code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( lowercase__ ): """simple docstring""" lowerCAmelCase__ = 'vit_msn' def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-06 , UpperCAmelCase=224 , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=True , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = qkv_bias
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( __A ): """simple docstring""" def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: '''simple docstring''' warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' def is_in_circle(__lowerCamelCase: float , __lowerCamelCase: float ) -> bool: lowercase_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCamelCase ) ) # The ratio of the area for circle to square is pi/4. lowercase_ = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Callable[[float], float] , __lowerCamelCase: float = 0.0 , __lowerCamelCase: float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCamelCase , __lowerCamelCase ) ) for _ in range(__lowerCamelCase ) ) * (max_value - min_value) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: float = 0.0 , __lowerCamelCase: float = 1.0 ): '''simple docstring''' def identity_function(__lowerCamelCase: float ) -> float: return x lowercase_ = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase_ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' def function_to_integrate(__lowerCamelCase: float ) -> float: return sqrt(4.0 - x * x ) lowercase_ = area_under_curve_estimator( __lowerCamelCase , __lowerCamelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1000 ): '''simple docstring''' return sum(e for e in range(3 , lowerCAmelCase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f"""{solution() = }""")
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } SCREAMING_SNAKE_CASE__ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 4 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = "left" def __init__( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<sep>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<eop>", "<eod>"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase , remove_space=UpperCAmelCase , keep_accents=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) lowercase_ = 3 lowercase_ = do_lower_case lowercase_ = remove_space lowercase_ = keep_accents lowercase_ = vocab_file lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) @property def A__ ( self ) -> Optional[int]: '''simple docstring''' return len(self.sp_model ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: '''simple docstring''' lowercase_ = self.__dict__.copy() lowercase_ = None return state def __setstate__( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ = {} lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if self.remove_space: lowercase_ = ' '.join(inputs.strip().split() ) else: lowercase_ = inputs lowercase_ = outputs.replace("``" , "\"" ).replace("\'\'" , "\"" ) if not self.keep_accents: lowercase_ = unicodedata.normalize("NFKD" , UpperCAmelCase ) lowercase_ = ''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase )] ) if self.do_lower_case: lowercase_ = outputs.lower() return outputs def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = self.preprocess_text(UpperCAmelCase ) lowercase_ = self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) lowercase_ = [] for piece in pieces: if len(UpperCAmelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowercase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase_ = cur_pieces[1:] else: lowercase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase ) else: new_pieces.append(UpperCAmelCase ) return new_pieces def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = ''.join(UpperCAmelCase ).replace(UpperCAmelCase , " " ).strip() return out_string def A__ ( self , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = True , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' lowercase_ = kwargs.pop("use_source_tokenizer" , UpperCAmelCase ) lowercase_ = self.convert_ids_to_tokens(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowercase_ = [] lowercase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) ) lowercase_ = [] sub_texts.append(UpperCAmelCase ) else: current_sub_text.append(UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowercase_ = ''.join(UpperCAmelCase ) lowercase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowercase_ = self.clean_up_tokenization(UpperCAmelCase ) return clean_text else: return text def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> Any: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase )) + [1] + ([0] * len(UpperCAmelCase )) + [1, 1] return ([0] * len(UpperCAmelCase )) + [1, 1] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Dict: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , "wb" ) as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = XCLIPTextConfig() # derive patch size from model name lowercase_ = model_name.find("patch" ) lowercase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) lowercase_ = XCLIPVisionConfig(patch_size=_lowerCamelCase , num_frames=_lowerCamelCase ) if "large" in model_name: lowercase_ = 768 lowercase_ = 3072 lowercase_ = 12 lowercase_ = 1024 lowercase_ = 4096 lowercase_ = 16 lowercase_ = 24 lowercase_ = 768 lowercase_ = 3072 if model_name == "xclip-large-patch14-16-frames": lowercase_ = 336 lowercase_ = XCLIPConfig.from_text_vision_configs(_lowerCamelCase , _lowerCamelCase ) if "large" in model_name: lowercase_ = 768 return config def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' if name == "token_embedding.weight": lowercase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": lowercase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: lowercase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowercase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowercase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowercase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): lowercase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: lowercase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: lowercase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": lowercase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": lowercase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): lowercase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: lowercase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: lowercase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: lowercase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: lowercase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: lowercase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: lowercase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: lowercase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": lowercase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): lowercase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): lowercase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Dict ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(_lowerCamelCase ) if "attn.in_proj" in key: lowercase_ = key.split("." ) if key.startswith("visual" ): lowercase_ = key_split[3] lowercase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowercase_ = val[ :dim, : ] lowercase_ = val[ dim : dim * 2, : ] lowercase_ = val[ -dim:, : ] else: lowercase_ = val[ :dim ] lowercase_ = val[ dim : dim * 2 ] lowercase_ = val[ -dim: ] else: if "weight" in key: lowercase_ = val[ :dim, : ] lowercase_ = val[ dim : dim * 2, : ] lowercase_ = val[ -dim:, : ] else: lowercase_ = val[:dim] lowercase_ = val[ dim : dim * 2 ] lowercase_ = val[-dim:] elif key.startswith("mit" ): lowercase_ = key_split[2] lowercase_ = config.vision_config.mit_hidden_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = key_split[2] lowercase_ = config.text_config.hidden_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[ dim : dim * 2, : ] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[ dim : dim * 2 ] lowercase_ = val[-dim:] else: lowercase_ = rename_key(_lowerCamelCase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowercase_ = val.T lowercase_ = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' if num_frames == 8: lowercase_ = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: lowercase_ = """eating_spaghetti.npy""" elif num_frames == 32: lowercase_ = """eating_spaghetti_32_frames.npy""" lowercase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=_lowerCamelCase , repo_type="dataset" , ) lowercase_ = np.load(_lowerCamelCase ) return list(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int=None , __lowerCamelCase: List[Any]=False ): '''simple docstring''' lowercase_ = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } lowercase_ = model_to_url[model_name] lowercase_ = 8 if "16-frames" in model_name: lowercase_ = 16 elif "shot" in model_name: lowercase_ = 32 lowercase_ = get_xclip_config(_lowerCamelCase , _lowerCamelCase ) lowercase_ = XCLIPModel(_lowerCamelCase ) model.eval() if "drive" in checkpoint_url: lowercase_ = """pytorch_model.bin""" gdown.cached_download(_lowerCamelCase , _lowerCamelCase , quiet=_lowerCamelCase ) lowercase_ = torch.load(_lowerCamelCase , map_location="cpu" )["""model"""] else: lowercase_ = torch.hub.load_state_dict_from_url(_lowerCamelCase )["""model"""] lowercase_ = convert_state_dict(_lowerCamelCase , _lowerCamelCase ) lowercase_ = XCLIPModel(_lowerCamelCase ) lowercase_ = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowercase_ = 336 if model_name == """xclip-large-patch14-16-frames""" else 224 lowercase_ = VideoMAEImageProcessor(size=_lowerCamelCase ) lowercase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) lowercase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) lowercase_ = XCLIPProcessor(image_processor=_lowerCamelCase , tokenizer=_lowerCamelCase ) lowercase_ = prepare_video(_lowerCamelCase ) lowercase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=_lowerCamelCase , return_tensors="pt" , padding=_lowerCamelCase ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): lowercase_ = model(**_lowerCamelCase ) # Verify outputs lowercase_ = outputs.logits_per_video lowercase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , _lowerCamelCase ) # kinetics-400 if model_name == "xclip-base-patch32": lowercase_ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowercase_ = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] ) elif model_name == "xclip-base-patch16": lowercase_ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowercase_ = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] ) elif model_name == "xclip-large-patch14": lowercase_ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowercase_ = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowercase_ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowercase_ = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowercase_ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowercase_ = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowercase_ = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowercase_ = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowercase_ = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowercase_ = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowercase_ = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowercase_ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowercase_ = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowercase_ = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] ) else: raise ValueError(F'Model name {model_name} not supported' ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCamelCase ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(_lowerCamelCase , organization="nielsr" ) processor.push_to_hub(_lowerCamelCase , organization="nielsr" ) slow_tokenizer.push_to_hub(_lowerCamelCase , organization="nielsr" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor SCREAMING_SNAKE_CASE__ = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' if isinstance(a_ , torch.Tensor ): return image elif isinstance(a_ , PIL.Image.Image ): lowercase_ = [image] lowercase_ = [trans(img.convert("RGB" ) ) for img in image] lowercase_ = torch.stack(a_ ) return image class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM lowercase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = min(int(num_inference_steps * strength ) , lowercase_ ) lowercase_ = max(num_inference_steps - init_timestep , 0 ) lowercase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if not isinstance(lowercase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase_ )}' ) lowercase_ = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowercase_ = init_latents.shape lowercase_ = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents print("add noise to latents at timestep" , lowercase_ ) lowercase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowercase_ = init_latents return latents @torch.no_grad() def __call__( self , UpperCAmelCase = None , UpperCAmelCase = 0.8 , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = 0.0 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(lowercase_ ) # 2. Preprocess image lowercase_ = preprocess(lowercase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowercase_ , device=self.device ) lowercase_ , lowercase_ = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowercase_ = timesteps[:1].repeat(lowercase_ ) # 4. Prepare latent variables lowercase_ = self.prepare_latents(lowercase_ , lowercase_ , lowercase_ , self.unet.dtype , self.device , lowercase_ ) lowercase_ = latents # 5. Denoising loop for t in self.progress_bar(lowercase_ ): # 1. predict noise model_output lowercase_ = self.unet(lowercase_ , lowercase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase_ = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , eta=lowercase_ , use_clipped_model_output=lowercase_ , generator=lowercase_ , ).prev_sample lowercase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowercase_ )
