code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=24 , UpperCAmelCase=2 , UpperCAmelCase=6 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=1000 , ) -> int: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = scope lowercase_ = range_bbox def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase_ = bbox[i, j, 3] lowercase_ = bbox[i, j, 1] lowercase_ = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase_ = bbox[i, j, 2] lowercase_ = bbox[i, j, 0] lowercase_ = t lowercase_ = None if self.use_input_mask: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ) -> List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = LiltModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = LiltForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase_ = LiltForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( lowercase_ ) = config_and_inputs lowercase_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' return True def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = LiltModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def A__ ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = LiltModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch @slow class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(UpperCamelCase__ ) lowercase_ = torch.tensor([[1, 2]] , device=UpperCamelCase__ ) lowercase_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(input_ids=UpperCamelCase__ , bbox=UpperCamelCase__ ) lowercase_ = torch.Size([1, 2, 768] ) lowercase_ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCamelCase__ , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCamelCase__ , atol=1e-3 ) )
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
import warnings from .generation import TFGenerationMixin class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , lowerCamelCase_ , )
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "t5" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , UpperCAmelCase=32128 , UpperCAmelCase=512 , UpperCAmelCase=64 , UpperCAmelCase=2048 , UpperCAmelCase=6 , UpperCAmelCase=None , UpperCAmelCase=8 , UpperCAmelCase=32 , UpperCAmelCase=128 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-6 , UpperCAmelCase=1.0 , UpperCAmelCase="relu" , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=0 , UpperCAmelCase=1 , **UpperCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = vocab_size lowercase_ = d_model lowercase_ = d_kv lowercase_ = d_ff lowercase_ = num_layers lowercase_ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ = num_heads lowercase_ = relative_attention_num_buckets lowercase_ = relative_attention_max_distance lowercase_ = dropout_rate lowercase_ = layer_norm_epsilon lowercase_ = initializer_factor lowercase_ = feed_forward_proj lowercase_ = use_cache lowercase_ = self.feed_forward_proj.split("-" ) lowercase_ = act_info[-1] lowercase_ = act_info[0] == "gated" if len(UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(UpperCAmelCase ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase_ = "gelu_new" super().__init__( pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase , ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase_ = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: lowercase_ = "past_encoder_sequence + sequence" lowercase_ = {0: "batch"} lowercase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowercase_ = {0: "batch", 1: "decoder_sequence"} lowercase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="inputs" ) return common_inputs @property def A__ ( self ) -> int: '''simple docstring''' return 13
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = CTRLTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] lowercase_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase_ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] lowercase_ = {"unk_token": "<unk>"} lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = "adapt react readapt apt" lowercase_ = "adapt react readapt apt" return input_text, output_text def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ = "adapt react readapt apt" lowercase_ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() lowercase_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=64 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Any: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = vocab_size - 1 def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = self.get_config() return config, input_ids, input_mask, token_labels def A__ ( self ) -> List[Any]: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.prepare_config_and_inputs() lowercase_ = True return config, input_ids, input_mask, token_labels def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = GPTNeoXModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = True lowercase_ = GPTNeoXModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = GPTNeoXForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = GPTNeoXForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = GPTNeoXForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = True lowercase_ = GPTNeoXForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase ) lowercase_ = output_from_no_past["hidden_states"][0] lowercase_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["hidden_states"][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase__ = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = GPTNeoXModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @unittest.skip(reason="Feed forward chunking is not implemented" ) def A__ ( self ) -> Optional[int]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)] ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = GPTNeoXModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() lowercase_ = original_model(UpperCAmelCase ).last_hidden_state lowercase_ = original_model(UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"type": scaling_type, "factor": 10.0} lowercase_ = GPTNeoXModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() lowercase_ = scaled_model(UpperCAmelCase ).last_hidden_state lowercase_ = scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped" ) for checkpointing in [True, False]: lowercase_ = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(UpperCAmelCase ) lowercase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 lowercase_ = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" lowercase_ = model.generate(**UpperCAmelCase , do_sample=UpperCAmelCase , max_new_tokens=20 ) lowercase_ = tokenizer.batch_decode(UpperCAmelCase )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase )
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: bytes , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = F'{sampling_rate}' lowercase_ = "1" lowercase_ = "f32le" lowercase_ = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(__lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase_ = ffmpeg_process.communicate(__lowerCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error lowercase_ = output_stream[0] lowercase_ = np.frombuffer(__lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: float , __lowerCamelCase: str = "f32le" , ): '''simple docstring''' lowercase_ = F'{sampling_rate}' lowercase_ = "1" if format_for_conversion == "s16le": lowercase_ = 2 elif format_for_conversion == "f32le": lowercase_ = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) lowercase_ = platform.system() if system == "Linux": lowercase_ = "alsa" lowercase_ = "default" elif system == "Darwin": lowercase_ = "avfoundation" lowercase_ = ":0" elif system == "Windows": lowercase_ = "dshow" lowercase_ = "default" lowercase_ = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] lowercase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase_ = _ffmpeg_stream(__lowerCamelCase , __lowerCamelCase ) for item in iterator: yield item def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: float , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[Union[Tuple[float, float], float]] = None , __lowerCamelCase: str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: lowercase_ = stream_chunk_s else: lowercase_ = chunk_length_s lowercase_ = ffmpeg_microphone(__lowerCamelCase , __lowerCamelCase , format_for_conversion=__lowerCamelCase ) if format_for_conversion == "s16le": lowercase_ = np.intaa lowercase_ = 2 elif format_for_conversion == "f32le": lowercase_ = np.floataa lowercase_ = 4 else: raise ValueError(F'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: lowercase_ = chunk_length_s / 6 lowercase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__lowerCamelCase , (int, float) ): lowercase_ = [stride_length_s, stride_length_s] lowercase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase_ = datetime.datetime.now() lowercase_ = datetime.timedelta(seconds=__lowerCamelCase ) for item in chunk_bytes_iter(__lowerCamelCase , __lowerCamelCase , stride=(stride_left, stride_right) , stream=__lowerCamelCase ): # Put everything back in numpy scale lowercase_ = np.frombuffer(item["raw"] , dtype=__lowerCamelCase ) lowercase_ = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) lowercase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: Tuple[int, int] , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = B"" lowercase_ , lowercase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) lowercase_ = 0 for raw in iterator: acc += raw if stream and len(__lowerCamelCase ) < chunk_len: lowercase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__lowerCamelCase ) >= chunk_len: # We are flushing the accumulator lowercase_ = (_stride_left, stride_right) lowercase_ = {"raw": acc[:chunk_len], "stride": stride} if stream: lowercase_ = False yield item lowercase_ = stride_left lowercase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__lowerCamelCase ) > stride_left: lowercase_ = {"raw": acc, "stride": (_stride_left, 0)} if stream: lowercase_ = False yield item def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 2**24 # 16Mo try: with subprocess.Popen(__lowerCamelCase , stdout=subprocess.PIPE , bufsize=__lowerCamelCase ) as ffmpeg_process: while True: lowercase_ = ffmpeg_process.stdout.read(__lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
SCREAMING_SNAKE_CASE__ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE__ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE__ = ( subprocess.check_output(f"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() ) SCREAMING_SNAKE_CASE__ = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = re.compile(Rf"""^({joined_dirs}).*?\.py$""") SCREAMING_SNAKE_CASE__ = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
from __future__ import annotations from scipy.special import comb # type: ignore class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase_ = len(UpperCAmelCase ) - 1 def A__ ( self , UpperCAmelCase ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase ) , 5 ) == 1 return output_values def A__ ( self , UpperCAmelCase ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ = self.basis_function(UpperCAmelCase ) lowercase_ = 0.0 lowercase_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , UpperCAmelCase = 0.01 ) -> Dict: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore lowercase_ = [] # x coordinates of points to plot lowercase_ = [] # y coordinates of points to plot lowercase_ = 0.0 while t <= 1: lowercase_ = self.bezier_curve_function(UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase_ = [i[0] for i in self.list_of_points] lowercase_ = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase , UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(UpperCAmelCase , UpperCAmelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = ["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = size if size is not None else {"shortest_edge": 256} lowercase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ = get_size_dict(UpperCAmelCase , param_name="crop_size" ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowercase_ = get_resize_output_image_size(UpperCAmelCase , size=size["shortest_edge"] , default_to_square=UpperCAmelCase ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase_ = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCAmelCase , param_name="crop_size" ) lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowercase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase_ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> str: '''simple docstring''' lowercase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase ): lowercase_ = target_sizes.numpy() lowercase_ = [] for idx in range(len(UpperCAmelCase ) ): lowercase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase ) lowercase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase ) else: lowercase_ = logits.argmax(dim=1 ) lowercase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase = 3 , UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = "relu" , **UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ = tf.keras.layers.ConvaD( filters=UpperCAmelCase , kernel_size=UpperCAmelCase , strides=UpperCAmelCase , padding="VALID" , groups=UpperCAmelCase , use_bias=UpperCAmelCase , name="convolution" , ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) lowercase_ = ACTaFN[activation] if activation is not None else tf.identity def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.convolution(self.padding(UpperCAmelCase ) ) lowercase_ = self.normalization(UpperCAmelCase ) lowercase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = config.num_channels lowercase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = shape_list(UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ = tf.transpose(UpperCAmelCase , perm=(0, 2, 3, 1) ) lowercase_ = self.embedder(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase = 2 , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = tf.keras.layers.ConvaD( filters=UpperCAmelCase , kernel_size=1 , strides=UpperCAmelCase , use_bias=UpperCAmelCase , name="convolution" ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(UpperCAmelCase ) , training=UpperCAmelCase ) class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCAmelCase , name="pooler" ) lowercase_ = [ tf.keras.layers.ConvaD(filters=UpperCAmelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=UpperCAmelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = self.pooler(UpperCAmelCase ) for layer_module in self.attention: lowercase_ = layer_module(UpperCAmelCase ) lowercase_ = hidden_state * pooled return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(UpperCAmelCase , stride=UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ = [ TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( UpperCAmelCase , stride=UpperCAmelCase , groups=UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase , name="layer.2" ), ] lowercase_ = ACTaFN[config.hidden_act] def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(UpperCAmelCase ) lowercase_ = self.shortcut(UpperCAmelCase ) hidden_state += residual lowercase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , **UpperCAmelCase ) -> List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(UpperCAmelCase , stride=UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowercase_ = [ TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( UpperCAmelCase , stride=UpperCAmelCase , groups=UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase , name="layer.3" ), ] lowercase_ = ACTaFN[config.hidden_act] def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(UpperCAmelCase ) lowercase_ = self.shortcut(UpperCAmelCase ) hidden_state += residual lowercase_ = self.activation(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 2 , UpperCAmelCase = 2 , **UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowercase_ = [ # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , name="layers.0" ), *[layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , name=F'layers.{i+1}' ) for i in range(depth - 1 )], ] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' for layer_module in self.layers: lowercase_ = layer_module(UpperCAmelCase ) return hidden_state class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowercase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase , name=F'stages.{i+1}' ) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' lowercase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) lowercase_ = stage_module(UpperCAmelCase ) if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase ) @keras_serializable class __lowerCamelCase ( tf.keras.layers.Layer ): """simple docstring""" lowerCAmelCase__ = RegNetConfig def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = config lowercase_ = TFRegNetEmbeddings(UpperCAmelCase , name="embedder" ) lowercase_ = TFRegNetEncoder(UpperCAmelCase , name="encoder" ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=UpperCAmelCase , name="pooler" ) @unpack_inputs def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.embedder(UpperCAmelCase , training=UpperCAmelCase ) lowercase_ = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , training=UpperCAmelCase ) lowercase_ = encoder_outputs[0] lowercase_ = self.pooler(UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules lowercase_ = tf.transpose(UpperCAmelCase , perm=(0, 3, 1, 2) ) lowercase_ = tf.transpose(UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ = tuple([tf.transpose(UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = RegNetConfig lowerCAmelCase__ = "regnet" lowerCAmelCase__ = "pixel_values" @property def A__ ( self ) -> Dict: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} SCREAMING_SNAKE_CASE__ = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , snake_case_ , ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowercase_ = TFRegNetMainLayer(UpperCAmelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( pixel_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , training=UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , snake_case_ , ) class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) lowercase_ = config.num_labels lowercase_ = TFRegNetMainLayer(UpperCAmelCase , name="regnet" ) # classification head lowercase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase , training=UpperCAmelCase ) lowercase_ = outputs.pooler_output if return_dict else outputs[1] lowercase_ = self.classifier[0](UpperCAmelCase ) lowercase_ = self.classifier[1](UpperCAmelCase ) lowercase_ = None if labels is None else self.hf_compute_loss(labels=UpperCAmelCase , logits=UpperCAmelCase ) if not return_dict: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states )
