ) * (step + 1)] , dim=1 )
298
1
"""simple docstring""" from itertools import product def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : int )-> list[int]: '''simple docstring''' UpperCAmelCase__ : Tuple = sides_number UpperCAmelCase__ : Dict = max_face_number * dice_number UpperCAmelCase__ : Tuple = [0] * (max_total + 1) UpperCAmelCase__ : Tuple = 1 UpperCAmelCase__ : Union[str, Any] = range(snake_case , max_face_number + 1 ) for dice_numbers in product(snake_case , repeat=snake_case ): UpperCAmelCase__ : Dict = sum(snake_case ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( )-> float: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase__ : List[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : List[str] = 9 UpperCAmelCase__ : Union[str, Any] = 4 * 9 UpperCAmelCase__ : str = 6 for peter_total in range(snake_case , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase__ : str = (4**9) * (6**6) UpperCAmelCase__ : Any = peter_wins_count / total_games_number UpperCAmelCase__ : Optional[int] = round(snake_case , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
298
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
298
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : int = 3 UpperCAmelCase__ : Dict = (3_2, 3_2) UpperCAmelCase__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case__ ) return image @property def __a ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : int = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=snake_case__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def __a ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : str = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(snake_case__ ) def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : str = self.dummy_cond_unet_upscale UpperCAmelCase__ : List[str] = DDPMScheduler() UpperCAmelCase__ : Dict = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase__ : List[str] = self.dummy_vae UpperCAmelCase__ : Optional[Any] = self.dummy_text_encoder UpperCAmelCase__ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Any = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) UpperCAmelCase__ : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : int = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Optional[int] = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : Optional[int] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : int = output.images UpperCAmelCase__ : List[str] = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : int = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=snake_case__ , )[0] UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase__ : int = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase__ : Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase__ : Optional[int] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : int = self.dummy_cond_unet_upscale UpperCAmelCase__ : int = DDPMScheduler() UpperCAmelCase__ : str = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase__ : Dict = self.dummy_vae UpperCAmelCase__ : List[str] = self.dummy_text_encoder UpperCAmelCase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Any = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : List[Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Dict = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) UpperCAmelCase__ : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Tuple = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : List[Any] = output.images assert image.shape[0] == 2 UpperCAmelCase__ : Any = torch.Generator(device=snake_case__ ).manual_seed(0 ) UpperCAmelCase__ : List[Any] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase__ : str = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = self.dummy_cond_unet_upscale UpperCAmelCase__ : List[Any] = DDPMScheduler() UpperCAmelCase__ : Any = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase__ : Optional[Any] = self.dummy_vae UpperCAmelCase__ : List[str] = self.dummy_text_encoder UpperCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase__ : Optional[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((6_4, 6_4) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase__ : Optional[int] = unet.half() UpperCAmelCase__ : Union[str, Any] = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase__ : Union[str, Any] = StableDiffusionUpscalePipeline( unet=snake_case__ , low_res_scheduler=snake_case__ , scheduler=snake_case__ , vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , max_noise_level=3_5_0 , ) UpperCAmelCase__ : Union[str, Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Optional[Any] = "A painting of a squirrel eating a burger" UpperCAmelCase__ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = sd_pipe( [prompt] , image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase__ : Any = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : int ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase__ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase__ : Any = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase__ : Tuple = StableDiffusionUpscalePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : int = "a cat sitting on a park bench" UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-3 def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase__ : Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase__ : Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() UpperCAmelCase__ : Dict = "a cat sitting on a park bench" UpperCAmelCase__ : Dict = torch.manual_seed(0 ) UpperCAmelCase__ : int = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , output_type="np" , ) UpperCAmelCase__ : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __a ( self : Optional[int] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase__ : Tuple = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase__ : Any = StableDiffusionUpscalePipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Union[str, Any] = "a cat sitting on a park bench" UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : str = pipe( prompt=snake_case__ , image=snake_case__ , generator=snake_case__ , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase__ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