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __lowerCamelCase ( __lowercase ): """simple docstring""" lowerCAmelCase__ = "sew-d" def __init__( self , UpperCAmelCase=32 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase=2 , UpperCAmelCase=512 , UpperCAmelCase=256 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=("p2c", "c2p") , UpperCAmelCase="layer_norm" , UpperCAmelCase="gelu_python" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=1e-5 , UpperCAmelCase="group" , UpperCAmelCase="gelu" , UpperCAmelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCAmelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase=False , UpperCAmelCase=128 , UpperCAmelCase=16 , UpperCAmelCase=True , UpperCAmelCase=0.05 , UpperCAmelCase=10 , UpperCAmelCase=2 , UpperCAmelCase=0.0 , UpperCAmelCase=10 , UpperCAmelCase=0 , UpperCAmelCase="mean" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=256 , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> int: '''simple docstring''' super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowercase_ = hidden_size lowercase_ = feat_extract_norm lowercase_ = feat_extract_activation lowercase_ = list(_a ) lowercase_ = list(_a ) lowercase_ = list(_a ) lowercase_ = conv_bias lowercase_ = num_conv_pos_embeddings lowercase_ = num_conv_pos_embedding_groups lowercase_ = len(self.conv_dim ) lowercase_ = num_hidden_layers lowercase_ = intermediate_size lowercase_ = squeeze_factor lowercase_ = max_position_embeddings lowercase_ = position_buckets lowercase_ = share_att_key lowercase_ = relative_attention lowercase_ = norm_rel_ebd lowercase_ = list(_a ) lowercase_ = hidden_act lowercase_ = num_attention_heads lowercase_ = hidden_dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = feat_proj_dropout lowercase_ = final_dropout lowercase_ = layer_norm_eps lowercase_ = feature_layer_norm_eps lowercase_ = initializer_range lowercase_ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ = apply_spec_augment lowercase_ = mask_time_prob lowercase_ = mask_time_length lowercase_ = mask_time_min_masks lowercase_ = mask_feature_prob lowercase_ = mask_feature_length lowercase_ = mask_feature_min_masks # ctc loss lowercase_ = ctc_loss_reduction lowercase_ = ctc_zero_infinity # sequence classification lowercase_ = use_weighted_layer_sum lowercase_ = classifier_proj_size @property def A__ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ = ["note_seq"] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' requires_backends(self , ["note_seq"] ) @classmethod def A__ ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["note_seq"] ) @classmethod def A__ ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["note_seq"] )
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> str: '''simple docstring''' lowercase_ = logging.get_logger() # the current default level is logging.WARNING lowercase_ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = logging.get_verbosity() lowercase_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase_ = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def A__ ( self ) -> Any: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase_ = os.getenv("TRANSFORMERS_VERBOSITY" , lowerCAmelCase__ ) lowercase_ = logging.log_levels[env_level_str] lowercase_ = logging.get_verbosity() self.assertEqual( lowerCAmelCase__ , lowerCAmelCase__ , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level lowercase_ = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() lowercase_ = logging.logging.getLogger() with CaptureLogger(lowerCAmelCase__ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def A__ ( self ) -> Optional[int]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() lowercase_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase_ = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + "\n" ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
import random def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' lowercase_ = num - 1 lowercase_ = 0 while s % 2 == 0: lowercase_ = s // 2 t += 1 for _ in range(5 ): lowercase_ = random.randrange(2 , num - 1 ) lowercase_ = pow(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if v != 1: lowercase_ = 0 while v != (num - 1): if i == t - 1: return False else: lowercase_ = i + 1 lowercase_ = (v**2) % num return True def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if num < 2: return False lowercase_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_UpperCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1024 ): '''simple docstring''' while True: lowercase_ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_UpperCamelCase ): return num if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } SCREAMING_SNAKE_CASE__ = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class __lowerCamelCase ( a__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRContextEncoderTokenizer class __lowerCamelCase ( a__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRQuestionEncoderTokenizer SCREAMING_SNAKE_CASE__ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) SCREAMING_SNAKE_CASE__ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) SCREAMING_SNAKE_CASE__ = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a__ ) class __lowerCamelCase : """simple docstring""" def __call__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: lowercase_ = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) lowercase_ = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] lowercase_ = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] lowercase_ = len(_lowerCamelCase ) lowercase_ = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages assert len(_lowerCamelCase ) == len( _lowerCamelCase ), F'There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.' lowercase_ = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] lowercase_ = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] lowercase_ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: lowercase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase_ = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 16 , UpperCAmelCase = 64 , UpperCAmelCase = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase_ = reader_input['''input_ids'''] lowercase_ = reader_output[:3] lowercase_ = len(_lowerCamelCase ) lowercase_ = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) lowercase_ = [] for doc_id in sorted_docs: lowercase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase_ = sequence_ids.index(self.pad_token_id ) else: lowercase_ = len(_lowerCamelCase ) lowercase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase_ = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase_ = sorted(_lowerCamelCase , key=lambda UpperCAmelCase : x[1] , reverse=_lowerCamelCase ) lowercase_ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' lowercase_ = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class __lowerCamelCase ( a__ , a__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = DPRReaderTokenizer
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = tempfile.mkdtemp() # fmt: off lowercase_ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowercase_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) lowercase_ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] lowercase_ = {"""unk_token""": """<unk>"""} lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowerCAmelCase ) ) lowercase_ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowercase_ = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **_lowerCAmelCase ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **_lowerCAmelCase ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase_ = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = self.get_image_processor() lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowercase_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowercase_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase_ = self.get_image_processor(do_normalize=_lowerCAmelCase ) lowercase_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase_ = self.prepare_image_inputs() lowercase_ = image_processor(_lowerCAmelCase , return_tensors="np" ) lowercase_ = processor(images=_lowerCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase_ = """lower newer""" lowercase_ = processor(text=_lowerCAmelCase , return_tensors="np" ) lowercase_ = tokenizer(_lowerCAmelCase , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase_ = """lower newer""" lowercase_ = self.prepare_image_inputs() lowercase_ = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = """google/owlvit-base-patch32""" lowercase_ = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) lowercase_ = ["""cat""", """nasa badge"""] lowercase_ = processor(text=_lowerCAmelCase ) lowercase_ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = """google/owlvit-base-patch32""" lowercase_ = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) lowercase_ = [["""cat""", """nasa badge"""], ["""person"""]] lowercase_ = processor(text=_lowerCAmelCase ) lowercase_ = 16 lowercase_ = len(_lowerCAmelCase ) lowercase_ = max([len(_lowerCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = """google/owlvit-base-patch32""" lowercase_ = OwlViTProcessor.from_pretrained(_lowerCAmelCase ) lowercase_ = ["""cat""", """nasa badge"""] lowercase_ = processor(text=_lowerCAmelCase ) lowercase_ = 16 lowercase_ = inputs["""input_ids"""] lowercase_ = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase_ = self.prepare_image_inputs() lowercase_ = self.prepare_image_inputs() lowercase_ = processor(images=_lowerCAmelCase , query_images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.get_image_processor() lowercase_ = self.get_tokenizer() lowercase_ = OwlViTProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowercase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ = processor.batch_decode(_lowerCAmelCase ) lowercase_ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' for i in range(0 , UpperCAmelCase__ ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' for i in range(UpperCAmelCase__ , 0 , -1 ): for _ in range(UpperCAmelCase__ , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if n <= 0: print(" ... .... nothing printing :(" ) return floyd(UpperCAmelCase__ ) # upper half reverse_floyd(UpperCAmelCase__ ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") SCREAMING_SNAKE_CASE__ = 1 while K: SCREAMING_SNAKE_CASE__ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) SCREAMING_SNAKE_CASE__ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __lowerCamelCase ( __lowercase , __lowercase ): """simple docstring""" @register_to_config def __init__( self , *, UpperCAmelCase = 4 , UpperCAmelCase = 768 , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.zeros(_a ) ) # parameters for additional clip time embeddings lowercase_ = nn.Linear(_a , _a ) lowercase_ = nn.Linear(_a , _a ) # parameters for encoder hidden states lowercase_ = clip_extra_context_tokens lowercase_ = nn.Linear( _a , self.clip_extra_context_tokens * cross_attention_dim ) lowercase_ = nn.Linear(_a , _a ) lowercase_ = nn.LayerNorm(_a ) def A__ ( self , *, UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowercase_ = image_embeddings.shape[0] lowercase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowercase_ = classifier_free_guidance_embeddings.expand( _a , -1 ) lowercase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowercase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowercase_ = self.embedding_proj(_a ) lowercase_ = self.clip_image_embeddings_project_to_time_embeddings(_a ) lowercase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowercase_ = self.clip_extra_context_tokens_proj(_a ) lowercase_ = clip_extra_context_tokens.reshape(_a , -1 , self.clip_extra_context_tokens ) lowercase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) lowercase_ = self.encoder_hidden_states_proj(_a ) lowercase_ = self.text_encoder_hidden_states_norm(_a ) lowercase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class __lowerCamelCase ( lowercase__ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<sep>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<mask>" , UpperCAmelCase=["<eop>", "<eod>"] , UpperCAmelCase = None , **UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase_ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowercase_ = 3 lowercase_ = do_lower_case lowercase_ = remove_space lowercase_ = keep_accents lowercase_ = vocab_file lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowercase_ = jieba lowercase_ = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def A__ ( self ) -> List[Any]: '''simple docstring''' return len(self.sp_model ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.