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
import os import numpy import onnx def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = a.name lowercase_ = b.name lowercase_ = "" lowercase_ = "" lowercase_ = a == b lowercase_ = name_a lowercase_ = name_b return res def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCamelCase , __lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCamelCase , __lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCamelCase , __lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: int , __lowerCamelCase: Any ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = list(model.graph.initializer ) lowercase_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ = inits[i].name lowercase_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = os.path.dirname(__lowerCamelCase ) lowercase_ = os.path.basename(__lowerCamelCase ) lowercase_ = onnx.load(os.path.join(__lowerCamelCase , __lowerCamelCase ) ) lowercase_ = list(model.graph.initializer ) lowercase_ = set() lowercase_ = {} lowercase_ = [] lowercase_ = 0 for i in range(len(__lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCamelCase ) dup_set.add(__lowerCamelCase ) lowercase_ = inits[j].data_type lowercase_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , __lowerCamelCase ) total_reduced_size += mem_size lowercase_ = inits[i].name lowercase_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCamelCase ) else: lowercase_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1024 / 1024 / 1024 , "GB" ) lowercase_ = sorted(__lowerCamelCase ) _remove_dup_initializers_from_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = "optimized_" + model_file_name lowercase_ = os.path.join(__lowerCamelCase , __lowerCamelCase ) onnx.save(__lowerCamelCase , __lowerCamelCase ) return new_model
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1000 ): '''simple docstring''' lowercase_ , lowercase_ = 1, 1 lowercase_ = 2 while True: lowercase_ = 0 lowercase_ = fa + fa lowercase_ , lowercase_ = fa, f index += 1 for _ in str(__lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = sum(__lowerCamelCase ) lowercase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowercase_ = True for i in range(1 , s + 1 ): lowercase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowercase_ = dp[i][j - 1] if arr[i - 1] <= j: lowercase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowercase_ = s - 2 * j break return diff
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "trajectory_transformer" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCAmelCase=100 , UpperCAmelCase=5 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=249 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=25 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase=128 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0006 , UpperCAmelCase=512 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=1 , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=50256 , UpperCAmelCase=50256 , **UpperCAmelCase , ) -> str: '''simple docstring''' lowercase_ = vocab_size lowercase_ = action_weight lowercase_ = reward_weight lowercase_ = value_weight lowercase_ = max_position_embeddings lowercase_ = block_size lowercase_ = action_dim lowercase_ = observation_dim lowercase_ = transition_dim lowercase_ = learning_rate lowercase_ = n_layer lowercase_ = n_head lowercase_ = n_embd lowercase_ = embd_pdrop lowercase_ = attn_pdrop lowercase_ = resid_pdrop lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = kaiming_initializer_range lowercase_ = use_cache super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } lowercase_ = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(UpperCAmelCase ) , UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase ) , x.transpose() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def A__ ( self ) -> str: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(transpose(UpperCAmelCase ) , transpose(UpperCAmelCase ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(transpose(UpperCAmelCase , axes=(1, 2, 0) ) , transpose(UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(transpose(UpperCAmelCase ) , transpose(UpperCAmelCase ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(transpose(UpperCAmelCase , axes=(1, 2, 0) ) , transpose(UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(transpose(UpperCAmelCase ) , np.asarray(transpose(UpperCAmelCase ) ) ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(transpose(UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (4, 3) ) , np.reshape(UpperCAmelCase , (4, 3) ) ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (12, 5) ) , np.reshape(UpperCAmelCase , (12, 5) ) ) ) @require_torch def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (4, 3) ) , reshape(UpperCAmelCase , (4, 3) ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (12, 5) ) , reshape(UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (4, 3) ) , reshape(UpperCAmelCase , (4, 3) ).numpy() ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (12, 5) ) , reshape(UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (4, 3) ) , np.asarray(reshape(UpperCAmelCase , (4, 3) ) ) ) ) lowercase_ = np.random.randn(3 , 4 , 5 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(reshape(UpperCAmelCase , (12, 5) ) , np.asarray(reshape(UpperCAmelCase , (12, 5) ) ) ) ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase ) , np.squeeze(UpperCAmelCase ) ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase , axis=2 ) , np.squeeze(UpperCAmelCase , axis=2 ) ) ) @require_torch def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase ) , squeeze(UpperCAmelCase ).numpy() ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase , axis=2 ) , squeeze(UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase ) , squeeze(UpperCAmelCase ).numpy() ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase , axis=2 ) , squeeze(UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = np.random.randn(1 , 3 , 4 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase ) , np.asarray(squeeze(UpperCAmelCase ) ) ) ) lowercase_ = np.random.randn(1 , 4 , 1 , 5 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase , axis=2 ) , np.asarray(squeeze(UpperCAmelCase , axis=2 ) ) ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase , axis=1 ) , np.expand_dims(UpperCAmelCase , axis=1 ) ) ) @require_torch def A__ ( self ) -> str: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = torch.tensor(UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase , axis=1 ) , expand_dims(UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = tf.constant(UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase , axis=1 ) , expand_dims(UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = np.random.randn(3 , 4 ) lowercase_ = jnp.array(UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(UpperCAmelCase , axis=1 ) ) ) )
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [] create_all_state(1 , __lowerCamelCase , __lowerCamelCase , [] , __lowerCamelCase ) return result def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(__lowerCamelCase , total_number - level + 2 ): current_list.append(__lowerCamelCase ) create_all_state(i + 1 , __lowerCamelCase , level - 1 , __lowerCamelCase , __lowerCamelCase ) current_list.pop() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[list[int]] ): '''simple docstring''' for i in total_list: print(*__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = generate_all_combinations(n, k) print_all_state(total_list)
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
import random from typing import Any def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list ): '''simple docstring''' for _ in range(len(__lowerCamelCase ) ): lowercase_ = random.randint(0 , len(__lowerCamelCase ) - 1 ) lowercase_ = random.randint(0 , len(__lowerCamelCase ) - 1 ) lowercase_ , lowercase_ = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE__ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' for attribute in key.split("." ): lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor lowercase_ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowercase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowercase_ = "weight_g" elif "weight_v" in name: lowercase_ = "weight_v" elif "bias" in name: lowercase_ = "bias" elif "weight" in name: lowercase_ = "weight" else: lowercase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = full_name.split("conv_layers." )[-1] lowercase_ = name.split("." ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = full_name.split("adaptor." )[-1] lowercase_ = name.split("." ) if items[1].isdigit(): lowercase_ = int(items[1] ) else: lowercase_ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' lowercase_ = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' lowercase_ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' lowercase_ = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' lowercase_ = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' lowercase_ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' lowercase_ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = emb.weight.shape lowercase_ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) lowercase_ = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: List[str] , ): '''simple docstring''' lowercase_ = WavaVecaConfig.from_pretrained( __lowerCamelCase , add_adapter=__lowerCamelCase , adapter_stride=__lowerCamelCase , adapter_kernel_size=__lowerCamelCase , use_auth_token=__lowerCamelCase , output_hidden_size=__lowerCamelCase , ) lowercase_ = MBartConfig.from_pretrained(__lowerCamelCase ) # load model lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) lowercase_ = model[0].eval() # load feature extractor lowercase_ = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , use_auth_token=__lowerCamelCase ) # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(__lowerCamelCase ) recursively_load_weights_wavaveca(model.encoder , __lowerCamelCase ) # load decoder weights lowercase_ = MBartForCausalLM(__lowerCamelCase ) lowercase_ , lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__lowerCamelCase ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase_ = SpeechEncoderDecoderModel(encoder=__lowerCamelCase , decoder=__lowerCamelCase ) lowercase_ = False lowercase_ = MBartaaTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = "mbart50" lowercase_ = "wav2vec2" lowercase_ = tokenizer.eos_token_id lowercase_ = 25_0004 lowercase_ = tokenizer.eos_token_id lowercase_ = SpeechEncoderDecoderConfig.from_dict(__lowerCamelCase ) hf_wavavec.save_pretrained(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=1_0_2_4, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=2_5_0_0_0_4, type=int, help="""`decoder_start_token_id` of model config""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """▁""" SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } SCREAMING_SNAKE_CASE__ = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=[] , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) lowercase_ = vocab_file lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' return self.sp_model.get_piece_size() def A__ ( self ) -> Dict[str, int]: '''simple docstring''' lowercase_ = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: '''simple docstring''' lowercase_ = self.__dict__.copy() lowercase_ = None return state def __setstate__( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ = {} lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return self.sp_model.piece_to_id(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if index < self.sp_model.get_piece_size(): lowercase_ = self.sp_model.IdToPiece(UpperCAmelCase ) return token def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = [] lowercase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase ) + token lowercase_ = [] else: current_sub_tokens.append(UpperCAmelCase ) out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } lowercase_ = F'{src_lang}-{tgt_lang}' lowercase_ = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=__lowerCamelCase , exist_ok=__lowerCamelCase ) lowercase_ = os.path.join(__lowerCamelCase , "README.md" ) print(F'Generating {path}' ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(__lowerCamelCase ) # make sure we are under the root of the project SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent.parent.parent SCREAMING_SNAKE_CASE__ = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: SCREAMING_SNAKE_CASE__ = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase = 1 , UpperCAmelCase = 100 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: lowercase_ = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ = audio_length_in_s * self.unet.config.sample_rate lowercase_ = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' F' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) lowercase_ = int(UpperCAmelCase ) if sample_size % down_scale_factor != 0: lowercase_ = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' " process." ) lowercase_ = int(UpperCAmelCase ) lowercase_ = next(iter(self.unet.parameters() ) ).dtype lowercase_ = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowercase_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase ) # set step values self.scheduler.set_timesteps(UpperCAmelCase , device=audio.device ) lowercase_ = self.scheduler.timesteps.to(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample lowercase_ = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCAmelCase )
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=30 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=None , UpperCAmelCase=2 , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ = (image_size // patch_size) ** 2 lowercase_ = num_patches + 1 def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> List[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = ViTModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = ViTForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = ViTForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = ViTForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = ViTForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> str: '''simple docstring''' lowercase_ = ViTModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def A__ ( self ) -> List[Any]: '''simple docstring''' pass def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A__ ( self ) -> Any: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = ViTModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> Any: '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = ViTModel.from_pretrained("facebook/dino-vits8" ).to(UpperCAmelCase ) lowercase_ = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ) lowercase_ = inputs.pixel_values.to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(UpperCAmelCase , interpolate_pos_encoding=UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) lowercase_ = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def A__ ( self ) -> int: '''simple docstring''' lowercase_ = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ) lowercase_ = inputs.pixel_values.to(UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowercase_ = model(UpperCAmelCase )
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = 0 lowercase_ = len(__lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1 , __lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' if len(__lowerCamelCase ) <= 1: return arr, 0 lowercase_ = len(__lowerCamelCase ) // 2 lowercase_ = arr[0:mid] lowercase_ = arr[mid:] lowercase_ , lowercase_ = count_inversions_recursive(__lowerCamelCase ) lowercase_ , lowercase_ = count_inversions_recursive(__lowerCamelCase ) lowercase_ , lowercase_ = _count_cross_inversions(__lowerCamelCase , __lowerCamelCase ) lowercase_ = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = [] lowercase_ = lowercase_ = lowercase_ = 0 while i < len(__lowerCamelCase ) and j < len(__lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase_ = count_inversions_bf(__lowerCamelCase ) lowercase_ , lowercase_ = count_inversions_recursive(__lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , __lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase_ = count_inversions_bf(__lowerCamelCase ) lowercase_ , lowercase_ = count_inversions_recursive(__lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , __lowerCamelCase ) # an empty list should also have zero inversions lowercase_ = [] lowercase_ = count_inversions_bf(__lowerCamelCase ) lowercase_ , lowercase_ = count_inversions_recursive(__lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , __lowerCamelCase ) if __name__ == "__main__": main()