298
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Optional[int] = get_logger(__name__) _lowerCAmelCase : Any = Path(__file__).parent / """model_card_template.md""" _lowerCAmelCase : Dict = uuida().hex _lowerCAmelCase : Optional[int] = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Optional[int] = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : int = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE__ ( snake_case : Union[Dict, str, None] = None )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(snake_case , snake_case ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(snake_case , snake_case ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> List[str]: '''simple docstring''' if token is None: UpperCAmelCase__ : Optional[Any] = HfFolder.get_token() if organization is None: UpperCAmelCase__ : Tuple = whoami(snake_case )["name"] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] )-> List[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return UpperCAmelCase__ : int = args.hub_token if hasattr(snake_case , "hub_token" ) else None UpperCAmelCase__ : Optional[Any] = get_full_repo_name(snake_case , token=snake_case ) UpperCAmelCase__ : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=snake_case , model_name=snake_case , repo_name=snake_case , dataset_name=args.dataset_name if hasattr(snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) UpperCAmelCase__ : List[str] = os.path.join(args.output_dir , "README.md" ) model_card.save(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] , snake_case : Optional[str] = None )-> Tuple: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash UpperCAmelCase__ : Dict = str(Path(snake_case ).as_posix() ) UpperCAmelCase__ : Optional[int] = re.search(r"snapshots/([^/]+)/" , snake_case ) if search is None: return None UpperCAmelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : Dict = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) _lowerCAmelCase : List[Any] = os.path.join(hf_cache_home, """diffusers""") def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None , snake_case : Optional[str] = None )-> None: '''simple docstring''' if new_cache_dir is None: UpperCAmelCase__ : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCAmelCase__ : str = old_diffusers_cache UpperCAmelCase__ : List[str] = Path(snake_case ).expanduser() UpperCAmelCase__ : Any = Path(snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCAmelCase__ : Dict = new_cache_dir / old_blob_path.relative_to(snake_case ) new_blob_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) os.replace(snake_case , snake_case ) try: os.symlink(snake_case , snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : Tuple = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Any = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : List[str] = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : List[str] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: _lowerCAmelCase : Dict = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : Optional[str] = None )-> str: '''simple docstring''' if variant is not None: UpperCAmelCase__ : int = weights_name.split("." ) UpperCAmelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCAmelCase__ : Optional[int] = ".".join(snake_case ) return weights_name def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , *, snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Dict , snake_case : Any , snake_case : Any , snake_case : Tuple , snake_case : List[str] , snake_case : Any , snake_case : Optional[int]=None , )-> Tuple: '''simple docstring''' UpperCAmelCase__ : List[str] = str(snake_case ) if os.path.isfile(snake_case ): return pretrained_model_name_or_path elif os.path.isdir(snake_case ): if os.path.isfile(os.path.join(snake_case , snake_case ) ): # Load from a PyTorch checkpoint UpperCAmelCase__ : Any = os.path.join(snake_case , snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(snake_case , snake_case , snake_case ) ): UpperCAmelCase__ : str = os.path.join(snake_case , snake_case , snake_case ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: UpperCAmelCase__ : List[Any] = hf_hub_download( snake_case , filename=_add_variant(snake_case , snake_case ) , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , snake_case , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(snake_case , snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(snake_case , snake_case )}\' so that the correct variant file can be added.' , snake_case , ) try: # 2. Load model file as usual UpperCAmelCase__ : Dict = hf_hub_download( snake_case , filename=snake_case , cache_dir=snake_case , force_download=snake_case , proxies=snake_case , resume_download=snake_case , local_files_only=snake_case , use_auth_token=snake_case , user_agent=snake_case , subfolder=snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
298