__dict__.copy() lowercase_ = None return state def __setstate__( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ = {} lowercase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' if self.remove_space: lowercase_ = " ".join(inputs.strip().split() ) else: lowercase_ = inputs lowercase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowercase_ = unicodedata.normalize("NFKD" , lowercase_ ) lowercase_ = "".join([c for c in outputs if not unicodedata.combining(lowercase_ )] ) if self.do_lower_case: lowercase_ = outputs.lower() return outputs def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.preprocess_text(lowercase_ ) lowercase_ = self.sp_model.encode(lowercase_ , out_type=lowercase_ ) lowercase_ = [] for piece in pieces: if len(lowercase_ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowercase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowercase_ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase_ = cur_pieces[1:] else: lowercase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowercase_ ) else: new_pieces.append(lowercase_ ) return new_pieces def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.sp_model.PieceToId(lowercase_ ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' return self.sp_model.IdToPiece(lowercase_ ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = "".join(lowercase_ ).replace(lowercase_ , " " ).strip() return out_string def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is not None: return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1, 1] return ([0] * len(lowercase_ )) + [1, 1] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> str: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Union[str, Any]: '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = super()._decode(*lowercase_ , **lowercase_ ) lowercase_ = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" from bisect import bisect from itertools import accumulate def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = sorted(zip(_snake_case , _snake_case ) , key=lambda __lowerCamelCase : x[0] / x[1] , reverse=_snake_case ) lowercase_ = [i[0] for i in r], [i[1] for i in r] lowercase_ = list(accumulate(_snake_case ) ) lowercase_ = bisect(_snake_case , _snake_case ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] ): '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: Optional[int] = None ): '''simple docstring''' lowercase_ = tesseract_config if tesseract_config is not None else '' # apply OCR lowercase_ = to_pil_image(_A ) lowercase_ = pil_image.size lowercase_ = pytesseract.image_to_data(_A , lang=_A , output_type="dict" , config=_A ) lowercase_ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase_ = [idx for idx, word in enumerate(_A ) if not word.strip()] lowercase_ = [word for idx, word in enumerate(_A ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] lowercase_ = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase_ = [] for x, y, w, h in zip(_A , _A , _A , _A ): lowercase_ = [x, y, x + w, y + h] actual_boxes.append(_A ) # finally, normalize the bounding boxes lowercase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_A , _A , _A ) ) assert len(_A ) == len(_A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCamelCase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" lowerCAmelCase__ = ["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = "" , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case__ ) lowercase_ = size if size is not None else {'height': 224, 'width': 224} lowercase_ = get_size_dict(snake_case__ ) lowercase_ = do_resize lowercase_ = size lowercase_ = resample lowercase_ = apply_ocr lowercase_ = ocr_lang lowercase_ = tesseract_config def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase_ = (size['height'], size['width']) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(snake_case__ ) lowercase_ = resample if resample is not None else self.resample lowercase_ = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase_ = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase_ = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase_ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(snake_case__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) lowercase_ = [] lowercase_ = [] for image in images: lowercase_ = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: lowercase_ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase_ = [flip_channel_order(snake_case__ ) for image in images] lowercase_ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowercase_ = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) if apply_ocr: lowercase_ = words_batch lowercase_ = boxes_batch return data
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger("""transformers.models.speecht5""") def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict ): '''simple docstring''' hf_model.apply_weight_norm() lowercase_ = checkpoint["input_conv.weight_g"] lowercase_ = checkpoint["input_conv.weight_v"] lowercase_ = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): lowercase_ = checkpoint[F'upsamples.{i}.1.weight_g'] lowercase_ = checkpoint[F'upsamples.{i}.1.weight_v'] lowercase_ = checkpoint[F'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowercase_ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g'] lowercase_ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v'] lowercase_ = checkpoint[F'blocks.{i}.convs1.{j}.1.bias'] lowercase_ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g'] lowercase_ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v'] lowercase_ = checkpoint[F'blocks.{i}.convs2.{j}.1.bias'] lowercase_ = checkpoint["output_conv.1.weight_g"] lowercase_ = checkpoint["output_conv.1.weight_v"] lowercase_ = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: Dict=None , __lowerCamelCase: List[Any]=None , ): '''simple docstring''' if config_path is not None: lowercase_ = SpeechTaHifiGanConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = SpeechTaHifiGanConfig() lowercase_ = SpeechTaHifiGan(__lowerCamelCase ) lowercase_ = torch.load(__lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , __lowerCamelCase , __lowerCamelCase ) lowercase_ = np.load(__lowerCamelCase ) lowercase_ = stats[0].reshape(-1 ) lowercase_ = stats[1].reshape(-1 ) lowercase_ = torch.from_numpy(__lowerCamelCase ).float() lowercase_ = torch.from_numpy(__lowerCamelCase ).float() model.save_pretrained(__lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ = logging.getLogger() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Path , __lowerCamelCase: list ): '''simple docstring''' lowercase_ = """\n""".join(snake_case_ ) Path(snake_case_ ).open("w" ).writelines(snake_case_ ) SCREAMING_SNAKE_CASE__ = '''patrickvonplaten/t5-tiny-random''' SCREAMING_SNAKE_CASE__ = '''sshleifer/bart-tiny-random''' SCREAMING_SNAKE_CASE__ = '''sshleifer/tiny-mbart''' SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class __lowerCamelCase ( _UpperCAmelCase ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowercase_ = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowercase_ = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) lowercase_ = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowercase_ = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): run_generate() assert Path(SCREAMING_SNAKE_CASE_ ).exists() # os.remove(Path(output_file_name)) def A__ ( self ) -> List[Any]: '''simple docstring''' self.run_eval_tester(SCREAMING_SNAKE_CASE_ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' self.run_eval_tester(SCREAMING_SNAKE_CASE_ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" lowercase_ = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() lowercase_ = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } lowercase_ = Path(self.get_auto_remove_tmp_dir() ) lowercase_ = str(tmp_dir / "scores.json" ) lowercase_ = str(tmp_dir / "val.target" ) _dump_articles(SCREAMING_SNAKE_CASE_ , text["en"] ) _dump_articles(SCREAMING_SNAKE_CASE_ , text["de"] ) lowercase_ = """translation_en_to_de""" if model == T5_TINY else """summarization""" lowercase_ = F'\n run_eval_search.py\n {model}\n {str(SCREAMING_SNAKE_CASE_ )}\n {str(SCREAMING_SNAKE_CASE_ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(SCREAMING_SNAKE_CASE_ , "argv" , SCREAMING_SNAKE_CASE_ ): with CaptureStdout() as cs: run_search() lowercase_ = [""" num_beams | length_penalty""", model, """Best score args"""] lowercase_ = ["""Info"""] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(SCREAMING_SNAKE_CASE_ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(SCREAMING_SNAKE_CASE_ ).exists() os.remove(Path(SCREAMING_SNAKE_CASE_ ) )
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
from typing import Dict from .base import GenericTensor, Pipeline class __lowerCamelCase ( __UpperCamelCase ): """simple docstring""" def A__ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: '''simple docstring''' if tokenize_kwargs is None: lowercase_ = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( "truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" ) lowercase_ = truncation lowercase_ = tokenize_kwargs lowercase_ = {} if return_tensors is not None: lowercase_ = return_tensors return preprocess_params, {}, postprocess_params def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.framework lowercase_ = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) return model_inputs def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = self.model(**UpperCAmelCase ) return model_outputs def A__ ( self , UpperCAmelCase , UpperCAmelCase=False ) -> Tuple: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( __lowerCamelCase ): """simple docstring""" @require_torch def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " lowercase_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " lowercase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache lowercase_ = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(UpperCamelCase_ ) BertModel.from_pretrained(UpperCamelCase_ ) BertTokenizer.from_pretrained(UpperCamelCase_ ) pipeline(task="fill-mask" , model=UpperCamelCase_ ) # baseline - just load from_pretrained with normal network lowercase_ = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed lowercase_ = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase_ = "1" lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " lowercase_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " lowercase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache lowercase_ = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(UpperCamelCase_ ) BertModel.from_pretrained(UpperCamelCase_ ) BertTokenizer.from_pretrained(UpperCamelCase_ ) pipeline(task="fill-mask" , model=UpperCamelCase_ ) # baseline - just load from_pretrained with normal network lowercase_ = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed lowercase_ = self.get_env() lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " lowercase_ = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " lowercase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network lowercase_ = [sys.executable, "-c", "\n".join([load, run] )] # should succeed lowercase_ = self.get_env() lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network lowercase_ = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase_ = "1" lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = "\nfrom