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass(frozen=snake_case_ ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None @dataclass(frozen=snake_case_ ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase=False , UpperCAmelCase = False , ) -> str: '''simple docstring''' lowercase_ = hans_processors[task]() lowercase_ = os.path.join( UpperCAmelCase , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowercase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase_ , lowercase_ = label_list[2], label_list[1] lowercase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase_ = cached_features_file + ".lock" with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) lowercase_ = torch.load(UpperCAmelCase ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) lowercase_ = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info("Training examples: %s" , len(UpperCAmelCase ) ) lowercase_ = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info("Saving features into cached file %s" , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self ) -> Dict: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCAmelCase ) -> InputFeatures: '''simple docstring''' return self.features[i] def A__ ( self ) -> Tuple: '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 128 , UpperCAmelCase=False , UpperCAmelCase = False , ) -> List[str]: '''simple docstring''' lowercase_ = hans_processors[task]() lowercase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase_ , lowercase_ = label_list[2], label_list[1] lowercase_ = label_list lowercase_ = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowercase_ = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase_ = tf.data.Dataset.from_generator( UpperCAmelCase , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.dataset def __len__( self ) -> Any: '''simple docstring''' return len(self.features ) def __getitem__( self , UpperCAmelCase ) -> InputFeatures: '''simple docstring''' return self.features[i] def A__ ( self ) -> List[str]: '''simple docstring''' return self.label_list class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , "heuristics_train_set.txt" ) ) , "train" ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , "heuristics_evaluation_set.txt" ) ) , "dev" ) def A__ ( self ) -> List[Any]: '''simple docstring''' return ["contradiction", "entailment", "neutral"] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowercase_ = "%s-%s" % (set_type, line[0]) lowercase_ = line[5] lowercase_ = line[6] lowercase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] lowercase_ = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: List[InputExample] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , ): '''simple docstring''' lowercase_ = {label: i for i, label in enumerate(__lowerCamelCase )} lowercase_ = [] for ex_index, example in tqdm.tqdm(enumerate(__lowerCamelCase ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) lowercase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , truncation=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , ) lowercase_ = label_map[example.label] if example.label in label_map else 0 lowercase_ = int(example.pairID ) features.append(InputFeatures(**__lowerCamelCase , label=__lowerCamelCase , pairID=__lowerCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features SCREAMING_SNAKE_CASE__ = { """hans""": 3, } SCREAMING_SNAKE_CASE__ = { """hans""": HansProcessor, }
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "audio-spectrogram-transformer" def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=16 , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=10 , UpperCAmelCase=1024 , UpperCAmelCase=128 , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = patch_size lowercase_ = qkv_bias lowercase_ = frequency_stride lowercase_ = time_stride lowercase_ = max_length lowercase_ = num_mel_bins
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = ["vqvae"] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase , mel=UpperCAmelCase , vqvae=UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , UpperCAmelCase ) else 1000 @torch.no_grad() def __call__( self , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' lowercase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase ) lowercase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase , device=self.device , ) lowercase_ = noise lowercase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.mel.audio_slice_to_image(UpperCAmelCase ) lowercase_ = np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) lowercase_ = (input_image / 255) * 2 - 1 lowercase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase_ = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase , 0 ) ).latent_dist.sample( generator=UpperCAmelCase )[0] lowercase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase_ = self.scheduler.add_noise(UpperCAmelCase , UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) lowercase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase_ = int(mask_start_secs * pixels_per_second ) lowercase_ = int(mask_end_secs * pixels_per_second ) lowercase_ = self.scheduler.add_noise(UpperCAmelCase , UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , UpperCAmelCase ): lowercase_ = self.unet(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )["sample"] else: lowercase_ = self.unet(UpperCAmelCase , UpperCAmelCase )["sample"] if isinstance(self.scheduler , UpperCAmelCase ): lowercase_ = self.scheduler.step( model_output=UpperCAmelCase , timestep=UpperCAmelCase , sample=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , )["prev_sample"] else: lowercase_ = self.scheduler.step( model_output=UpperCAmelCase , timestep=UpperCAmelCase , sample=UpperCAmelCase , generator=UpperCAmelCase , )["prev_sample"] if mask is not None: if mask_start > 0: lowercase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowercase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase_ = 1 / self.vqvae.config.scaling_factor * images lowercase_ = self.vqvae.decode(UpperCAmelCase )["sample"] lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowercase_ = (images * 255).round().astype("uint8" ) lowercase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase , mode="RGB" ).convert("L" ) for _ in images) ) lowercase_ = [self.mel.image_to_audio(UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(UpperCAmelCase ) ) @torch.no_grad() def A__ ( self , UpperCAmelCase , UpperCAmelCase = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , UpperCAmelCase ) self.scheduler.set_timesteps(UpperCAmelCase ) lowercase_ = np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) lowercase_ = (sample / 255) * 2 - 1 lowercase_ = torch.Tensor(UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowercase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase_ = self.scheduler.alphas_cumprod[t] lowercase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase_ = 1 - alpha_prod_t lowercase_ = self.unet(UpperCAmelCase , UpperCAmelCase )["sample"] lowercase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def A__ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' lowercase_ = acos(torch.dot(torch.flatten(UpperCAmelCase ) , torch.flatten(UpperCAmelCase ) ) / torch.norm(UpperCAmelCase ) / torch.norm(UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(UpperCAmelCase )
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration SCREAMING_SNAKE_CASE__ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] SCREAMING_SNAKE_CASE__ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] SCREAMING_SNAKE_CASE__ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) SCREAMING_SNAKE_CASE__ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) SCREAMING_SNAKE_CASE__ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: str ): '''simple docstring''' for tf_name, hf_name in patterns: lowercase_ = k.replace(__lowerCamelCase , __lowerCamelCase ) return k def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , __lowerCamelCase: dict ): '''simple docstring''' lowercase_ = BigBirdPegasusConfig(**__lowerCamelCase ) lowercase_ = BigBirdPegasusForConditionalGeneration(__lowerCamelCase ) lowercase_ = torch_model.state_dict() lowercase_ = {} # separating decoder weights lowercase_ = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} lowercase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): lowercase_ = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue lowercase_ = DECODER_PATTERNS lowercase_ = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowercase_ = v.T lowercase_ = torch.from_numpy(__lowerCamelCase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): lowercase_ = [k.endswith(__lowerCamelCase ) for ending in KEYS_TO_IGNORE] if any(__lowerCamelCase ): continue lowercase_ = REMAINING_PATTERNS lowercase_ = rename_state_dict_key(__lowerCamelCase , __lowerCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowercase_ = v.T lowercase_ = torch.from_numpy(__lowerCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' lowercase_ = mapping["model.embed_positions.weight"] lowercase_ = mapping.pop("model.embed_positions.weight" ) lowercase_ , lowercase_ = torch_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) lowercase_ = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCamelCase ) lowercase_ = {} lowercase_ = ["global_step"] for name, shape in tqdm(__lowerCamelCase , desc="converting tf checkpoint to dict" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase ) lowercase_ = array return tf_weights def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: dict ): '''simple docstring''' lowercase_ = get_tf_weights_as_numpy(__lowerCamelCase ) lowercase_ = convert_bigbird_pegasus(__lowerCamelCase , __lowerCamelCase ) torch_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = len(set_a.intersection(__lowerCamelCase ) ) if alternative_union: lowercase_ = len(__lowerCamelCase ) + len(__lowerCamelCase ) else: lowercase_ = len(set_a.union(__lowerCamelCase ) ) return intersection / union if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(__lowerCamelCase , (list, tuple) ): lowercase_ = [element for element in set_a if element in set_b] if alternative_union: lowercase_ = len(__lowerCamelCase ) + len(__lowerCamelCase ) return len(__lowerCamelCase ) / union else: lowercase_ = set_a + [element for element in set_b if element not in set_a] return len(__lowerCamelCase ) / len(__lowerCamelCase ) return len(__lowerCamelCase ) / len(__lowerCamelCase ) return None if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = {"""a""", """b""", """c""", """d""", """e"""} SCREAMING_SNAKE_CASE__ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_) class __lowerCamelCase ( snake_case_): """simple docstring""" lowerCAmelCase__ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) lowerCAmelCase__ = Features({"text": Value("string")}) lowerCAmelCase__ = Features({}) lowerCAmelCase__ = "text" @property def A__ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = SwinvaConfig() lowercase_ = swinva_name.split("_" ) lowercase_ = name_split[1] if "to" in name_split[3]: lowercase_ = int(name_split[3][-3:] ) else: lowercase_ = int(name_split[3] ) if "to" in name_split[2]: lowercase_ = int(name_split[2][-2:] ) else: lowercase_ = int(name_split[2][6:] ) if model_size == "tiny": lowercase_ = 96 lowercase_ = (2, 2, 6, 2) lowercase_ = (3, 6, 12, 24) elif model_size == "small": lowercase_ = 96 lowercase_ = (2, 2, 18, 2) lowercase_ = (3, 6, 12, 24) elif model_size == "base": lowercase_ = 128 lowercase_ = (2, 2, 18, 2) lowercase_ = (4, 8, 16, 32) else: lowercase_ = 192 lowercase_ = (2, 2, 18, 2) lowercase_ = (6, 12, 24, 48) if "to" in swinva_name: lowercase_ = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowercase_ = 2_1841 lowercase_ = "huggingface/label-files" lowercase_ = "imagenet-22k-id2label.json" lowercase_ = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) lowercase_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} else: lowercase_ = 1000 lowercase_ = "huggingface/label-files" lowercase_ = "imagenet-1k-id2label.json" lowercase_ = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) lowercase_ = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase_ = idalabel lowercase_ = {v: k for k, v in idalabel.items()} lowercase_ = img_size lowercase_ = num_classes lowercase_ = embed_dim lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size return config def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ): '''simple docstring''' if "patch_embed.proj" in name: lowercase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowercase_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowercase_ = "encoder." + name if "attn.proj" in name: lowercase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowercase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowercase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowercase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowercase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowercase_ = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: lowercase_ = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: lowercase_ = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: lowercase_ = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: lowercase_ = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": lowercase_ = "layernorm.weight" if name == "norm.bias": lowercase_ = "layernorm.bias" if "head" in name: lowercase_ = name.replace("head" , "classifier" ) else: lowercase_ = "swinv2." + name return name def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(__lowerCamelCase ) if "mask" in key: continue elif "qkv" in key: lowercase_ = key.split("." ) lowercase_ = int(key_split[1] ) lowercase_ = int(key_split[3] ) lowercase_ = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[ dim : dim * 2 ] lowercase_ = val[-dim:] else: lowercase_ = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() lowercase_ = get_swinva_config(__lowerCamelCase ) lowercase_ = SwinvaForImageClassification(__lowerCamelCase ) model.eval() lowercase_ = convert_state_dict(timm_model.state_dict() , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) lowercase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) lowercase_ = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) lowercase_ = image_processor(images=__lowerCamelCase , return_tensors="pt" ) lowercase_ = timm_model(inputs["pixel_values"] ) lowercase_ = model(**__lowerCamelCase ).logits assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCamelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCamelCase ) model.push_to_hub( repo_path_or_name=Path(__lowerCamelCase , __lowerCamelCase ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str = "" ): '''simple docstring''' lowercase_ = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowercase_ = BeautifulSoup(requests.get(__lowerCamelCase ).text , "html.parser" ) lowercase_ = soup.find_all("td" , attrs="titleColumn" ) lowercase_ = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__lowerCamelCase , __lowerCamelCase ) } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' lowercase_ = get_imdb_top_aaa_movies() with open(__lowerCamelCase , "w" , newline="" ) as out_file: lowercase_ = csv.writer(__lowerCamelCase ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output lowercase_ = text_generator("This is a test" , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) lowercase_ = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( UpperCAmelCase , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) lowercase_ = text_generator("This is a test" , do_sample=UpperCAmelCase , num_return_sequences=2 , return_tensors=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ {"generated_token_ids": ANY(UpperCAmelCase )}, {"generated_token_ids": ANY(UpperCAmelCase )}, ] , ) lowercase_ = text_generator.model.config.eos_token_id lowercase_ = "<pad>" lowercase_ = text_generator( ["This is a test", "This is a second test"] , do_sample=UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCAmelCase , ) self.assertEqual( UpperCAmelCase , [ [ {"generated_token_ids": ANY(UpperCAmelCase )}, {"generated_token_ids": ANY(UpperCAmelCase )}, ], [ {"generated_token_ids": ANY(UpperCAmelCase )}, {"generated_token_ids": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output lowercase_ = text_generator("This is a test" , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) lowercase_ = text_generator(["This is a test", "This is a second test"] , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = TextGenerationPipeline(model=UpperCAmelCase , tokenizer=UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = "Hello I believe in" lowercase_ = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) lowercase_ = text_generator(UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) lowercase_ = text_generator(UpperCAmelCase , stop_sequence=" fe" ) self.assertEqual(UpperCAmelCase , [{"generated_text": "Hello I believe in fe"}] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = text_generator.model lowercase_ = text_generator.tokenizer lowercase_ = text_generator("This is a test" ) self.assertEqual(UpperCAmelCase , [{"generated_text": ANY(UpperCAmelCase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) lowercase_ = text_generator("This is a test" , return_full_text=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [{"generated_text": ANY(UpperCAmelCase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) lowercase_ = pipeline(task="text-generation" , model=UpperCAmelCase , tokenizer=UpperCAmelCase , return_full_text=UpperCAmelCase ) lowercase_ = text_generator("This is a test" ) self.assertEqual(UpperCAmelCase , [{"generated_text": ANY(UpperCAmelCase )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) lowercase_ = text_generator("This