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : List[Any] , snake_case : Dict )-> int: '''simple docstring''' return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : List[Any] , snake_case : str="attention" )-> Dict: '''simple docstring''' UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) UpperCAmelCase__ : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) UpperCAmelCase__ : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase__ : Dict = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) UpperCAmelCase__ : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase__ : Union[str, Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) UpperCAmelCase__ : Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : List[str] , snake_case : Dict , snake_case : Union[str, Any]=False )-> Optional[int]: '''simple docstring''' if split_mlp_wi: UpperCAmelCase__ : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] UpperCAmelCase__ : Optional[int] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] UpperCAmelCase__ : List[str] = (wi_a, wi_a) else: UpperCAmelCase__ : List[Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] UpperCAmelCase__ : Optional[Any] = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] )-> Optional[int]: '''simple docstring''' return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE__ ( snake_case : dict , *, snake_case : int , snake_case : bool , snake_case : bool = False )-> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = traverse_util.flatten_dict(variables["target"] ) UpperCAmelCase__ : Tuple = {"/".join(snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase__ : int = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , snake_case ) UpperCAmelCase__ : List[str] = collections.OrderedDict() # Shared embeddings. UpperCAmelCase__ : Tuple = old["token_embedder/embedding"] # Encoder. for i in range(snake_case ): # Block i, layer 0 (Self Attention). UpperCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(snake_case , snake_case , "encoder" , "pre_attention_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = tax_attention_lookup(snake_case , snake_case , "encoder" , "attention" ) UpperCAmelCase__ : int = layer_norm UpperCAmelCase__ : Tuple = k.T UpperCAmelCase__ : str = o.T UpperCAmelCase__ : List[str] = q.T UpperCAmelCase__ : str = v.T # Block i, layer 1 (MLP). UpperCAmelCase__ : Optional[Any] = tax_layer_norm_lookup(snake_case , snake_case , "encoder" , "pre_mlp_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = tax_mlp_lookup(snake_case , snake_case , "encoder" , snake_case ) UpperCAmelCase__ : Any = layer_norm if split_mlp_wi: UpperCAmelCase__ : List[Any] = wi[0].T UpperCAmelCase__ : Optional[Any] = wi[1].T else: UpperCAmelCase__ : Dict = wi.T UpperCAmelCase__ : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase__ : Tuple = tax_relpos_bias_lookup( snake_case , snake_case , "encoder" ).T UpperCAmelCase__ : Any = old["encoder/encoder_norm/scale"] if not scalable_attention: UpperCAmelCase__ : List[str] = tax_relpos_bias_lookup( snake_case , 0 , "encoder" ).T UpperCAmelCase__ : int = tax_relpos_bias_lookup( snake_case , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(snake_case ): # Block i, layer 0 (Self Attention). UpperCAmelCase__ : List[str] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_self_attention_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = tax_attention_lookup(snake_case , snake_case , "decoder" , "self_attention" ) UpperCAmelCase__ : Tuple = layer_norm UpperCAmelCase__ : List[str] = k.T UpperCAmelCase__ : List[Any] = o.T UpperCAmelCase__ : Optional[int] = q.T UpperCAmelCase__ : int = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase__ : List[Any] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_cross_attention_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = tax_attention_lookup(snake_case , snake_case , "decoder" , "encoder_decoder_attention" ) UpperCAmelCase__ : Union[str, Any] = layer_norm UpperCAmelCase__ : str = k.T UpperCAmelCase__ : Any = o.T UpperCAmelCase__ : Optional[Any] = q.T UpperCAmelCase__ : List[str] = v.T # Block i, layer 2 (MLP). UpperCAmelCase__ : Optional[int] = tax_layer_norm_lookup(snake_case , snake_case , "decoder" , "pre_mlp_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = tax_mlp_lookup(snake_case , snake_case , "decoder" , snake_case ) UpperCAmelCase__ : Dict = layer_norm if split_mlp_wi: UpperCAmelCase__ : Optional[Any] = wi[0].T UpperCAmelCase__ : Optional[Any] = wi[1].T else: UpperCAmelCase__ : Dict = wi.T UpperCAmelCase__ : Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase__ : List[str] = tax_relpos_bias_lookup(snake_case , snake_case , "decoder" ).T UpperCAmelCase__ : Optional[Any] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase__ : Union[str, Any] = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE__ ( snake_case : List[str] , snake_case : bool )-> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase__ : Union[str, Any] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase__ : Any = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) UpperCAmelCase__ : Dict = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : List[str] , snake_case : List[Any] , snake_case : str , snake_case : Dict )-> Any: '''simple docstring''' UpperCAmelCase__ : Dict = checkpoints.load_tax_checkpoint(snake_case ) UpperCAmelCase__ : List[str] = convert_tax_to_pytorch( snake_case , num_layers=config.num_layers , is_encoder_only=snake_case , scalable_attention=snake_case ) UpperCAmelCase__ : Union[str, Any] = make_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case , strict=snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : bool = False , snake_case : bool = False , )-> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : int = MTaConfig.from_json_file(snake_case ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase__ : str = UMTaEncoderModel(snake_case ) else: UpperCAmelCase__ : str = UMTaForConditionalGeneration(snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(snake_case , snake_case , snake_case , snake_case , snake_case ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(snake_case ) print("Done" ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) _lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
298
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCAmelCase__ : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Union[str, Any] = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCAmelCase__ : Dict = model(snake_case__ , labels=snake_case__ ).loss UpperCAmelCase__ : Optional[Any] = -tf.math.reduce_mean(snake_case__ ).numpy() UpperCAmelCase__ : List[Any] = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
298
1