transformers import pipeline\n " lowercase_ = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " lowercase_ = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " lowercase_ = self.get_env() lowercase_ = "1" lowercase_ = [sys.executable, "-c", "\n".join([load, mock, run] )] lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = "\nfrom transformers import AutoModel\n " lowercase_ = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network lowercase_ = [sys.executable, "-c", "\n".join([load, run] )] # should succeed lowercase_ = self.get_env() lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowercase_ = "1" lowercase_ = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int=None , __lowerCamelCase: Union[str, Any]=None ): '''simple docstring''' if "." in tensor_name: lowercase_ = tensor_name.split("." ) for split in splits[:-1]: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase_ = value.to("cpu" ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: lowercase_ = torch.tensor(__lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: lowercase_ = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase_ = value.to(__lowerCamelCase ) else: lowercase_ = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) lowercase_ = new_value def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict=None , __lowerCamelCase: Any=None , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Optional[int]=False ): '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: int=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Optional[Any]=None ): '''simple docstring''' lowercase_ = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def SCREAMING_SNAKE_CASE_ ( *__lowerCamelCase: Dict , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( *__lowerCamelCase: str , **__lowerCamelCase: str ): '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(__lowerCamelCase , [] ) lowercase_ = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase_ = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase_ = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase_ = [".weight", ".bias"] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(__lowerCamelCase , "" ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ = 'yolos' def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=[512, 864] , UpperCAmelCase=16 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=100 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**a_ ) lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = qkv_bias lowercase_ = num_detection_tokens lowercase_ = use_mid_position_embeddings lowercase_ = auxiliary_loss # Hungarian matcher lowercase_ = class_cost lowercase_ = bbox_cost lowercase_ = giou_cost # Loss coefficients lowercase_ = bbox_loss_coefficient lowercase_ = giou_loss_coefficient lowercase_ = eos_coefficient class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ = version.parse("1.11" ) @property def A__ ( self ) -> List[Any]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A__ ( self ) -> List[Any]: '''simple docstring''' return 1e-4 @property def A__ ( self ) -> Optional[int]: '''simple docstring''' return 12
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
from __future__ import annotations SCREAMING_SNAKE_CASE__ = [] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[list[int]] , __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): if board[row][i] == 1: return False for i in range(len(lowerCAmelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(lowerCAmelCase__ , -1 , -1 ) , range(lowerCAmelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(lowerCAmelCase__ , -1 , -1 ) , range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[list[int]] , __lowerCamelCase: int ): '''simple docstring''' if row >= len(lowerCAmelCase__ ): solution.append(lowerCAmelCase__ ) printboard(lowerCAmelCase__ ) print() return True for i in range(len(lowerCAmelCase__ ) ): if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase_ = 1 solve(lowerCAmelCase__ , row + 1 ) lowercase_ = 0 return False def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list[list[int]] ): '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in range(len(lowerCAmelCase__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType SCREAMING_SNAKE_CASE__ = get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any=0 ): '''simple docstring''' os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' lowercase_ = os.path.join(a__ , a__ ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(a__ , a__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) lowercase_ = os.path.join(a__ , a__ ) logger.info(F'Saving model to {output_model_file}' ) torch.save(a__ , a__ ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ = os.path.join(a__ , F'{MODEL_NAME}_{model_index}' ) os.makedirs(a__ , exist_ok=a__ ) logger.info(F'Saving model to {ckpt_dir}' ) lowercase_ = {"model": state_dict} dist_cp.save_state_dict( state_dict=a__ , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: str=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(a__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return lowercase_ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' lowercase_ = os.path.join(a__ , a__ ) logger.info(F'Loading model from {input_model_file}' ) lowercase_ = torch.load(a__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase_ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) lowercase_ = os.path.join(a__ , a__ ) logger.info(F'Loading model from {input_model_file}' ) lowercase_ = torch.load(a__ ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase_ = ( os.path.join(a__ , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) lowercase_ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=a__ , storage_reader=dist_cp.FileSystemReader(a__ ) , planner=DefaultLoadPlanner() , ) lowercase_ = state_dict["model"] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(a__ ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: List[str]=0 ): '''simple docstring''' os.makedirs(a__ , exist_ok=a__ ) with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase_ = FSDP.optim_state_dict(a__ , a__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase_ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) lowercase_ = os.path.join(a__ , a__ ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(a__ , a__ ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: lowercase_ = os.path.join(a__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(a__ , exist_ok=a__ ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(a__ ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: str=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( a__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase_ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) lowercase_ = os.path.join(a__ , a__ ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) lowercase_ = torch.load(a__ ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: lowercase_ = ( os.path.join(a__ , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) lowercase_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(a__ ) , ) lowercase_ = optim_state["optimizer"] logger.info(F'Optimizer loaded from {ckpt_dir}' ) lowercase_ = FSDP.optim_state_dict_to_load(a__ , a__ , a__ ) optimizer.load_state_dict(a__ )
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = XGBClassifier() classifier.fit(lowercase_ , lowercase_ ) return classifier def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = load_iris() lowercase_ , lowercase_ = data_handling(lowercase_ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split( lowercase_ , lowercase_ , test_size=0.25 ) lowercase_ = iris["target_names"] # Create an XGBoost Classifier from the training data lowercase_ = xgboost(lowercase_ , lowercase_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase_ , lowercase_ , lowercase_ , display_labels=lowercase_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel SCREAMING_SNAKE_CASE__ = """0.12""" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @classmethod def A__ ( cls ) -> Optional[Any]: '''simple docstring''' lowercase_ = TOKEN HfFolder.save_token(_a ) @classmethod def A__ ( cls ) -> List[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase_ = FlaxBertModel(_a ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id="test-model-flax" , push_to_hub=_a , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained(F'{USER}/test-model-flax' ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1e-3 , msg=F'{key} not identical' ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) lowercase_ = FlaxBertModel(_a ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1e-3 , msg=F'{key} not identical' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id="valid_org/test-model-flax-org" , push_to_hub=_a , use_auth_token=self._token ) lowercase_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) lowercase_ = flatten_dict(unfreeze(model.params ) ) lowercase_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): lowercase_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1e-3 , msg=F'{key} not identical' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = True lowercase_ = flatten_dict(modela.params ) lowercase_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: lowercase_ = False return models_are_equal @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowercase_ = FlaxBertModel(_a ) lowercase_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): lowercase_ = FlaxBertModel.from_pretrained(_a ) lowercase_ = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowercase_ = FlaxBertModel(_a ) lowercase_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size="10KB" ) with self.assertRaises(_a ): lowercase_ = FlaxBertModel.from_pretrained(_a ) lowercase_ = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = "bert" lowercase_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(_a ): lowercase_ = FlaxBertModel.from_pretrained(_a ) lowercase_ = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = "bert" lowercase_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(_a ): lowercase_ = FlaxBertModel.from_pretrained(_a ) lowercase_ = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ = 'vision-encoder-decoder' lowerCAmelCase__ = True def __init__( self , **UpperCAmelCase ) -> List[str]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) lowercase_ = kwargs.pop("encoder" ) lowercase_ = encoder_config.pop("model_type" ) lowercase_ = kwargs.pop("decoder" ) lowercase_ = decoder_config.pop("model_type" ) lowercase_ = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowercase_ = AutoConfig.for_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowercase_ = True @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> PretrainedConfig: '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ = version.parse("1.11" ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase_ = OrderedDict() lowercase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} lowercase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} lowercase_ = {0: "batch", 1: "encoder_sequence"} return common_inputs def A__ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch lowercase_ = OrderedDict() lowercase_ = super().generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) lowercase_ = dummy_input["input_ids"].shape lowercase_ = (batch, encoder_sequence, self._config.encoder_hidden_size) lowercase_ = dummy_input.pop("input_ids" ) lowercase_ = dummy_input.pop("attention_mask" ) lowercase_ = torch.zeros(_SCREAMING_SNAKE_CASE ) return common_inputs class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def A__ ( self ) -> None: '''simple docstring''' pass def A__ ( self , UpperCAmelCase ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(_SCREAMING_SNAKE_CASE ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = "default" ) -> OnnxConfig: '''simple docstring''' lowercase_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } SCREAMING_SNAKE_CASE__ = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } @lru_cache() def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase_ = bs[:] lowercase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 lowercase_ = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' lowercase_ = set() lowercase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ = char return pairs class __lowerCamelCase ( snake_case__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else bos_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else eos_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else sep_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else cls_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: lowercase_ = json.load(UpperCAmelCase_ ) lowercase_ = {v: k for k, v in self.encoder.items()} lowercase_ = errors # how to handle errors in decoding lowercase_ = bytes_to_unicode() lowercase_ = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding="utf-8" ) as merges_handle: lowercase_ = merges_handle.read().split("\n" )[1:-1] lowercase_ = [tuple(merge.split() ) for merge in bpe_merges] lowercase_ = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) lowercase_ = {} lowercase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase_ = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase_ = tuple(UpperCAmelCase_ ) lowercase_ = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: lowercase_ = min(UpperCAmelCase_ , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ = bigram lowercase_ = [] lowercase_ = 0 while i < len(UpperCAmelCase_ ): try: lowercase_ = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ = tuple(UpperCAmelCase_ ) lowercase_ = new_word if len(UpperCAmelCase_ ) == 1: break else: lowercase_ = get_pairs(UpperCAmelCase_ ) lowercase_ = " ".join(UpperCAmelCase_ ) lowercase_ = word return word def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = [] for token in re.findall(self.pat , UpperCAmelCase_ ): lowercase_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_ ).split(" " ) ) return bpe_tokens def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.decoder.get(UpperCAmelCase_ ) def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = "".join(UpperCAmelCase_ ) lowercase_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Dict: '''simple docstring''' if not os.path.isdir(UpperCAmelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + "\n" ) lowercase_ = 0 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) lowercase_ = token_index writer.write(" ".join(UpperCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[str]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ = [self.cls_token_id] lowercase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> Dict: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[Any]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , UpperCAmelCase , UpperCAmelCase=False , **UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_ ) > 0 and not text[0].isspace()): lowercase_ = " " + text return (text, kwargs)
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
import math SCREAMING_SNAKE_CASE__ = 1_0 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 20 ): '''simple docstring''' lowercase_ = math.comb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE_ ) lowercase_ = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(2_0))
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
from collections.abc import Generator from math import sin def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: bytes ): '''simple docstring''' if len(UpperCamelCase__ ) != 32: raise ValueError("Input must be of length 32" ) lowercase_ = B"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) lowercase_ = format(UpperCamelCase__ , "08x" )[-8:] lowercase_ = B"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: bytes ): '''simple docstring''' lowercase_ = B"" for char in message: bit_string += format(UpperCamelCase__ , "08b" ).encode("utf-8" ) lowercase_ = format(len(UpperCamelCase__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: bytes ): '''simple docstring''' if len(UpperCamelCase__ ) % 512 != 0: raise ValueError("Input must have length that\'s a multiple of 512" ) for pos in range(0 , len(UpperCamelCase__ ) , 512 ): lowercase_ = bit_string[pos : pos + 512] lowercase_ = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) lowercase_ = format(UpperCamelCase__ , "032b" ) lowercase_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase__ , 2 ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return (a + b) % 2**32 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: bytes ): '''simple docstring''' lowercase_ = preprocess(UpperCamelCase__ ) lowercase_ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowercase_ = 0x67_45_23_01 lowercase_ = 0xEF_CD_AB_89 lowercase_ = 0x98_BA_DC_FE lowercase_ = 0x10_32_54_76 lowercase_ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase__ ): lowercase_ = aa lowercase_ = ba lowercase_ = ca lowercase_ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowercase_ = d ^ (b & (c ^ d)) lowercase_ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowercase_ = c ^ (d & (b ^ c)) lowercase_ = (5 * i + 1) % 16 elif i <= 47: lowercase_ = b ^ c ^ d lowercase_ = (3 * i + 5) % 16 else: lowercase_ = c ^ (b | not_aa(UpperCamelCase__ )) lowercase_ = (7 * i) % 16 lowercase_ = (f + a + added_consts[i] + block_words[g]) % 2**32 lowercase_ = d lowercase_ = c lowercase_ = b lowercase_ = sum_aa(UpperCamelCase__ , left_rotate_aa(UpperCamelCase__ , shift_amounts[i] ) ) # Add hashed chunk to running total lowercase_ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = sum_aa(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) + reformat_hex(UpperCamelCase__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCamelCase ( A_ , A_ , A_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionInpaintPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowerCamelCase , ) lowercase_ = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowercase_ = CLIPTextModel(_lowerCamelCase ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert("RGB" ).resize((64, 64) ) lowercase_ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(_lowerCamelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(_lowerCamelCase ) else: lowercase_ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowercase_ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableDiffusionInpaintPipeline(**_lowerCamelCase ) lowercase_ = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase_ = self.get_dummy_inputs(_lowerCamelCase ) lowercase_ = sd_pipe(**_lowerCamelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self ) -> List[str]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) lowercase_ = "stabilityai/stable-diffusion-2-inpainting" lowercase_ = StableDiffusionInpaintPipeline.from_pretrained(_lowerCamelCase , safety_checker=_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowercase_ = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , generator=_lowerCamelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) lowercase_ = "stabilityai/stable-diffusion-2-inpainting" lowercase_ = StableDiffusionInpaintPipeline.from_pretrained( _lowerCamelCase , torch_dtype=torch.floataa , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() lowercase_ = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , generator=_lowerCamelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase_ = "stabilityai/stable-diffusion-2-inpainting" lowercase_ = PNDMScheduler.from_pretrained(_lowerCamelCase , subfolder="scheduler" ) lowercase_ = StableDiffusionInpaintPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , scheduler=_lowerCamelCase , torch_dtype=torch.floataa , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase_ = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = "pytorch_model.bin" @dataclasses.dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) lowerCAmelCase__ = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "A csv or a json file containing the validation data."} ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "The name of the task to train on."} , ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) lowerCAmelCase__ = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) lowerCAmelCase__ = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) lowerCAmelCase__ = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowerCAmelCase__ = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) lowerCAmelCase__ = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) lowerCAmelCase__ = dataclasses.field( default=1_00 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) lowerCAmelCase__ = dataclasses.field( default=snake_case_ , metadata={"help": "Random seed for initialization."} , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowercase_ = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowercase_ = int(eval_result * len(_snake_case ) ) print(_snake_case ) lowercase_ = dataset.sort("probability" , reverse=_snake_case ) lowercase_ = dataset.select(range(_snake_case ) ) lowercase_ = dataset.remove_columns(["label", "probability"] ) lowercase_ = dataset.rename_column("prediction" , "label" ) lowercase_ = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) lowercase_ = dataset.shuffle(seed=args.seed ) lowercase_ = os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , **__lowerCamelCase: Any ): '''simple docstring''' lowercase_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowercase_ = STModelArguments(model_name_or_path=_snake_case ) lowercase_ = STDataArguments(train_file=_snake_case , infer_file=_snake_case ) lowercase_ = STTrainingArguments(output_dir=_snake_case ) lowercase_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks lowercase_ = {} lowercase_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowercase_ = args.train_file lowercase_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowercase_ = args.eval_file for key in data_files: lowercase_ = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: lowercase_ = extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) lowercase_ = F'{args.output_dir}/self-train_iter-{{}}'.format lowercase_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() lowercase_ = None lowercase_ = None lowercase_ = 0 lowercase_ = False # Show the progress bar lowercase_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowercase_ = data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowercase_ = os.path.join(_snake_case , "stage-1" ) lowercase_ = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) lowercase_ = os.path.join(_snake_case , "best-checkpoint" , _snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , _snake_case , _snake_case , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 1." , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowercase_ = os.path.join(_snake_case , "best-checkpoint" ) lowercase_ = os.path.join(_snake_case , "stage-2" ) # Update arguments_dict lowercase_ = model_path lowercase_ = data_files["train"] lowercase_ = current_output_dir lowercase_ = os.path.join(_snake_case , "best-checkpoint" , _snake_case ) if os.path.exists(_snake_case ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , _snake_case , _snake_case , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info("Self-training job completed: iteration: %d, stage: 2." , _snake_case ) lowercase_ = iteration lowercase_ = data_dir_format(iteration + 1 ) lowercase_ = AutoConfig.from_pretrained(os.path.join(_snake_case , "best-checkpoint" ) ) lowercase_ = config.idalabel lowercase_ = os.path.join(_snake_case , "eval_results_best-checkpoint.json" ) lowercase_ = os.path.join(_snake_case , "test_results_best-checkpoint.json" ) assert os.path.exists(_snake_case ) with open(_snake_case , "r" ) as f: lowercase_ = float(json.load(_snake_case )[args.eval_metric] ) lowercase_ = os.path.join(_snake_case , "infer_output_best-checkpoint.csv" ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. lowercase_ = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] lowercase_ = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() lowercase_ = os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowercase_ = eval_result if best_iteration is None: lowercase_ = new_iteration lowercase_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowercase_ = new_iteration lowercase_ = new_eval_result lowercase_ = 0 else: if new_eval_result == best_eval_result: lowercase_ = new_iteration lowercase_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowercase_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , _snake_case ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , "eval_results_best-iteration.json" ) , )