is a test" , return_full_text=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [{"generated_text": ANY(UpperCAmelCase )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) lowercase_ = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [{"generated_text": ANY(UpperCAmelCase )}, {"generated_text": ANY(UpperCAmelCase )}], [{"generated_text": ANY(UpperCAmelCase )}, {"generated_text": ANY(UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowercase_ = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [{"generated_text": ANY(UpperCAmelCase )}, {"generated_text": ANY(UpperCAmelCase )}], [{"generated_text": ANY(UpperCAmelCase )}, {"generated_text": ANY(UpperCAmelCase )}], ] , ) with self.assertRaises(UpperCAmelCase ): lowercase_ = text_generator("test" , return_full_text=UpperCAmelCase , return_text=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): lowercase_ = text_generator("test" , return_full_text=UpperCAmelCase , return_tensors=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): lowercase_ = text_generator("test" , return_text=UpperCAmelCase , return_tensors=UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowercase_ = text_generator("" ) self.assertEqual(UpperCAmelCase , [{"generated_text": ANY(UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowercase_ = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowercase_ = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) lowercase_ = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(UpperCAmelCase ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def A__ ( self ) -> Tuple: '''simple docstring''' import torch # Classic `model_kwargs` lowercase_ = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowercase_ = pipe("This is a test" ) self.assertEqual( UpperCAmelCase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowercase_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowercase_ = pipe("This is a test" ) self.assertEqual( UpperCAmelCase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowercase_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowercase_ = pipe("This is a test" ) self.assertEqual( UpperCAmelCase , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def A__ ( self ) -> Optional[Any]: '''simple docstring''' import torch lowercase_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def A__ ( self ) -> Tuple: '''simple docstring''' import torch lowercase_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=UpperCAmelCase , top_p=0.5 ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = "Hello world" lowercase_ = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": lowercase_ = logging.get_logger("transformers.generation.tf_utils" ) else: lowercase_ = logging.get_logger("transformers.generation.utils" ) lowercase_ = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(UpperCAmelCase ) as cl: lowercase_ = text_generator(UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(UpperCAmelCase ) as cl: lowercase_ = text_generator(UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(UpperCAmelCase , cl.out ) with CaptureLogger(UpperCAmelCase ) as cl: lowercase_ = text_generator(UpperCAmelCase , max_length=10 ) self.assertNotIn(UpperCAmelCase , cl.out )
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ = TypeVar("""KEY""") SCREAMING_SNAKE_CASE__ = TypeVar("""VAL""") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class __lowerCamelCase ( Generic[KEY, VAL] ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class __lowerCamelCase ( _Item ): """simple docstring""" def __init__( self ) -> None: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) def __bool__( self ) -> bool: '''simple docstring''' return False SCREAMING_SNAKE_CASE__ = _DeletedItem() class __lowerCamelCase ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , UpperCAmelCase = 8 , UpperCAmelCase = 0.75 ) -> None: '''simple docstring''' lowercase_ = initial_block_size lowercase_ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowercase_ = capacity_factor lowercase_ = 0 def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return hash(UpperCAmelCase ) % len(self._buckets ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: '''simple docstring''' lowercase_ = self._buckets[ind] if not stored: lowercase_ = _Item(UpperCAmelCase , UpperCAmelCase ) self._len += 1 return True elif stored.key == key: lowercase_ = _Item(UpperCAmelCase , UpperCAmelCase ) return True else: return False def A__ ( self ) -> bool: '''simple docstring''' lowercase_ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(UpperCAmelCase ) def A__ ( self ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowercase_ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def A__ ( self , UpperCAmelCase ) -> None: '''simple docstring''' lowercase_ = self._buckets lowercase_ = [None] * new_size lowercase_ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def A__ ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def A__ ( self ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def A__ ( self , UpperCAmelCase ) -> Iterator[int]: '''simple docstring''' lowercase_ = self._get_bucket_index(UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind lowercase_ = self._get_next_ind(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' for ind in self._iterate_buckets(UpperCAmelCase ): if self._try_set(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): break def __setitem__( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(UpperCAmelCase , UpperCAmelCase ) def __delitem__( self , UpperCAmelCase ) -> None: '''simple docstring''' for ind in self._iterate_buckets(UpperCAmelCase ): lowercase_ = self._buckets[ind] if item is None: raise KeyError(UpperCAmelCase ) if item is _deleted: continue if item.key == key: lowercase_ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , UpperCAmelCase ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(UpperCAmelCase ): lowercase_ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(UpperCAmelCase ) def __len__( self ) -> int: '''simple docstring''' return self._len def __iter__( self ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: '''simple docstring''' lowercase_ = " ,".join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = np.max(_outputs , axis=-1 , keepdims=__lowerCamelCase ) lowercase_ = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowerCamelCase ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "sigmoid" lowerCAmelCase__ = "softmax" lowerCAmelCase__ = "none" @add_end_docstrings( snake_case_ , R"\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `\"default\"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `\"sigmoid\"`: Applies the sigmoid function on the output.\n - `\"softmax\"`: Applies the softmax function on the output.\n - `\"none\"`: Does not apply any function on the output.\n " , ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = False lowerCAmelCase__ = ClassificationFunction.NONE def __init__( self , **UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__(**UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def A__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="" , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = tokenizer_kwargs lowercase_ = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: lowercase_ = self.model.config.return_all_scores if isinstance(UpperCAmelCase , UpperCAmelCase ) or top_k is None: lowercase_ = top_k lowercase_ = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , UpperCAmelCase , ) if return_all_scores: lowercase_ = None else: lowercase_ = 1 if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase_ = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: lowercase_ = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = super().__call__(*UpperCAmelCase , **UpperCAmelCase ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. lowercase_ = "top_k" not in kwargs if isinstance(args[0] , UpperCAmelCase ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Dict[str, GenericTensor]: '''simple docstring''' lowercase_ = self.framework if isinstance(UpperCAmelCase , UpperCAmelCase ): return self.tokenizer(**UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1 and isinstance(inputs[0] , UpperCAmelCase ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=UpperCAmelCase , **UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return self.model(**UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=True ) -> Any: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: lowercase_ = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: lowercase_ = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: lowercase_ = self.model.config.function_to_apply else: lowercase_ = ClassificationFunction.NONE lowercase_ = model_outputs["logits"][0] lowercase_ = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: lowercase_ = sigmoid(UpperCAmelCase ) elif function_to_apply == ClassificationFunction.SOFTMAX: lowercase_ = softmax(UpperCAmelCase ) elif function_to_apply == ClassificationFunction.NONE: lowercase_ = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} lowercase_ = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(UpperCAmelCase ) ] if not _legacy: dict_scores.sort(key=lambda UpperCAmelCase : x["score"] , reverse=UpperCAmelCase ) if top_k is not None: lowercase_ = dict_scores[:top_k] return dict_scores
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BeitFeatureExtractor"""] SCREAMING_SNAKE_CASE__ = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionSAGPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowercase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase_ = CLIPTextModel(UpperCAmelCase ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Dict: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def A__ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase_ = sag_pipe.to(UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "." lowercase_ = torch.manual_seed(0 ) lowercase_ = sag_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase_ = sag_pipe.to(UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "." lowercase_ = torch.manual_seed(0 ) lowercase_ = sag_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) lowercase_ = output.images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase_ = sag_pipe.to(UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "." lowercase_ = torch.manual_seed(0 ) lowercase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) lowercase_ = output.images assert image.shape == (1, 512, 768, 3)
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=768 ) -> Optional[int]: '''simple docstring''' super().__init__(UpperCAmelCase ) lowercase_ = proj_size lowercase_ = CLIPVisionModel(UpperCAmelCase ) lowercase_ = PaintByExampleMapper(UpperCAmelCase ) lowercase_ = nn.LayerNorm(config.hidden_size ) lowercase_ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowercase_ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' lowercase_ = self.model(pixel_values=UpperCAmelCase ) lowercase_ = clip_output.pooler_output lowercase_ = self.mapper(latent_states[:, None] ) lowercase_ = self.final_layer_norm(UpperCAmelCase ) lowercase_ = self.proj_out(UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' super().__init__() lowercase_ = (config.num_hidden_layers + 1) // 5 lowercase_ = config.hidden_size lowercase_ = 1 lowercase_ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , activation_fn="gelu" , attention_bias=UpperCAmelCase ) for _ in range(UpperCAmelCase ) ] ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' for block in self.blocks: lowercase_ = block(UpperCAmelCase ) return hidden_states
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "mvp" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCAmelCase=50267 , UpperCAmelCase=1024 , UpperCAmelCase=12 , UpperCAmelCase=4096 , UpperCAmelCase=16 , UpperCAmelCase=12 , UpperCAmelCase=4096 , UpperCAmelCase=16 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase="gelu" , UpperCAmelCase=1024 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=0.0 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=False , UpperCAmelCase=100 , UpperCAmelCase=800 , **UpperCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = classifier_dropout lowercase_ = use_cache lowercase_ = encoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = use_prompt lowercase_ = prompt_length lowercase_ = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , UpperCAmelCase ): lowercase_ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' "The config can simply be saved and uploaded again to be fixed." )
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase_ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) lowercase_ = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , "snapshots" ) )] lowercase_ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase ) lowercase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase_ = jax.random.PRNGKey(0 ) lowercase_ = 4 lowercase_ = jax.device_count() lowercase_ = num_samples * [prompt] lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng lowercase_ = replicate(UpperCAmelCase ) lowercase_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 lowercase_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=UpperCAmelCase ) lowercase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase_ = jax.random.PRNGKey(0 ) lowercase_ = 50 lowercase_ = jax.device_count() lowercase_ = num_samples * [prompt] lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng lowercase_ = replicate(UpperCAmelCase ) lowercase_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) lowercase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase_ = jax.random.PRNGKey(0 ) lowercase_ = 50 lowercase_ = jax.device_count() lowercase_ = num_samples * [prompt] lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng lowercase_ = replicate(UpperCAmelCase ) lowercase_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) lowercase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase_ = jax.random.PRNGKey(0 ) lowercase_ = 50 lowercase_ = jax.device_count() lowercase_ = num_samples * [prompt] lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng lowercase_ = replicate(UpperCAmelCase ) lowercase_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) lowercase_ = scheduler.create_state() lowercase_ = scheduler_state lowercase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase_ = jax.random.PRNGKey(0 ) lowercase_ = 50 lowercase_ = jax.device_count() lowercase_ = num_samples * [prompt] lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng lowercase_ = replicate(UpperCAmelCase ) lowercase_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase_ = jax.device_count() lowercase_ = num_samples * [prompt] lowercase_ = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) lowercase_ = replicate(UpperCAmelCase ) lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase_ = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase_ , lowercase_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) lowercase_ = replicate(UpperCAmelCase ) lowercase_ = pipeline.prepare_inputs(UpperCAmelCase ) lowercase_ = shard(UpperCAmelCase ) lowercase_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase_ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = IFInpaintingPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} def A__ ( self ) -> List[str]: '''simple docstring''' return self._get_dummy_components() def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> int: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowercase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> List[Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def A__ ( self ) -> str: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def A__ ( self ) -> Dict: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def A__ ( self ) -> Any: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self._test_save_load_local() def A__ ( self ) -> List[str]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: dict ): '''simple docstring''' lowercase_ = BeautifulSoup(requests.get(__lowerCamelCase , params=__lowerCamelCase ).content , "html.parser" ) lowercase_ = soup.find("div" , attrs={"class": "gs_ri"} ) lowercase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = ["""names""", """prefix"""] SCREAMING_SNAKE_CASE__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] SCREAMING_SNAKE_CASE__ = ["""encoding_errors""", """on_bad_lines"""] SCREAMING_SNAKE_CASE__ = ["""date_format"""] @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = "," lowerCAmelCase__ = None lowerCAmelCase__ = "infer" lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = False lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = "." lowerCAmelCase__ = None lowerCAmelCase__ = "\"" lowerCAmelCase__ = 0 lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = None lowerCAmelCase__ = 1_00_00 lowerCAmelCase__ = None lowerCAmelCase__ = "strict" lowerCAmelCase__ = "error" lowerCAmelCase__ = None def A__ ( self ) -> Tuple: '''simple docstring''' if self.delimiter is not None: lowercase_ = self.delimiter if self.column_names is not None: lowercase_ = self.column_names @property def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __lowerCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = CsvConfig def A__ ( self ) -> List[str]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def A__ ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) lowercase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase , (str, list, tuple) ): lowercase_ = data_files if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowercase_ = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase_ = [files] lowercase_ = [dl_manager.iter_files(UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase , gen_kwargs={"files": files} ) ) return splits def A__ ( self , UpperCAmelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: lowercase_ = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast lowercase_ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowercase_ = table_cast(UpperCAmelCase , UpperCAmelCase ) return pa_table def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowercase_ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase ) ): lowercase_ = pd.read_csv(UpperCAmelCase , iterator=UpperCAmelCase , dtype=UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase ): lowercase_ = pa.Table.from_pandas(UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase ) except ValueError as e: logger.error(F'Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}' ) raise