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase_ = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowercase_ = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowercase_ = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowercase_ = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowercase_ = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowercase_ = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase_ = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowercase_ = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowercase_ = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowercase_ = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowercase_ = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowercase_ = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowercase_ = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowercase_ = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowercase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowercase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowercase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowercase_ = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowercase_ = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowercase_ = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowercase_ = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowercase_ = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowercase_ = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowercase_ = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase_ = orig_state_dict.pop(__lowerCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ = key.split("." ) lowercase_ = int(key_split[2] ), int(key_split[4] ) lowercase_ = config.vision_config.hidden_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[dim : dim * 2, :] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ = key.split("." ) lowercase_ = int(key_split[3] ) lowercase_ = config.text_config.hidden_size if "weight" in key: lowercase_ = val[:dim, :] lowercase_ = val[ dim : dim * 2, : ] lowercase_ = val[-dim:, :] else: lowercase_ = val[:dim] lowercase_ = val[dim : dim * 2] lowercase_ = val[-dim:] else: lowercase_ = rename_key(__lowerCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase_ = val.squeeze_() else: lowercase_ = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple="groupvit-gcc-yfcc" , __lowerCamelCase: List[Any]=False ): '''simple docstring''' lowercase_ = GroupViTConfig() lowercase_ = GroupViTModel(__lowerCamelCase ).eval() lowercase_ = torch.load(__lowerCamelCase , map_location="cpu" )["model"] lowercase_ = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) lowercase_ = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__lowerCamelCase ) == 0) # verify result lowercase_ = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowercase_ = prepare_img() lowercase_ = processor(text=["a photo of a cat", "a photo of a dog"] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) with torch.no_grad(): lowercase_ = model(**__lowerCamelCase ) if model_name == "groupvit-gcc-yfcc": lowercase_ = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase_ = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , __lowerCamelCase , atol=1E-3 ) processor.save_pretrained(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) print("Successfully saved processor and model to" , __lowerCamelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(__lowerCamelCase , organization="nielsr" ) model.push_to_hub(__lowerCamelCase , organization="nielsr" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = CodeGenTokenizer lowerCAmelCase__ = CodeGenTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = {"add_prefix_space": True} lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] lowercase_ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) lowercase_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase_ = {"""unk_token""": """<unk>"""} lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def A__ ( self , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , **UpperCAmelCase ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = """lower newer""" lowercase_ = """lower newer""" return input_text, output_text def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ = """lower newer""" lowercase_ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase_ = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def A__ ( self ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) lowercase_ = """lower newer""" # Testing tokenization lowercase_ = tokenizer.tokenize(snake_case_ , add_prefix_space=snake_case_ ) lowercase_ = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens lowercase_ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) lowercase_ = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens lowercase_ = self.get_rust_tokenizer(add_prefix_space=snake_case_ ) lowercase_ = tokenizer.encode(snake_case_ , add_prefix_space=snake_case_ ) lowercase_ = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing the unknown token lowercase_ = tokens + [rust_tokenizer.unk_token] lowercase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: '''simple docstring''' pass def A__ ( self , UpperCAmelCase=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # Simple input lowercase_ = """This is a simple input""" lowercase_ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase_ = ("""This is a simple input""", """This is a pair""") lowercase_ = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="max_length" , ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowercase_ = """This is a simple input""" lowercase_ = ["""This is a simple input looooooooong""", """This is a simple input"""] lowercase_ = ("""This is a simple input""", """This is a pair""") lowercase_ = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer(snake_case_ , padding="max_length" , max_length=30 , return_tensors="np" ) lowercase_ = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="np" ) lowercase_ = tokenizer(*snake_case_ , padding="max_length" , max_length=60 , return_tensors="np" ) lowercase_ = tokenizer(snake_case_ , padding=snake_case_ , truncate=snake_case_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = """$$$""" lowercase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case_ , add_bos_token=snake_case_ ) lowercase_ = """This is a simple input""" lowercase_ = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer(snake_case_ ) lowercase_ = tokenizer(snake_case_ ) self.assertEqual(out_s.input_ids[0] , snake_case_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowercase_ = tokenizer.decode(out_s.input_ids ) lowercase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , snake_case_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" ) lowercase_ = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" lowercase_ = """\nif len_a > len_b: result = a\nelse: result = b""" lowercase_ = tokenizer.encode(snake_case_ ) lowercase_ = ["""^#""", re.escape("<|endoftext|>" ), """^'''""", """^\"\"\"""", """\n\n\n"""] lowercase_ = tokenizer.decode(snake_case_ , truncate_before_pattern=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> List[str]: '''simple docstring''' pass
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] = 100 ): '''simple docstring''' lowercase_ = set() lowercase_ = 0 lowercase_ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): lowercase_ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] ): '''simple docstring''' for attribute in key.split("." ): lowercase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: lowercase_ = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase_ = None for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ = True elif name.split("." )[0] == "proj": lowercase_ = fairseq_model.proj lowercase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(_UpperCAmelCase )[0].split("." )[-2] lowercase_ = mapped_key.replace("*" , _UpperCAmelCase ) if "weight_g" in name: lowercase_ = 'weight_g' elif "weight_v" in name: lowercase_ = 'weight_v' elif "bias" in name: lowercase_ = 'bias' elif "weight" in name: lowercase_ = 'weight' else: lowercase_ = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple ): '''simple docstring''' lowercase_ = full_name.split("conv_layers." )[-1] lowercase_ = name.split("." ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = emb.weight.shape lowercase_ = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowercase_ = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' with open(_UpperCAmelCase , "r" , encoding="utf-8" ) as f: lowercase_ = f.readlines() lowercase_ = [line.split(" " )[0] for line in lines] lowercase_ = len(_UpperCAmelCase ) lowercase_ = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(_UpperCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: str , ): '''simple docstring''' lowercase_ = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) lowercase_ = SpeechaTextaConfig.from_pretrained( _UpperCAmelCase , vocab_size=_UpperCAmelCase , decoder_layers=_UpperCAmelCase , do_stable_layer_norm=_UpperCAmelCase ) lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) lowercase_ = model[0].eval() # set weights for wav2vec2 encoder lowercase_ = WavaVecaModel(_UpperCAmelCase ) lowercase_ = recursively_load_weights_wavaveca(model.encoder , _UpperCAmelCase ) lowercase_ = SpeechaTextaForCausalLM(_UpperCAmelCase ) lowercase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_UpperCAmelCase ) # set output linear layer unexpected_keys.remove("embed_out" ) lowercase_ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase_ = SpeechEncoderDecoderModel(encoder=_UpperCAmelCase , decoder=_UpperCAmelCase ) lowercase_ = False # add projection layer lowercase_ = nn.Parameter(projection_layer.weight ) lowercase_ = nn.Parameter(projection_layer.bias ) lowercase_ = create_vocab_dict(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , "vocab.json" ) , "w" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) lowercase_ = SpeechaTextaTokenizer(os.path.join(_UpperCAmelCase , "vocab.json" ) ) tokenizer.save_pretrained(_UpperCAmelCase ) lowercase_ = hf_wavavec.config.to_dict() lowercase_ = tokenizer.pad_token_id lowercase_ = tokenizer.bos_token_id lowercase_ = tokenizer.eos_token_id lowercase_ = 'speech_to_text_2' lowercase_ = 'wav2vec2' lowercase_ = SpeechEncoderDecoderConfig.from_dict(_UpperCAmelCase ) hf_wavavec.save_pretrained(_UpperCAmelCase ) feature_extractor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=128 , UpperCAmelCase=32 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> List[Any]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ) -> int: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A__ ( self ) -> str: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.prepare_config_and_inputs() lowercase_ = True lowercase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = NezhaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase_ = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) lowercase_ = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Dict: '''simple docstring''' lowercase_ = True lowercase_ = NezhaModel(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) lowercase_ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = NezhaForMaskedLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = NezhaForNextSentencePrediction(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = NezhaForPreTraining(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , next_sentence_label=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = NezhaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = NezhaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.num_labels lowercase_ = NezhaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.num_choices lowercase_ = NezhaForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' lowercase_ = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): lowercase_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) return inputs_dict def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = NezhaModelTester(self ) lowercase_ = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ = None self.model_tester.create_and_check_model_as_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def A__ ( self ) -> int: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = NezhaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def A__ ( self ) -> int: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ = True lowercase_ = model_class(config=__SCREAMING_SNAKE_CASE ) lowercase_ = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ = torch.jit.trace( __SCREAMING_SNAKE_CASE , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , "bert.pt" ) ) lowercase_ = torch.jit.load(os.path.join(__SCREAMING_SNAKE_CASE , "bert.pt" ) , map_location=__SCREAMING_SNAKE_CASE ) loaded(inputs_dict["input_ids"].to(__SCREAMING_SNAKE_CASE ) , inputs_dict["attention_mask"].to(__SCREAMING_SNAKE_CASE ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) lowercase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] lowercase_ = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) lowercase_ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) lowercase_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] lowercase_ = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) lowercase_ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = pd.read_csv("""sample_data.csv""", header=None) SCREAMING_SNAKE_CASE__ = df.shape[:1][0] # If you're using some other dataset input the target column SCREAMING_SNAKE_CASE__ = df.iloc[:, 1:2] SCREAMING_SNAKE_CASE__ = actual_data.values.reshape(len_data, 1) SCREAMING_SNAKE_CASE__ = MinMaxScaler().fit_transform(actual_data) SCREAMING_SNAKE_CASE__ = 1_0 SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 2_0 SCREAMING_SNAKE_CASE__ = len_data - periods * look_back SCREAMING_SNAKE_CASE__ = actual_data[:division] SCREAMING_SNAKE_CASE__ = actual_data[division - look_back :] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) SCREAMING_SNAKE_CASE__ = np.array(train_x) SCREAMING_SNAKE_CASE__ = np.array(test_x) SCREAMING_SNAKE_CASE__ = np.array([list(i.ravel()) for i in train_y]) SCREAMING_SNAKE_CASE__ = np.array([list(i.ravel()) for i in test_y]) SCREAMING_SNAKE_CASE__ = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") SCREAMING_SNAKE_CASE__ = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) SCREAMING_SNAKE_CASE__ = model.predict(x_test)
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __lowerCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase__ = "mobilenet_v1" def __init__( self , UpperCAmelCase=3 , UpperCAmelCase=224 , UpperCAmelCase=1.0 , UpperCAmelCase=8 , UpperCAmelCase="relu6" , UpperCAmelCase=True , UpperCAmelCase=0.999 , UpperCAmelCase=0.02 , UpperCAmelCase=0.001 , **UpperCAmelCase , ) -> List[str]: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowercase_ = num_channels lowercase_ = image_size lowercase_ = depth_multiplier lowercase_ = min_depth lowercase_ = hidden_act lowercase_ = tf_padding lowercase_ = classifier_dropout_prob lowercase_ = initializer_range lowercase_ = layer_norm_eps class __lowerCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase__ = version.parse("1.11" ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A__ ( self ) -> float: '''simple docstring''' return 1e-4
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __lowerCamelCase ( __lowerCAmelCase ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 65536 , UpperCAmelCase = None , UpperCAmelCase = 2 , UpperCAmelCase = 2 , UpperCAmelCase = 0 , UpperCAmelCase = "fourier" , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = 0.0 , UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase = "UNetMidBlock1D" , UpperCAmelCase = None , UpperCAmelCase = (32, 32, 64) , UpperCAmelCase = None , UpperCAmelCase = 8 , UpperCAmelCase = 1 , UpperCAmelCase = False , ) -> int: '''simple docstring''' super().__init__() lowercase_ = sample_size # time if time_embedding_type == "fourier": lowercase_ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCamelCase__ , log=lowerCamelCase__ , flip_sin_to_cos=lowerCamelCase__ ) lowercase_ = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowercase_ = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCamelCase__ , downscale_freq_shift=lowerCamelCase__ ) lowercase_ = block_out_channels[0] if use_timestep_embedding: lowercase_ = block_out_channels[0] * 4 lowercase_ = TimestepEmbedding( in_channels=lowerCamelCase__ , time_embed_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ , out_dim=block_out_channels[0] , ) lowercase_ = nn.ModuleList([] ) lowercase_ = None lowercase_ = nn.ModuleList([] ) lowercase_ = None # down lowercase_ = in_channels for i, down_block_type in enumerate(lowerCamelCase__ ): lowercase_ = output_channel lowercase_ = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowercase_ = i == len(lowerCamelCase__ ) - 1 lowercase_ = get_down_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCamelCase__ ) # mid lowercase_ = get_mid_block( lowerCamelCase__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCamelCase__ , add_downsample=lowerCamelCase__ , ) # up lowercase_ = list(reversed(lowerCamelCase__ ) ) lowercase_ = reversed_block_out_channels[0] if out_block_type is None: lowercase_ = out_channels else: lowercase_ = block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase__ ): lowercase_ = output_channel lowercase_ = ( reversed_block_out_channels[i + 1] if i < len(lowerCamelCase__ ) - 1 else final_upsample_channels ) lowercase_ = i == len(lowerCamelCase__ ) - 1 lowercase_ = get_up_block( lowerCamelCase__ , num_layers=lowerCamelCase__ , in_channels=lowerCamelCase__ , out_channels=lowerCamelCase__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCamelCase__ ) lowercase_ = output_channel # out lowercase_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowercase_ = get_out_block( out_block_type=lowerCamelCase__ , num_groups_out=lowerCamelCase__ , embed_dim=block_out_channels[0] , out_channels=lowerCamelCase__ , act_fn=lowerCamelCase__ , fc_dim=block_out_channels[-1] // 4 , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' lowercase_ = timestep if not torch.is_tensor(lowerCamelCase__ ): lowercase_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: lowercase_ = timesteps[None].to(sample.device ) lowercase_ = self.time_proj(lowerCamelCase__ ) if self.config.use_timestep_embedding: lowercase_ = self.time_mlp(lowerCamelCase__ ) else: lowercase_ = timestep_embed[..., None] lowercase_ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowercase_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowercase_ = () for downsample_block in self.down_blocks: lowercase_ = downsample_block(hidden_states=lowerCamelCase__ , temb=lowerCamelCase__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowercase_ = self.mid_block(lowerCamelCase__ , lowerCamelCase__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowercase_ = down_block_res_samples[-1:] lowercase_ = down_block_res_samples[:-1] lowercase_ = upsample_block(lowerCamelCase__ , res_hidden_states_tuple=lowerCamelCase__ , temb=lowerCamelCase__ ) # 5. post-process if self.out_block: lowercase_ = self.out_block(lowerCamelCase__ , lowerCamelCase__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCamelCase__ )
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self , UpperCAmelCase=-1 ) -> Any: '''simple docstring''' lowercase_ = label_idx def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): lowercase_ = mode.value lowercase_ = os.path.join(lowercase__ , F'{mode}.txt' ) lowercase_ = 1 lowercase_ = [] with open(lowercase__ , encoding="utf-8" ) as f: lowercase_ = [] lowercase_ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 lowercase_ = [] lowercase_ = [] else: lowercase_ = line.split(" " ) words.append(splits[0] ) if len(lowercase__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) return examples def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(lowercase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase_ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(lowercase__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for \'%s\'." , line.split()[0] ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' if path: with open(lowercase__ , "r" ) as f: lowercase_ = f.read().splitlines() if "O" not in labels: lowercase_ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' super().__init__(label_idx=-2 ) def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' if path: with open(lowercase__ , "r" ) as f: lowercase_ = f.read().splitlines() if "O" not in labels: lowercase_ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): lowercase_ = mode.value lowercase_ = os.path.join(lowercase__ , F'{mode}.txt' ) lowercase_ = 1 lowercase_ = [] with open(lowercase__ , encoding="utf-8" ) as f: for sentence in parse_incr(lowercase__ ): lowercase_ = [] lowercase_ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(lowercase__ ) == len(lowercase__ ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=lowercase__ , labels=lowercase__ ) ) guid_index += 1 return examples def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = 0 for sentence in parse_incr(lowercase__ ): lowercase_ = preds_list[example_id] lowercase_ = "" for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(lowercase__ ) example_id += 1 def A__ ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' if path: with open(lowercase__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
from functools import reduce SCREAMING_SNAKE_CASE__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda __lowerCamelCase , __lowerCamelCase : str(int(_UpperCAmelCase ) * int(_UpperCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(_UpperCAmelCase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 0 def A__ ( self ) -> str: '''simple docstring''' lowercase_ = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = Path(__UpperCamelCase ) / "preprocessor_config.json" lowercase_ = Path(__UpperCamelCase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__UpperCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(__UpperCamelCase , "w" ) ) lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = Path(__UpperCamelCase ) / "preprocessor_config.json" lowercase_ = Path(__UpperCamelCase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(__UpperCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(__UpperCamelCase , "w" ) ) lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase_ = Path(__UpperCamelCase ) / "preprocessor_config.json" lowercase_ = Path(__UpperCamelCase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__UpperCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(__UpperCamelCase , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop("image_processor_type" ) lowercase_ = CLIPImageProcessor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved lowercase_ = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = Path(__UpperCamelCase ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(__UpperCamelCase , "w" ) , ) lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , "clip-base is not a local folder and is not a valid model identifier" ): lowercase_ = AutoImageProcessor.from_pretrained("clip-base" ) def A__ ( self ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase , revision="aaaaaa" ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( __UpperCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): lowercase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): lowercase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): lowercase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__UpperCamelCase ) lowercase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def A__ ( self ) -> Tuple: '''simple docstring''' try: AutoConfig.register("custom" , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = Path(__UpperCamelCase ) / "preprocessor_config.json" lowercase_ = Path(__UpperCamelCase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(__UpperCamelCase , "w" ) , ) json.dump({"model_type": "clip"} , open(__UpperCamelCase , "w" ) ) lowercase_ = CustomImageProcessor.from_pretrained(__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) lowercase_ = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self ) -> Any: '''simple docstring''' class __lowerCamelCase ( _lowercase ): """simple docstring""" lowerCAmelCase__ = True try: AutoConfig.register("custom" , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local lowercase_ = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase_ = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(__UpperCamelCase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): """simple docstring""" lowerCAmelCase__ = '''encoder-decoder''' lowerCAmelCase__ = True def __init__( self , **UpperCAmelCase ) -> str: '''simple docstring''' super().__init__(**UpperCAmelCase__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase_ = kwargs.pop("encoder" ) lowercase_ = encoder_config.pop("model_type" ) lowercase_ = kwargs.pop("decoder" ) lowercase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase_ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = AutoConfig.for_model(UpperCAmelCase__ , **UpperCAmelCase__ ) lowercase_ = True @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> PretrainedConfig: '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase_ = True lowercase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = copy.deepcopy(self.__dict__ ) lowercase_ = self.encoder.to_dict() lowercase_ = self.decoder.to_dict() lowercase_ = self.__class__.model_type return output