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: float | Decimal , __lowerCamelCase: float = 10**-10 ): '''simple docstring''' lowercase_ = a while True: lowercase_ = Decimal(__lowerCamelCase ) - ( Decimal(eval(__lowerCamelCase ) ) / Decimal(eval(str(diff(__lowerCamelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowerCamelCase ) ) < precision: # noqa: S307 return float(__lowerCamelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "" lowerCAmelCase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(self , **UpperCAmelCase ) lowercase_ = repo_info lowercase_ = token lowercase_ = None def A__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.dir_cache is None: lowercase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(UpperCAmelCase ): {"name": str(UpperCAmelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = "rb" , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' if not isinstance(self.repo_info , UpperCAmelCase ): raise NotImplementedError(F'Open is only implemented for dataset repositories, but got {self.repo_info}' ) lowercase_ = hf_hub_url(self.repo_info.id , UpperCAmelCase , revision=self.repo_info.sha ) return fsspec.open( UpperCAmelCase , mode=UpperCAmelCase , headers=get_authentication_headers_for_url(UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' self._get_dirs() lowercase_ = self._strip_protocol(UpperCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=False , **UpperCAmelCase ) -> List[str]: '''simple docstring''' self._get_dirs() lowercase_ = PurePosixPath(path.strip("/" ) ) lowercase_ = {} for p, f in self.dir_cache.items(): lowercase_ = PurePosixPath(p.strip("/" ) ) lowercase_ = p.parent if root == path: lowercase_ = f lowercase_ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
from __future__ import annotations SCREAMING_SNAKE_CASE__ = tuple[int, int, int] SCREAMING_SNAKE_CASE__ = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase SCREAMING_SNAKE_CASE__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- SCREAMING_SNAKE_CASE__ = """EGZWVONAHDCLFQMSIPJBYUKXTR""" SCREAMING_SNAKE_CASE__ = """FOBHMDKEXQNRAULPGSJVTYICZW""" SCREAMING_SNAKE_CASE__ = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- SCREAMING_SNAKE_CASE__ = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- SCREAMING_SNAKE_CASE__ = """RMDJXFUWGISLHVTCQNKYPBEZOA""" SCREAMING_SNAKE_CASE__ = """SGLCPQWZHKXAREONTFBVIYJUDM""" SCREAMING_SNAKE_CASE__ = """HVSICLTYKQUBXDWAJZOMFGPREN""" SCREAMING_SNAKE_CASE__ = """RZWQHFMVDBKICJLNTUXAGYPSOE""" SCREAMING_SNAKE_CASE__ = """LFKIJODBEGAMQPXVUHYSTCZRWN""" SCREAMING_SNAKE_CASE__ = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: RotorPositionT , __lowerCamelCase: RotorSelectionT , __lowerCamelCase: str ): '''simple docstring''' if (unique_rotsel := len(set(__lowerCamelCase ) )) < 3: lowercase_ = F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(__lowerCamelCase ) # Checks if rotor positions are valid lowercase_ , lowercase_ , lowercase_ = rotpos if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(__lowerCamelCase ) if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(__lowerCamelCase ) if not 0 < rotorposa <= len(__lowerCamelCase ): lowercase_ = F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(__lowerCamelCase ) # Validates string and returns dict lowercase_ = _plugboard(__lowerCamelCase ) return rotpos, rotsel, pbdict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = F'Plugboard setting isn\'t type string ({type(__lowerCamelCase )})' raise TypeError(__lowerCamelCase ) elif len(__lowerCamelCase ) % 2 != 0: lowercase_ = F'Odd number of symbols ({len(__lowerCamelCase )})' raise Exception(__lowerCamelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique lowercase_ = set() for i in pbstring: if i not in abc: lowercase_ = F'\'{i}\' not in list of symbols' raise Exception(__lowerCamelCase ) elif i in tmppbl: lowercase_ = F'Duplicate symbol ({i})' raise Exception(__lowerCamelCase ) else: tmppbl.add(__lowerCamelCase ) del tmppbl # Created the dictionary lowercase_ = {} for j in range(0 , len(__lowerCamelCase ) - 1 , 2 ): lowercase_ = pbstring[j + 1] lowercase_ = pbstring[j] return pb def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: RotorPositionT , __lowerCamelCase: RotorSelectionT = (rotora, rotora, rotora) , __lowerCamelCase: str = "" , ): '''simple docstring''' lowercase_ = text.upper() lowercase_ , lowercase_ , lowercase_ = _validator( __lowerCamelCase , __lowerCamelCase , plugb.upper() ) lowercase_ , lowercase_ , lowercase_ = rotor_position lowercase_ , lowercase_ , lowercase_ = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowercase_ = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowercase_ = plugboard[symbol] # rotor ra -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # rotor rb -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # rotor rc -------------------------- lowercase_ = abc.index(__lowerCamelCase ) + rotorposa lowercase_ = rotora[index % len(__lowerCamelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowercase_ = reflector[symbol] # 2nd rotors lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] lowercase_ = abc[rotora.index(__lowerCamelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowercase_ = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 rotorposa += 1 if rotorposa >= len(__lowerCamelCase ): lowercase_ = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """This is my Python script that emulates the Enigma machine from WWII.""" SCREAMING_SNAKE_CASE__ = (1, 1, 1) SCREAMING_SNAKE_CASE__ = """pictures""" SCREAMING_SNAKE_CASE__ = (rotora, rotora, rotora) SCREAMING_SNAKE_CASE__ = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel SCREAMING_SNAKE_CASE__ = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } SCREAMING_SNAKE_CASE__ = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any]=False ): '''simple docstring''' lowercase_ , lowercase_ = create_model( "HTSAT-tiny" , "roberta" , __lowerCamelCase , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=__lowerCamelCase , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = {} lowercase_ = r".*sequential.(\d+).*" lowercase_ = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase_ = key.replace(__lowerCamelCase , __lowerCamelCase ) if re.match(__lowerCamelCase , __lowerCamelCase ): # replace sequential layers with list lowercase_ = re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) lowercase_ = key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(__lowerCamelCase )//3}.linear.' ) elif re.match(__lowerCamelCase , __lowerCamelCase ): lowercase_ = int(re.match(__lowerCamelCase , __lowerCamelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowercase_ = 1 if projecton_layer == 0 else 2 lowercase_ = key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value lowercase_ = value lowercase_ = mixed_qkv.size(0 ) // 3 lowercase_ = mixed_qkv[:qkv_dim] lowercase_ = mixed_qkv[qkv_dim : qkv_dim * 2] lowercase_ = mixed_qkv[qkv_dim * 2 :] lowercase_ = query_layer lowercase_ = key_layer lowercase_ = value_layer else: lowercase_ = value return model_state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int]=False ): '''simple docstring''' lowercase_ , lowercase_ = init_clap(__lowerCamelCase , enable_fusion=__lowerCamelCase ) clap_model.eval() lowercase_ = clap_model.state_dict() lowercase_ = rename_state_dict(__lowerCamelCase ) lowercase_ = ClapConfig() lowercase_ = enable_fusion lowercase_ = ClapModel(__lowerCamelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) transformers_config.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList SCREAMING_SNAKE_CASE__ = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Optional[int]: '''simple docstring''' lowercase_ = tokenizer lowercase_ = dataset lowercase_ = len(UpperCAmelCase ) if n_tasks is None else n_tasks lowercase_ = n_copies def __iter__( self ) -> int: '''simple docstring''' lowercase_ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) lowercase_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = start_length lowercase_ = eof_strings lowercase_ = tokenizer def __call__( self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowercase_ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = re.split("(%s)" % "|".join(__lowerCamelCase ) , __lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: int=20 , **__lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = defaultdict(__lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCamelCase ) ): with torch.no_grad(): lowercase_ = batch["ids"].shape[-1] lowercase_ = accelerator.unwrap_model(__lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=__lowerCamelCase , **__lowerCamelCase ) # each task is generated batch_size times lowercase_ = batch["task_id"].repeat(__lowerCamelCase ) lowercase_ = accelerator.pad_across_processes( __lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowercase_ , lowercase_ = accelerator.gather((generated_tokens, generated_tasks) ) lowercase_ = generated_tokens.cpu().numpy() lowercase_ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCamelCase , __lowerCamelCase ): gen_token_dict[task].append(__lowerCamelCase ) lowercase_ = [[] for _ in range(__lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowercase_ = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase ) code_gens[task].append(remove_last_block(__lowerCamelCase ) ) return code_gens def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser(__lowerCamelCase ) lowercase_ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowercase_ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowercase_ = "false" if args.num_workers is None: lowercase_ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowercase_ = Accelerator() set_seed(args.seed , device_specific=__lowerCamelCase ) # Load model and tokenizer lowercase_ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowercase_ = tokenizer.eos_token lowercase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowercase_ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowerCamelCase , __lowerCamelCase )] ), } # Load evaluation dataset and metric lowercase_ = load_dataset("openai_humaneval" ) lowercase_ = load_metric("code_eval" ) lowercase_ = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) lowercase_ = args.n_samples // args.batch_size lowercase_ = TokenizedDataset(__lowerCamelCase , human_eval["test"] , n_copies=__lowerCamelCase , n_tasks=__lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowercase_ = DataLoader(__lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowercase_ = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception lowercase_ , lowercase_ = accelerator.prepare(__lowerCamelCase , __lowerCamelCase ) lowercase_ = complete_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , n_tasks=__lowerCamelCase , batch_size=args.batch_size , **__lowerCamelCase , ) if accelerator.is_main_process: lowercase_ = [] for task in tqdm(range(__lowerCamelCase ) ): lowercase_ = human_eval["test"][task]["test"] lowercase_ = F'check({human_eval["test"][task]["entry_point"]})' references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric lowercase_ , lowercase_ = code_eval_metric.compute( references=__lowerCamelCase , predictions=__lowerCamelCase , num_workers=args.num_workers ) print(F'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = [R"h\.\d+\.attn\.bias", R"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = 50257 , UpperCAmelCase = 1024 , UpperCAmelCase = 768 , UpperCAmelCase = 12 , UpperCAmelCase = 12 , UpperCAmelCase = None , UpperCAmelCase = "gelu_new" , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 1e-5 , UpperCAmelCase = 0.02 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , ) -> Tuple: '''simple docstring''' super().__init__() lowercase_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and' F' `n_embd`: {n_embd} are not equal.' ) lowercase_ = prefix_inner_dim lowercase_ = prefix_hidden_dim lowercase_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = ( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowercase_ = GPTaConfig( vocab_size=UpperCAmelCase , n_positions=UpperCAmelCase , n_embd=UpperCAmelCase , n_layer=UpperCAmelCase , n_head=UpperCAmelCase , n_inner=UpperCAmelCase , activation_function=UpperCAmelCase , resid_pdrop=UpperCAmelCase , embd_pdrop=UpperCAmelCase , attn_pdrop=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , initializer_range=UpperCAmelCase , scale_attn_weights=UpperCAmelCase , use_cache=UpperCAmelCase , scale_attn_by_inverse_layer_idx=UpperCAmelCase , reorder_and_upcast_attn=UpperCAmelCase , ) lowercase_ = GPTaLMHeadModel(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Tuple: '''simple docstring''' lowercase_ = self.transformer.transformer.wte(UpperCAmelCase ) lowercase_ = self.encode_prefix(UpperCAmelCase ) lowercase_ = self.decode_prefix(UpperCAmelCase ) lowercase_ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowercase_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowercase_ = torch.cat((dummy_token, input_ids) , dim=1 ) lowercase_ = self.transformer(inputs_embeds=UpperCAmelCase , labels=UpperCAmelCase , attention_mask=UpperCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return torch.zeros(UpperCAmelCase , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.encode_prefix(UpperCAmelCase ) @torch.no_grad() def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = torch.split(UpperCAmelCase , 1 , dim=0 ) lowercase_ = [] lowercase_ = [] for feature in features: lowercase_ = self.decode_prefix(feature.to(UpperCAmelCase ) ) # back to the clip feature # Only support beam search for now lowercase_ , lowercase_ = self.generate_beam( input_embeds=UpperCAmelCase , device=UpperCAmelCase , eos_token_id=UpperCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowercase_ = torch.stack(UpperCAmelCase ) lowercase_ = torch.stack(UpperCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def A__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = 5 , UpperCAmelCase = 67 , UpperCAmelCase = 1.0 , UpperCAmelCase = None , ) -> List[Any]: '''simple docstring''' lowercase_ = eos_token_id lowercase_ = None lowercase_ = None lowercase_ = torch.ones(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.int ) lowercase_ = torch.zeros(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.bool ) if input_embeds is not None: lowercase_ = input_embeds else: lowercase_ = self.transformer.transformer.wte(UpperCAmelCase ) for i in range(UpperCAmelCase ): lowercase_ = self.transformer(inputs_embeds=UpperCAmelCase ) lowercase_ = outputs.logits lowercase_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowercase_ = logits.softmax(-1 ).log() if scores is None: lowercase_ , lowercase_ = logits.topk(UpperCAmelCase , -1 ) lowercase_ = generated.expand(UpperCAmelCase , *generated.shape[1:] ) lowercase_ , lowercase_ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowercase_ = next_tokens else: lowercase_ = tokens.expand(UpperCAmelCase , *tokens.shape[1:] ) lowercase_ = torch.cat((tokens, next_tokens) , dim=1 ) else: lowercase_ = -float(np.inf ) lowercase_ = 0 lowercase_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowercase_ = scores_sum / seq_lengths[:, None] lowercase_ , lowercase_ = scores_sum_average.view(-1 ).topk(UpperCAmelCase , -1 ) lowercase_ = next_tokens // scores_sum.shape[1] lowercase_ = seq_lengths[next_tokens_source] lowercase_ = next_tokens % scores_sum.shape[1] lowercase_ = next_tokens.unsqueeze(1 ) lowercase_ = tokens[next_tokens_source] lowercase_ = torch.cat((tokens, next_tokens) , dim=1 ) lowercase_ = generated[next_tokens_source] lowercase_ = scores_sum_average * seq_lengths lowercase_ = is_stopped[next_tokens_source] lowercase_ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowercase_ = torch.cat((generated, next_token_embed) , dim=1 ) lowercase_ = is_stopped + next_tokens.eq(UpperCAmelCase ).squeeze() if is_stopped.all(): break lowercase_ = scores / seq_lengths lowercase_ = scores.argsort(descending=UpperCAmelCase ) # tokens tensors are already padded to max_seq_length lowercase_ = [tokens[i] for i in order] lowercase_ = torch.stack(UpperCAmelCase , dim=0 ) lowercase_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: torch.nn.Module , __lowerCamelCase: BnbQuantizationConfig , __lowerCamelCase: Union[str, os.PathLike] = None , __lowerCamelCase: Optional[Dict[str, Union[int, str, torch.device]]] = None , __lowerCamelCase: Optional[List[str]] = None , __lowerCamelCase: Optional[Dict[Union[int, str], Union[int, str]]] = None , __lowerCamelCase: Optional[Union[str, os.PathLike]] = None , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = bnb_quantization_config.load_in_abit lowercase_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) lowercase_ = [] # custom device map if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(device_map.keys() ) > 1: lowercase_ = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase_ = get_keys_to_not_convert(__lowerCamelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCamelCase ) lowercase_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase_ = [] lowercase_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCamelCase ) # compatibility with peft lowercase_ = load_in_abit lowercase_ = load_in_abit lowercase_ = get_parameter_device(__lowerCamelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) lowercase_ = replace_with_bnb_layers(__lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) # convert param to the right dtype lowercase_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase_ = name.replace(".weight" , "" ).replace(".bias" , "" ) lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCamelCase ): param.to(__lowerCamelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): lowercase_ = replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , modules_to_not_convert=__lowerCamelCase ) lowercase_ = get_quantized_model_device_map( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , max_memory=__lowerCamelCase , no_split_module_classes=__lowerCamelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase_ = True lowercase_ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCamelCase , offload_state_dict=__lowerCamelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCamelCase , device_map=__lowerCamelCase , offload_dir=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: str=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowercase_ = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(__lowerCamelCase , __lowerCamelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) lowercase_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase_ = {} lowercase_ = special_dtypes lowercase_ = no_split_module_classes lowercase_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase_ = get_balanced_memory( __lowerCamelCase , low_zero=(device_map == "balanced_low_0") , max_memory=__lowerCamelCase , **__lowerCamelCase , ) lowercase_ = max_memory lowercase_ = infer_auto_device_map(__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): # check if don't have any quantized module on the cpu lowercase_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict=None , __lowerCamelCase: int=None ): '''simple docstring''' if modules_to_not_convert is None: lowercase_ = [] lowercase_ , lowercase_ = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Dict=None , ): '''simple docstring''' lowercase_ = False for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(__lowerCamelCase ) if isinstance(__lowerCamelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase_ = ".".join(__lowerCamelCase ) lowercase_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCamelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) lowercase_ = module.weight.data if module.bias is not None: lowercase_ = module.bias.data bnb_module.requires_grad_(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = True if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_layers( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' with init_empty_weights(): lowercase_ = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase_ = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(__lowerCamelCase , [] ) lowercase_ = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase_ = False if hasattr(__lowerCamelCase , "base_model_prefix" ): lowercase_ = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase_ = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase_ = [".weight", ".bias"] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(__lowerCamelCase , "" ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' for m in model.modules(): if isinstance(__lowerCamelCase , bnb.nn.Linearabit ): return True return False def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: nn.Module ): '''simple docstring''' return next(parameter.parameters() ).device def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , 0 , dtype=__lowerCamelCase , value=__lowerCamelCase ) lowercase_ = param_name lowercase_ = model if "." in tensor_name: lowercase_ = tensor_name.split("." ) for split in splits[:-1]: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) lowercase_ = new_module lowercase_ = splits[-1] # offload weights lowercase_ = False offload_weight(module._parameters[tensor_name] , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __lowerCamelCase , index=__lowerCamelCase , ) else: offload_weight(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , index=__lowerCamelCase ) offload_weight(__lowerCamelCase , param_name.replace("weight" , "SCB" ) , __lowerCamelCase , index=__lowerCamelCase ) set_module_tensor_to_device(__lowerCamelCase , __lowerCamelCase , "meta" , dtype=__lowerCamelCase , value=torch.empty(*param.size() ) )
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = {} lowercase_ = tokenizer(example["content"] , truncation=__lowerCamelCase )["input_ids"] lowercase_ = len(example["content"] ) / len(output["input_ids"] ) return output SCREAMING_SNAKE_CASE__ = HfArgumentParser(PretokenizationArguments) SCREAMING_SNAKE_CASE__ = parser.parse_args() if args.num_workers is None: SCREAMING_SNAKE_CASE__ = multiprocessing.cpu_count() SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = load_dataset(args.dataset_name, split="""train""") print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") SCREAMING_SNAKE_CASE__ = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowercase_ = VideoClassificationPipeline(model=UpperCAmelCase , image_processor=UpperCAmelCase , top_k=2 ) lowercase_ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' for example in examples: lowercase_ = video_classifier(UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ {"score": ANY(UpperCAmelCase ), "label": ANY(UpperCAmelCase )}, {"score": ANY(UpperCAmelCase ), "label": ANY(UpperCAmelCase )}, ] , ) @require_torch def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowercase_ = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) lowercase_ = pipeline( "video-classification" , model=UpperCAmelCase , feature_extractor=UpperCAmelCase , frame_sampling_rate=4 ) lowercase_ = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowercase_ = video_classifier(UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) lowercase_ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def A__ ( self ) -> str: '''simple docstring''' pass
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' lowercase_ = len(UpperCAmelCase ) lowercase_ = [0] * len_array if len_array > 0: lowercase_ = array[0] for i in range(1 , UpperCAmelCase ): lowercase_ = self.prefix_sum[i - 1] + array[i] def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A__ ( self , UpperCAmelCase ) -> bool: '''simple docstring''' lowercase_ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=True , UpperCAmelCase=1 / 255 , UpperCAmelCase=True , ) -> Optional[int]: '''simple docstring''' lowercase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_pad def A__ ( self ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if not batched: lowercase_ = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): lowercase_ , lowercase_ = image.size else: lowercase_ , lowercase_ = image.shape[1], image.shape[2] if w < h: lowercase_ = int(self.size["shortest_edge"] * h / w ) lowercase_ = self.size["shortest_edge"] elif w > h: lowercase_ = self.size["shortest_edge"] lowercase_ = int(self.size["shortest_edge"] * w / h ) else: lowercase_ = self.size["shortest_edge"] lowercase_ = self.size["shortest_edge"] else: lowercase_ = [] for image in image_inputs: lowercase_ , lowercase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] lowercase_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = YolosImageProcessor if is_vision_available() else None def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = YolosImageProcessingTester(self ) @property def A__ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) lowercase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) lowercase_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values lowercase_ , lowercase_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) lowercase_ = self.image_processing_class(do_resize=UpperCAmelCase , do_normalize=UpperCAmelCase , do_rescale=UpperCAmelCase ) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ = image_processing_a.pad(UpperCAmelCase , return_tensors="pt" ) lowercase_ = image_processing_a(UpperCAmelCase , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1e-4 ) ) @slow def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowercase_ = json.loads(f.read() ) lowercase_ = {"image_id": 39769, "annotations": target} # encode them lowercase_ = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) lowercase_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="pt" ) # verify pixel values lowercase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase_ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes lowercase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels lowercase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify orig_size lowercase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size lowercase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) ) @slow def A__ ( self ) -> int: '''simple docstring''' lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowercase_ = json.loads(f.read() ) lowercase_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowercase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowercase_ = YolosImageProcessor(format="coco_panoptic" ) lowercase_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="pt" ) # verify pixel values lowercase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1e-4 ) ) # verify area lowercase_ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes lowercase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1e-3 ) ) # verify image_id lowercase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd lowercase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels lowercase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify masks lowercase_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase ) # verify orig_size lowercase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size lowercase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") SCREAMING_SNAKE_CASE__ = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) SCREAMING_SNAKE_CASE__ = BeautifulSoup(res.text, """html.parser""") SCREAMING_SNAKE_CASE__ = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness SCREAMING_SNAKE_CASE__ = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ SCREAMING_SNAKE_CASE__ = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ SCREAMING_SNAKE_CASE__ = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ SCREAMING_SNAKE_CASE__ = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ SCREAMING_SNAKE_CASE__ = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=[1, 10, 100] , UpperCAmelCase=4 , UpperCAmelCase=3.0 ) -> Any: '''simple docstring''' if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=UpperCAmelCase ) as executor: lowercase_ = [] lowercase_ = Counter() lowercase_ = 0 lowercase_ = defaultdict(UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): for candidate in candidates: lowercase_ = candidate + "\n" + test_case lowercase_ = (test_program, timeout, task_id, completion_id[task_id]) lowercase_ = executor.submit(UpperCAmelCase , *UpperCAmelCase ) futures.append(UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCAmelCase ): lowercase_ = future.result() results[result["task_id"]].append((result["completion_id"], result) ) lowercase_ , lowercase_ = [], [] for result in results.values(): result.sort() lowercase_ = [r[1]["passed"] for r in result] total.append(len(UpperCAmelCase ) ) correct.append(sum(UpperCAmelCase ) ) lowercase_ = np.array(UpperCAmelCase ) lowercase_ = np.array(UpperCAmelCase ) lowercase_ = k lowercase_ = {F'pass@{k}': estimate_pass_at_k(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] ): '''simple docstring''' def estimator(__lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = itertools.repeat(__lowerCamelCase , len(__lowerCamelCase ) ) else: assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase_ = iter(__lowerCamelCase ) return np.array([estimator(int(__lowerCamelCase ) , int(__lowerCamelCase ) , __lowerCamelCase ) for n, c in zip(__lowerCamelCase , __lowerCamelCase )] )
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
import torch def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' if torch.cuda.is_available(): lowercase_ = torch.cuda.device_count() else: lowercase_ = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
from copy import deepcopy class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = None , UpperCAmelCase = None ) -> None: '''simple docstring''' if arr is None and size is not None: lowercase_ = size lowercase_ = [0] * size elif arr is not None: self.init(UpperCAmelCase ) else: raise ValueError("Either arr or size must be specified" ) def A__ ( self , UpperCAmelCase ) -> None: '''simple docstring''' lowercase_ = len(UpperCAmelCase ) lowercase_ = deepcopy(UpperCAmelCase ) for i in range(1 , self.size ): lowercase_ = self.next_(UpperCAmelCase ) if j < self.size: self.tree[j] += self.tree[i] def A__ ( self ) -> list[int]: '''simple docstring''' lowercase_ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowercase_ = self.next_(UpperCAmelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def A__ ( UpperCAmelCase ) -> int: '''simple docstring''' return index + (index & (-index)) @staticmethod def A__ ( UpperCAmelCase ) -> int: '''simple docstring''' return index - (index & (-index)) def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowercase_ = self.next_(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> None: '''simple docstring''' self.add(UpperCAmelCase , value - self.get(UpperCAmelCase ) ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' if right == 0: return 0 lowercase_ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowercase_ = self.prev(UpperCAmelCase ) return result def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' return self.prefix(UpperCAmelCase ) - self.prefix(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self.query(UpperCAmelCase , index + 1 ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 lowercase_ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowercase_ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionXLImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"latents"} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowercase_ = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) lowercase_ = CLIPTextModel(UpperCAmelCase ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=UpperCAmelCase ) lowercase_ = CLIPTextModelWithProjection(UpperCAmelCase ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=UpperCAmelCase ) lowercase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowercase_ = image / 2 + 0.5 if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def A__ ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def A__ ( self ) -> Dict: '''simple docstring''' pass def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) # forward without prompt embeds lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) lowercase_ = 3 * ["this is a negative prompt"] lowercase_ = negative_prompt lowercase_ = 3 * [inputs["prompt"]] lowercase_ = sd_pipe(**UpperCAmelCase ) lowercase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) lowercase_ = 3 * ["this is a negative prompt"] lowercase_ = 3 * [inputs.pop("prompt" )] ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = sd_pipe.encode_prompt(UpperCAmelCase , negative_prompt=UpperCAmelCase ) lowercase_ = sd_pipe( **UpperCAmelCase , prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , pooled_prompt_embeds=UpperCAmelCase , negative_pooled_prompt_embeds=UpperCAmelCase , ) lowercase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self , UpperCAmelCase , UpperCAmelCase="cpu" , UpperCAmelCase=torch.floataa , UpperCAmelCase=0 ) -> str: '''simple docstring''' lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = np.random.RandomState(UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) lowercase_ = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ) lowercase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_inputs(UpperCAmelCase ) lowercase_ = pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowercase_ = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [True] * limit lowercase_ = False lowercase_ = False lowercase_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase_ = i * 2 while index < limit: lowercase_ = False lowercase_ = index + i lowercase_ = [2] for i in range(3 , __lowerCamelCase , 2 ): if is_prime[i]: primes.append(__lowerCamelCase ) return primes def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 100_0000 ): '''simple docstring''' lowercase_ = prime_sieve(__lowerCamelCase ) lowercase_ = 0 lowercase_ = 0 for i in range(len(__lowerCamelCase ) ): for j in range(i + length , len(__lowerCamelCase ) ): lowercase_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase_ = j - i lowercase_ = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=8 ): '''simple docstring''' lowercase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( unet=UpperCAmelCase , scheduler=UpperCAmelCase , movq=UpperCAmelCase , ) lowercase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' if latents is None: lowercase_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase_ = latents.to(UpperCAmelCase ) lowercase_ = latents * scheduler.init_noise_sigma return latents def A__ ( self , UpperCAmelCase=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ = torch.device(F'cuda:{gpu_id}' ) lowercase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase=0 ) -> int: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ = cpu_offload_with_hook(UpperCAmelCase , UpperCAmelCase , prev_module_hook=UpperCAmelCase ) # We'll offload the last model manually. lowercase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ) -> Any: '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase ) def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 512 , UpperCAmelCase = 512 , UpperCAmelCase = 100 , UpperCAmelCase = 4.0 , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , ) -> Any: '''simple docstring''' lowercase_ = self._execution_device lowercase_ = guidance_scale > 1.0 if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase_ = torch.cat(UpperCAmelCase , dim=0 ) lowercase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCAmelCase , UpperCAmelCase ): lowercase_ = torch.cat(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: lowercase_ = image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowercase_ = negative_image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowercase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase ) self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase ) lowercase_ = self.scheduler.timesteps lowercase_ = self.unet.config.in_channels lowercase_ , lowercase_ = downscale_height_and_width(UpperCAmelCase , UpperCAmelCase , self.movq_scale_factor ) # create initial latent lowercase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ = {"image_embeds": image_embeds} lowercase_ = self.unet( sample=UpperCAmelCase , timestep=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , added_cond_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ = noise_pred.chunk(2 ) lowercase_ , lowercase_ = variance_pred.chunk(2 ) lowercase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase , )[0] # post-processing lowercase_ = self.movq.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowercase_ = image * 0.5 + 0.5 lowercase_ = image.clamp(0 , 1 ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) SCREAMING_SNAKE_CASE__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) SCREAMING_SNAKE_CASE__ = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) SCREAMING_SNAKE_CASE__ = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(6_4, 6_4), batch_size=3_2, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(6_4, 6_4) ) SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.img_to_array(test_image) SCREAMING_SNAKE_CASE__ = np.expand_dims(test_image, axis=0) SCREAMING_SNAKE_CASE__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: SCREAMING_SNAKE_CASE__ = """Normal""" if result[0][0] == 1: SCREAMING_SNAKE_CASE__ = """Abnormality detected"""
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str=True , __lowerCamelCase: Union[str, Any]="pt" ): '''simple docstring''' lowercase_ = {"add_prefix_space": True} if isinstance(__lowerCamelCase , __lowerCamelCase ) and not line.startswith(" " ) else {} lowercase_ = padding_side return tokenizer( [line] , max_length=__lowerCamelCase , padding="max_length" if pad_to_max_length else None , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Dict=None , ): '''simple docstring''' lowercase_ = input_ids.ne(__lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase ( snake_case_): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="train" , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="" , ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase_ = Path(UpperCAmelCase ).joinpath(type_path + ".source" ) lowercase_ = Path(UpperCAmelCase ).joinpath(type_path + ".target" ) lowercase_ = self.get_char_lens(self.src_file ) lowercase_ = max_source_length lowercase_ = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' lowercase_ = tokenizer lowercase_ = prefix if n_obs is not None: lowercase_ = self.src_lens[:n_obs] lowercase_ = src_lang lowercase_ = tgt_lang def __len__( self ) -> Dict: '''simple docstring''' return len(self.src_lens ) def __getitem__( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase_ = index + 1 # linecache starts at 1 lowercase_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase ).rstrip("\n" ) lowercase_ = linecache.getline(str(self.tgt_file ) , UpperCAmelCase ).rstrip("\n" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer ) lowercase_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer lowercase_ = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_source_length , "right" ) lowercase_ = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_target_length , "right" ) lowercase_ = source_inputs["input_ids"].squeeze() lowercase_ = target_inputs["input_ids"].squeeze() lowercase_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def A__ ( UpperCAmelCase ) -> List[str]: '''simple docstring''' return [len(UpperCAmelCase ) for x in Path(UpperCAmelCase ).open().readlines()] def A__ ( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase_ = torch.stack([x["input_ids"] for x in batch] ) lowercase_ = torch.stack([x["attention_mask"] for x in batch] ) lowercase_ = torch.stack([x["decoder_input_ids"] for x in batch] ) lowercase_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowercase_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer.pad_token_id ) lowercase_ = trim_batch(UpperCAmelCase , UpperCAmelCase ) lowercase_ , lowercase_ = trim_batch(UpperCAmelCase , UpperCAmelCase , attention_mask=UpperCAmelCase ) lowercase_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch SCREAMING_SNAKE_CASE__ = getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(__lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' lowercase_ = get_git_info() save_json(__lowerCamelCase , os.path.join(__lowerCamelCase , "git_log.json" ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[int]=4 , **__lowerCamelCase: Tuple ): '''simple docstring''' with open(__lowerCamelCase , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' with open(__lowerCamelCase ) as f: return json.load(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = git.Repo(search_parent_directories=__lowerCamelCase ) lowercase_ = { "repo_id": str(__lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Callable , __lowerCamelCase: Iterable ): '''simple docstring''' return list(map(__lowerCamelCase , __lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: int ): '''simple docstring''' with open(__lowerCamelCase , "wb" ) as f: return pickle.dump(__lowerCamelCase , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' def remove_articles(__lowerCamelCase: Dict ): return re.sub(r"\b(a|an|the)\b" , " " , __lowerCamelCase ) def white_space_fix(__lowerCamelCase: Optional[Any] ): return " ".join(text.split() ) def remove_punc(__lowerCamelCase: Optional[Any] ): lowercase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCamelCase: Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = normalize_answer(__lowerCamelCase ).split() lowercase_ = normalize_answer(__lowerCamelCase ).split() lowercase_ = Counter(__lowerCamelCase ) & Counter(__lowerCamelCase ) lowercase_ = sum(common.values() ) if num_same == 0: return 0 lowercase_ = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ = 1.0 * num_same / len(__lowerCamelCase ) lowercase_ = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: List[str] ): '''simple docstring''' assert len(__lowerCamelCase ) == len(__lowerCamelCase ) lowercase_ = 0 for hypo, pred in zip(__lowerCamelCase , __lowerCamelCase ): em += exact_match_score(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: em /= len(__lowerCamelCase ) return {"em": em} def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' return model_prefix.startswith("rag" ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase_ = "dropout_rate" for p in extra_params: if getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if not hasattr(__lowerCamelCase , __lowerCamelCase ) and not hasattr(__lowerCamelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) continue lowercase_ = p if hasattr(__lowerCamelCase , __lowerCamelCase ) else equivalent_param[p] setattr(__lowerCamelCase , __lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) delattr(__lowerCamelCase , __lowerCamelCase ) return hparams, config
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase_ = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , __lowerCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' assert _test_patching.open is open lowercase_ = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , __lowerCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , __lowerCamelCase ): pass def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , __lowerCamelCase ) is None with patch_submodule(_test_patching , "len" , __lowerCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = "__test_patch_submodule_start_and_stop_mock__" lowercase_ = patch_submodule(_test_patching , "open" , __lowerCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase_ = "__test_patch_submodule_successive_join__" lowercase_ = "__test_patch_submodule_successive_dirname__" lowercase_ = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , __lowerCamelCase ): with patch_submodule(_test_patching , "os.rename" , __lowerCamelCase ): with patch_submodule(_test_patching , "os.path.dirname" , __lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , __lowerCamelCase ): with patch_submodule(_test_patching , "os.path.join" , __lowerCamelCase ): with patch_submodule(_test_patching , "os.path.dirname" , __lowerCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , __lowerCamelCase ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , __lowerCamelCase ): pass
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = tempfile.mkdtemp() # fmt: off lowercase_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowercase_ = { "do_resize": True, "size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } lowercase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , **UpperCAmelCase ) -> str: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.get_tokenizer() lowercase_ = self.get_image_processor() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowercase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase_ = self.prepare_image_inputs() lowercase_ = image_processor(UpperCAmelCase , return_tensors="np" ) lowercase_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase_ = "lower newer" lowercase_ = processor(text=UpperCAmelCase ) lowercase_ = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase_ = "lower newer" lowercase_ = self.prepare_image_inputs() lowercase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(UpperCAmelCase ): processor() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ = processor.batch_decode(UpperCAmelCase ) lowercase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = VisionTextDualEncoderProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowercase_ = "lower newer" lowercase_ = self.prepare_image_inputs() lowercase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel SCREAMING_SNAKE_CASE__ = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_8_0_0_0, """sample_size""": 6_5_5_3_6, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_8_0_0_0, """sample_size""": 6_5_5_3_6, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_8_0_0_0, """sample_size""": 1_3_1_0_7_2, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_6_0_0_0, """sample_size""": 6_5_5_3_6, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_6_0_0_0, """sample_size""": 6_5_5_3_6, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_6_0_0_0, """sample_size""": 6_5_5_3_6, }, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return torch.atana(__lowerCamelCase , __lowerCamelCase ) / math.pi * 2 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = torch.sin(t * math.pi / 2 ) ** 2 lowercase_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__lowerCamelCase , __lowerCamelCase ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" pass class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> str: '''simple docstring''' super().__init__() lowercase_ = DiffusionAttnUnetaD(UpperCAmelCase , n_attn_layers=4 ) lowercase_ = deepcopy(self.diffusion ) lowercase_ = torch.quasirandom.SobolEngine(1 , scramble=UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = MODELS_MAP[model_name]["url"] os.system(F'wget {url} ./' ) return F'./{model_name}.ckpt' SCREAMING_SNAKE_CASE__ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } SCREAMING_SNAKE_CASE__ = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } SCREAMING_SNAKE_CASE__ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } SCREAMING_SNAKE_CASE__ = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } SCREAMING_SNAKE_CASE__ = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } SCREAMING_SNAKE_CASE__ = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'ResConvBlock error with {name}' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(__lowerCamelCase ) and not isinstance(__lowerCamelCase , __lowerCamelCase ): return name.replace(__lowerCamelCase , __lowerCamelCase ) elif name.startswith(__lowerCamelCase ): return [name.replace(__lowerCamelCase , __lowerCamelCase ) for v in value] raise ValueError(F'Attn error with {name}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Tuple=13 ): '''simple docstring''' lowercase_ = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) lowercase_ = 0 if string.startswith("net.3." ): depth += 1 lowercase_ = string[6:] elif string.startswith("net." ): lowercase_ = string[4:] while string.startswith("main.7." ): depth += 1 lowercase_ = string[7:] if string.startswith("main." ): lowercase_ = string[5:] # mid block if string[:2].isdigit(): lowercase_ = string[:2] lowercase_ = string[2:] else: lowercase_ = string[0] lowercase_ = string[1:] if depth == max_depth: lowercase_ = MID_NUM_TO_LAYER[layer_num] lowercase_ = "mid_block" elif depth > 0 and int(__lowerCamelCase ) < 7: lowercase_ = DOWN_NUM_TO_LAYER[layer_num] lowercase_ = F'down_blocks.{depth}' elif depth > 0 and int(__lowerCamelCase ) > 7: lowercase_ = UP_NUM_TO_LAYER[layer_num] lowercase_ = F'up_blocks.{max_depth - depth - 1}' elif depth == 0: lowercase_ = DEPTH_0_TO_LAYER[layer_num] lowercase_ = F'up_blocks.{max_depth - 1}' if int(__lowerCamelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'Naming error with {input_string} and string_left: {string_left}.' ) lowercase_ = string_left[1:] if "resnets" in new_layer: lowercase_ = convert_resconv_naming(__lowerCamelCase ) elif "attentions" in new_layer: lowercase_ = convert_attn_naming(__lowerCamelCase ) lowercase_ = new_string_left if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = prefix + "." + new_layer + "." + string_left else: lowercase_ = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' lowercase_ = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue lowercase_ = rename(__lowerCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = transform_conv_attns(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowercase_ = v return new_state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] ): '''simple docstring''' if len(__lowerCamelCase ) == 1: if len(v.shape ) == 3: # weight lowercase_ = v[:, :, 0] else: # bias lowercase_ = v else: # qkv matrices lowercase_ = v.shape[0] lowercase_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowercase_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowercase_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowercase_ = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'Make sure to provide one of the official model names {MODELS_MAP.keys()}' lowercase_ = download(__lowerCamelCase ) lowercase_ = MODELS_MAP[model_name]["sample_rate"] lowercase_ = MODELS_MAP[model_name]["sample_size"] lowercase_ = Object() lowercase_ = sample_size lowercase_ = sample_rate lowercase_ = 0 lowercase_ = UNetaDModel(sample_size=__lowerCamelCase , sample_rate=__lowerCamelCase ) lowercase_ = diffusers_model.state_dict() lowercase_ = DiffusionUncond(__lowerCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__lowerCamelCase )["state_dict"] ) lowercase_ = orig_model.diffusion_ema.eval() lowercase_ = orig_model.state_dict() lowercase_ = rename_orig_weights(__lowerCamelCase ) lowercase_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowercase_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__lowerCamelCase ) == 0, F'Problem with {renamed_minus_diffusers}' assert all(k.endswith("kernel" ) for k in list(__lowerCamelCase ) ), F'Problem with {diffusers_minus_renamed}' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}' if key == "time_proj.weight": lowercase_ = value.squeeze() lowercase_ = value diffusers_model.load_state_dict(__lowerCamelCase ) lowercase_ = 100 lowercase_ = 33 lowercase_ = IPNDMScheduler(num_train_timesteps=__lowerCamelCase ) lowercase_ = torch.manual_seed(__lowerCamelCase ) lowercase_ = torch.randn([1, 2, config.sample_size] , generator=__lowerCamelCase ).to(__lowerCamelCase ) lowercase_ = torch.linspace(1 , 0 , steps + 1 , device=__lowerCamelCase )[:-1] lowercase_ = get_crash_schedule(__lowerCamelCase ) lowercase_ = DanceDiffusionPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) lowercase_ = torch.manual_seed(33 ) lowercase_ = pipe(num_inference_steps=__lowerCamelCase , generator=__lowerCamelCase ).audios lowercase_ = sampling.iplms_sample(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {} ) lowercase_ = generated.clamp(-1 , 1 ) lowercase_ = (generated - audio).abs().sum() lowercase_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , __lowerCamelCase ) print("Diff max" , __lowerCamelCase ) assert diff_max < 1E-3, F'Diff max: {diff_max} is too much :-/' print(F'Conversion for {model_name} successful!' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
SCREAMING_SNAKE_CASE__ = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE__ = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: list[int] , __lowerCamelCase: int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase_ = 0 for digit in range(10 ): lowercase_ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __lowerCamelCase , __lowerCamelCase ) return result lowercase_ = 0 for digita in range(10 ): lowercase_ = digita if (remainder + digita) % 2 == 0: lowercase_ = ODD_DIGITS else: lowercase_ = EVEN_DIGITS for digita in other_parity_digits: lowercase_ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __lowerCamelCase , __lowerCamelCase , ) return result def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 9 ): '''simple docstring''' lowercase_ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
SCREAMING_SNAKE_CASE__ = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) set_seed(7_7_0) SCREAMING_SNAKE_CASE__ = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } SCREAMING_SNAKE_CASE__ = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } SCREAMING_SNAKE_CASE__ = os.path.dirname(os.path.abspath(__file__)) SCREAMING_SNAKE_CASE__ = os.path.join(os.path.expanduser("""~"""), """.cache""") SCREAMING_SNAKE_CASE__ = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Tuple=False ): '''simple docstring''' lowercase_ = model_type if use_small: key += "_small" return os.path.join(__lowerCamelCase , REMOTE_MODEL_PATHS[key]["file_name"] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] ): '''simple docstring''' os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) hf_hub_download(repo_id=__lowerCamelCase , filename=__lowerCamelCase , local_dir=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Optional[Any]="text" ): '''simple docstring''' if model_type == "text": lowercase_ = BarkSemanticModel lowercase_ = BarkSemanticConfig lowercase_ = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase_ = BarkCoarseModel lowercase_ = BarkCoarseConfig lowercase_ = BarkCoarseGenerationConfig elif model_type == "fine": lowercase_ = BarkFineModel lowercase_ = BarkFineConfig lowercase_ = BarkFineGenerationConfig else: raise NotImplementedError() lowercase_ = F'{model_type}_small' if use_small else model_type lowercase_ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(__lowerCamelCase ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info["repo_id"] , model_info["file_name"] ) lowercase_ = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) # this is a hack lowercase_ = checkpoint["model_args"] if "input_vocab_size" not in model_args: lowercase_ = model_args["vocab_size"] lowercase_ = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase_ = model_args.pop("n_head" ) lowercase_ = model_args.pop("n_embd" ) lowercase_ = model_args.pop("n_layer" ) lowercase_ = ConfigClass(**checkpoint["model_args"] ) lowercase_ = ModelClass(config=__lowerCamelCase ) lowercase_ = GenerationConfigClass() lowercase_ = model_generation_config lowercase_ = checkpoint["model"] # fixup checkpoint lowercase_ = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(__lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation lowercase_ = k[len(__lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: lowercase_ = new_k.replace(__lowerCamelCase , new_layer_name_dict[old_layer_name] ) lowercase_ = state_dict.pop(__lowerCamelCase ) lowercase_ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase_ = {k for k in extra_keys if not k.endswith(".attn.bias" )} lowercase_ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase_ = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(__lowerCamelCase ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(__lowerCamelCase ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) lowercase_ = model.num_parameters(exclude_embeddings=__lowerCamelCase ) lowercase_ = checkpoint["best_val_loss"].item() logger.info(F'model loaded: {round(n_params/1E6 , 1 )}M params, {round(__lowerCamelCase , 3 )} loss' ) model.eval() model.to(__lowerCamelCase ) del checkpoint, state_dict return model def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Any="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase_ = "cpu" # do conversion on cpu lowercase_ = _get_ckpt_path(__lowerCamelCase , use_small=__lowerCamelCase ) lowercase_ = _load_model(__lowerCamelCase , __lowerCamelCase , model_type=__lowerCamelCase , use_small=__lowerCamelCase ) # load bark initial model lowercase_ = _bark_load_model(__lowerCamelCase , "cpu" , model_type=__lowerCamelCase , use_small=__lowerCamelCase ) if model_type == "text": lowercase_ = bark_model["model"] if model.num_parameters(exclude_embeddings=__lowerCamelCase ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model lowercase_ = 5 lowercase_ = 10 if model_type in ["text", "coarse"]: lowercase_ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowercase_ = bark_model(__lowerCamelCase )[0] lowercase_ = model(__lowerCamelCase ) # take last logits lowercase_ = output_new_model_total.logits[:, [-1], :] else: lowercase_ = 3 lowercase_ = 8 lowercase_ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase_ = model(__lowerCamelCase , __lowerCamelCase ) lowercase_ = bark_model(__lowerCamelCase , __lowerCamelCase ) lowercase_ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , ): '''simple docstring''' lowercase_ = os.path.join(__lowerCamelCase , __lowerCamelCase ) lowercase_ = BarkSemanticConfig.from_pretrained(os.path.join(__lowerCamelCase , "config.json" ) ) lowercase_ = BarkCoarseConfig.from_pretrained(os.path.join(__lowerCamelCase , "config.json" ) ) lowercase_ = BarkFineConfig.from_pretrained(os.path.join(__lowerCamelCase , "config.json" ) ) lowercase_ = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) lowercase_ = BarkSemanticModel.from_pretrained(__lowerCamelCase ) lowercase_ = BarkCoarseModel.from_pretrained(__lowerCamelCase ) lowercase_ = BarkFineModel.from_pretrained(__lowerCamelCase ) lowercase_ = EncodecModel.from_pretrained("facebook/encodec_24khz" ) lowercase_ = BarkConfig.from_sub_model_configs( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase_ = BarkModel(__lowerCamelCase ) lowercase_ = semantic lowercase_ = coarseAcoustic lowercase_ = fineAcoustic lowercase_ = codec lowercase_ = bark_generation_config Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) bark.save_pretrained(__lowerCamelCase , repo_id=__lowerCamelCase , push_to_hub=__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = b.T lowercase_ = np.sum(np.square(__lowerCamelCase ) , axis=1 ) lowercase_ = np.sum(np.square(__lowerCamelCase ) , axis=0 ) lowercase_ = np.matmul(__lowerCamelCase , __lowerCamelCase ) lowercase_ = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = x.reshape(-1 , 3 ) lowercase_ = squared_euclidean_distance(__lowerCamelCase , __lowerCamelCase ) return np.argmin(__lowerCamelCase , axis=1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = ["pixel_values"] def __init__( self , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = True , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = size if size is not None else {"height": 256, "width": 256} lowercase_ = get_size_dict(UpperCAmelCase ) lowercase_ = np.array(UpperCAmelCase ) if clusters is not None else None lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = do_normalize lowercase_ = do_color_quantize def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase_ = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCAmelCase , size=(size["height"], size["width"]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , ) -> np.ndarray: '''simple docstring''' lowercase_ = rescale(image=UpperCAmelCase , scale=1 / 127.5 , data_format=UpperCAmelCase ) lowercase_ = image - 1 return image def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCAmelCase ) lowercase_ = resample if resample is not None else self.resample lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase_ = clusters if clusters is not None else self.clusters lowercase_ = np.array(UpperCAmelCase ) lowercase_ = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowercase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=UpperCAmelCase ) for image in images] if do_color_quantize: lowercase_ = [to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase_ = np.array(UpperCAmelCase ) lowercase_ = color_quantize(UpperCAmelCase , UpperCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase_ = images.shape[0] lowercase_ = images.reshape(UpperCAmelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase_ = list(UpperCAmelCase ) else: lowercase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase_ = {"input_ids": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowercase_ = b * b - 4 * a * c lowercase_ = (-b + sqrt(__lowerCamelCase )) / (2 * a) lowercase_ = (-b - sqrt(__lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ , lowercase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "Salesforce/blip-image-captioning-base" lowerCAmelCase__ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) lowerCAmelCase__ = "image_captioner" lowerCAmelCase__ = AutoModelForVisionaSeq lowerCAmelCase__ = ["image"] lowerCAmelCase__ = ["text"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.pre_processor(images=UpperCAmelCase , return_tensors="pt" ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.model.generate(**UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' return self.pre_processor.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )[0].strip()
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = """▁""" SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = BertGenerationTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def A__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() lowercase_ = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = "<s>" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A__ ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowercase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowercase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def A__ ( self ) -> Tuple: '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "Hello World!" lowercase_ = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowercase_ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowercase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase_ = " ".join(UpperCAmelCase ) lowercase_ = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors="pt" , return_token_type_ids=UpperCAmelCase ) lowercase_ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCAmelCase ) lowercase_ = BertGenerationConfig() lowercase_ = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"input_ids": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __lowerCamelCase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' lowercase_ = "" lowercase_ = "" lowercase_ = [] lowercase_ = 0 lowercase_ = 256 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = cva.imread(UpperCAmelCase , 0 ) lowercase_ = copy.deepcopy(self.img ) lowercase_ , lowercase_ , lowercase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) lowercase_ = np.sum(UpperCAmelCase ) for i in range(len(UpperCAmelCase ) ): lowercase_ = x[i] / self.k self.sk += prk lowercase_ = (self.L - 1) * self.sk if self.rem != 0: lowercase_ = int(last % last ) lowercase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(UpperCAmelCase ) lowercase_ = int(np.ma.count(self.img ) / self.img[1].size ) lowercase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowercase_ = self.img[j][i] if num != self.last_list[num]: lowercase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def A__ ( self ) -> Optional[int]: '''simple docstring''' plt.hist(self.img.ravel() , 256 , [0, 256] ) def A__ ( self ) -> str: '''simple docstring''' cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") SCREAMING_SNAKE_CASE__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_tool("text-to-speech" ) self.tool.setup() def A__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = self.tool("hey" ) lowercase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = self.tool("hey" ) lowercase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCAmelCase__ = Features({"audio": Audio()} ) lowerCAmelCase__ = Features({"labels": ClassLabel} ) lowerCAmelCase__ = "audio" lowerCAmelCase__ = "labels" def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , UpperCAmelCase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) lowercase_ = copy.deepcopy(self ) lowercase_ = self.label_schema.copy() lowercase_ = features[self.label_column] lowercase_ = label_schema return task_template @property def A__ ( self ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
from timeit import timeit SCREAMING_SNAKE_CASE__ = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: str ): '''simple docstring''' lowercase_ = 0 lowercase_ = len(__lowerCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: str ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) // 2 lowercase_ = len(__lowerCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(__lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: str ): '''simple docstring''' if len(__lowerCamelCase ) <= 2: return True if s[0] == s[len(__lowerCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: str ): '''simple docstring''' return s == s[::-1] def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: str ): '''simple docstring''' lowercase_ = F'all({name}(key) is value for key, value in test_data.items())' lowercase_ = F'from __main__ import test_data, {name}' lowercase_ = 50_0000 lowercase_ = timeit(stmt=__lowerCamelCase , setup=__lowerCamelCase , number=__lowerCamelCase ) print(F'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"""{key:21} {value}""") print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """openbmb/cpm-ant-10b""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: lowercase_ = reader.readlines() for index, token in enumerate(__lowerCamelCase ): lowercase_ = token.rstrip("\n" ) lowercase_ = index return vocab class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase=200 ) -> int: '''simple docstring''' lowercase_ = vocab lowercase_ = unk_token lowercase_ = max_input_chars_per_word def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = list(UpperCAmelCase ) if len(UpperCAmelCase ) > self.max_input_chars_per_word: return [self.unk_token] lowercase_ = 0 lowercase_ = [] while start < len(UpperCAmelCase ): lowercase_ = len(UpperCAmelCase ) lowercase_ = None while start < end: lowercase_ = "".join(chars[start:end] ) if substr in self.vocab: lowercase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCAmelCase ) lowercase_ = end return sub_tokens class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = False def __init__( self , UpperCAmelCase , UpperCAmelCase="<d>" , UpperCAmelCase="</d>" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<unk>" , UpperCAmelCase="</n>" , UpperCAmelCase="</_>" , UpperCAmelCase="left" , **UpperCAmelCase , ) -> str: '''simple docstring''' requires_backends(self , ["jieba"] ) super().__init__( bod_token=UpperCAmelCase , eod_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , unk_token=UpperCAmelCase , line_token=UpperCAmelCase , space_token=UpperCAmelCase , padding_side=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = bod_token lowercase_ = eod_token lowercase_ = load_vocab(UpperCAmelCase ) lowercase_ = self.encoder[space_token] lowercase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase : x[1] ) ) lowercase_ = {v: k for k, v in self.encoder.items()} lowercase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.encoder[self.bod_token] @property def A__ ( self ) -> str: '''simple docstring''' return self.encoder[self.eod_token] @property def A__ ( self ) -> Tuple: '''simple docstring''' return self.encoder["\n"] @property def A__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) def A__ ( self ) -> List[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = [] for x in jieba.cut(UpperCAmelCase , cut_all=UpperCAmelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCAmelCase ) ) return output_tokens def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = [i for i in token_ids if i >= 0] lowercase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return token in self.encoder def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return "".join(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if os.path.isdir(UpperCAmelCase ): lowercase_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowercase_ = (filename_prefix + "-" if filename_prefix else "") + save_directory lowercase_ = 0 if " " in self.encoder: lowercase_ = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowercase_ = self.encoder["\n"] del self.encoder["\n"] lowercase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase : x[1] ) ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) lowercase_ = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) return [1] + ([0] * len(UpperCAmelCase ))
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
import argparse SCREAMING_SNAKE_CASE__ = """docs/source/_static/js/custom.js""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' with open(__lowerCamelCase , encoding="utf-8" , newline="\n" ) as f: lowercase_ = f.readlines() lowercase_ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 lowercase_ = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(__lowerCamelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() update_custom_js(args.version)
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0