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int=() , __lowerCamelCase: str=None , __lowerCamelCase: Dict="no" , __lowerCamelCase: Any="29500" ): '''simple docstring''' lowercase_ = False lowercase_ = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): lowercase_ = True elif "IPython" in sys.modules: lowercase_ = """google.colab""" in str(sys.modules["IPython"].get_ipython() ) try: lowercase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , __lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: lowercase_ = 8 lowercase_ = PrepareForLaunch(__lowerCAmelCase , distributed_type="TPU" ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(__lowerCAmelCase , args=__lowerCAmelCase , nprocs=__lowerCAmelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*__lowerCAmelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowerCAmelCase , master_addr="127.0.01" , master_port=__lowerCAmelCase , mixed_precision=__lowerCAmelCase ): lowercase_ = PrepareForLaunch(__lowerCAmelCase , distributed_type="MULTI_GPU" ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(__lowerCAmelCase , args=__lowerCAmelCase , nprocs=__lowerCAmelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): lowercase_ = """1""" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Union[str, Any]=() , __lowerCamelCase: Any=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowerCAmelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): lowercase_ = PrepareForLaunch(__lowerCAmelCase , debug=__lowerCAmelCase ) start_processes(__lowerCAmelCase , args=__lowerCAmelCase , nprocs=__lowerCAmelCase , start_method="fork" )
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __lowerCamelCase ( _A): """simple docstring""" def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self ) -> int: '''simple docstring''' with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def A__ ( self ) -> Tuple: '''simple docstring''' with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def A__ ( self ) -> str: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowercase_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def A__ ( self ) -> str: '''simple docstring''' import PIL.Image lowercase_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=__SCREAMING_SNAKE_CASE ) as mock_cast_to_python_objects: lowercase_ = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) lowercase_ , lowercase_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , __SCREAMING_SNAKE_CASE ) self.assertFalse(kwargs["optimize_list_casting"] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = pa.BufferReader(lowercase__ ) if isinstance(lowercase__ , pa.Buffer ) else pa.memory_map(lowercase__ ) lowercase_ = pa.ipc.open_stream(lowercase__ ) lowercase_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() lowercase_ = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() lowercase_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=lowercase__ , features=lowercase__ ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowercase_ = pa.BufferReader(output.getvalue() ) lowercase_ = pa.ipc.open_stream(lowercase__ ) lowercase_ = f.read_all() lowercase_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(lowercase__ ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() with ArrowWriter( stream=lowercase__ , writer_batch_size=lowercase__ , hash_salt="split_name" , check_duplicates=lowercase__ , ) as writer: with pytest.raises(lowercase__ ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) lowercase_ , lowercase_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() with ArrowWriter( stream=lowercase__ , writer_batch_size=lowercase__ , hash_salt="split_name" , check_duplicates=lowercase__ , ) as writer: with pytest.raises(lowercase__ ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) lowercase_ , lowercase_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() with ArrowWriter( stream=lowercase__ , writer_batch_size=lowercase__ , hash_salt="split_name" , check_duplicates=lowercase__ , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() lowercase_ = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() lowercase_ = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() lowercase_ = pa.schema(lowercase__ ) if fields else None with ArrowWriter(stream=lowercase__ , schema=lowercase__ , writer_batch_size=lowercase__ ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowercase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ = {"col_1": pa.string(), "col_2": pa.intaa()} lowercase_ = os.path.join(lowercase__ , "test.arrow" ) with ArrowWriter(path=lowercase__ , schema=pa.schema(lowercase__ ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(lowercase__ , metadata=writer._schema.metadata ) _check_output(lowercase__ , 1 ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if pa.types.is_list(lowercase__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] ): '''simple docstring''' if isinstance(lst[0] , lowercase__ ): change_first_primitive_element_in_list(lst[0] , lowercase__ ) else: lowercase_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = pa.array(TypedSequence(lowercase__ , optimized_int_type=lowercase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = pa.array(OptimizedTypedSequence(lowercase__ , col=lowercase__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowercase_ = copy.deepcopy(lowercase__ ) lowercase_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(lowercase__ , lowercase__ ) lowercase_ = pa.array(OptimizedTypedSequence(lowercase__ , col=lowercase__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Tuple ): '''simple docstring''' lowercase_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=lowercase__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ): '''simple docstring''' lowercase_ = "mock://dataset-train.arrow" with ArrowWriter(path=lowercase__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(lowercase__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(lowercase__ ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = pa.BufferOutputStream() with ParquetWriter(stream=lowercase__ ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowercase_ , lowercase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowercase_ = pa.BufferReader(output.getvalue() ) lowercase_ = pq.read_table(lowercase__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: int ): '''simple docstring''' import PIL.Image lowercase_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(lowercase__ , format="png" ) lowercase_ = pa.BufferOutputStream() with ParquetWriter( stream=lowercase__ , features=Features({"image": Image()} ) , embed_local_files=lowercase__ ) as writer: writer.write({"image": image_path} ) writer.finalize() lowercase_ = pa.BufferReader(output.getvalue() ) lowercase_ = pq.read_table(lowercase__ ) lowercase_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , lowercase__ ) with open(lowercase__ , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = pa.schema([pa.field("col_1" , pa.string() , nullable=lowercase__ )] ) lowercase_ = pa.BufferOutputStream() with ArrowWriter(stream=lowercase__ ) as writer: writer._build_writer(inferred_schema=lowercase__ ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '▁' SCREAMING_SNAKE_CASE__ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE__ = { 'google/pegasus-xsum': 5_1_2, } class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PegasusTokenizer lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<mask_2>" , UpperCAmelCase="<mask_1>" , UpperCAmelCase=None , UpperCAmelCase=103 , **UpperCAmelCase , ) -> Any: '''simple docstring''' lowercase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( F'additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is' F' {type(_SCREAMING_SNAKE_CASE )}' ) lowercase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowercase_ = additional_special_tokens_extended else: lowercase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowercase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __lowerCamelCase ( __snake_case , __snake_case ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 768 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.zeros(1 , lowerCamelCase_ ) ) lowercase_ = nn.Parameter(torch.ones(1 , lowerCamelCase_ ) ) def A__ ( self , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Dict: '''simple docstring''' lowercase_ = nn.Parameter(self.mean.to(lowerCamelCase_ ).to(lowerCamelCase_ ) ) lowercase_ = nn.Parameter(self.std.to(lowerCamelCase_ ).to(lowerCamelCase_ ) ) return self def A__ ( self , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = (embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = (embeds * self.std) + self.mean return embeds
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = jnp.ones((batch_size, length) ) / length return scores def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = None lowercase_ = 20 lowercase_ = self._get_uniform_logits(batch_size=2 , length=_lowercase ) # tweak scores to not be uniform anymore lowercase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase_ = jax.nn.softmax(_lowercase , axis=-1 ) lowercase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase_ = jax.nn.softmax(temp_dist_warper_sharper(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) lowercase_ = jax.nn.softmax(temp_dist_warper_smoother(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = None lowercase_ = 10 lowercase_ = 2 # create ramp distribution lowercase_ = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() lowercase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase_ = FlaxTopKLogitsWarper(3 ) lowercase_ = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase_ = 5 lowercase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowercase_ = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, length) ).copy() lowercase_ = top_k_warp_safety_check(_lowercase , _lowercase , cur_len=_lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = None lowercase_ = 10 lowercase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase_ = FlaxTopPLogitsWarper(0.8 ) lowercase_ = np.exp(top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowercase_ = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowercase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowercase_ = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = 20 lowercase_ = 4 lowercase_ = 0 lowercase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) # check that min length is applied at length 5 lowercase_ = ids_tensor((batch_size, 20) , vocab_size=20 ) lowercase_ = 5 lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = 15 lowercase_ = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = 20 lowercase_ = 4 lowercase_ = 0 lowercase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) # check that all scores are -inf except the bos_token_id score lowercase_ = ids_tensor((batch_size, 1) , vocab_size=20 ) lowercase_ = 1 lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase_ = 3 lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = 20 lowercase_ = 4 lowercase_ = 0 lowercase_ = 5 lowercase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase_ = ids_tensor((batch_size, 4) , vocab_size=20 ) lowercase_ = 4 lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase_ = 3 lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = 4 lowercase_ = 10 lowercase_ = 15 lowercase_ = 2 lowercase_ = 1 lowercase_ = 15 # dummy input_ids and scores lowercase_ = ids_tensor((batch_size, sequence_length) , _lowercase ) lowercase_ = input_ids.copy() lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = scores.copy() # instantiate all dist processors lowercase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ = FlaxTopKLogitsWarper(3 ) lowercase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) lowercase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) lowercase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) lowercase_ = 10 # no processor list lowercase_ = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) # with processor list lowercase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase_ = processor(_lowercase , _lowercase , cur_len=_lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 4 lowercase_ = 10 lowercase_ = 15 lowercase_ = 2 lowercase_ = 1 lowercase_ = 15 # dummy input_ids and scores lowercase_ = ids_tensor((batch_size, sequence_length) , _lowercase ) lowercase_ = input_ids.copy() lowercase_ = self._get_uniform_logits(_lowercase , _lowercase ) lowercase_ = scores.copy() # instantiate all dist processors lowercase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ = FlaxTopKLogitsWarper(3 ) lowercase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) lowercase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) lowercase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) lowercase_ = 10 # no processor list def run_no_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase_ = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) lowercase_ = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) return scores # with processor list def run_processor_list(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase_ = processor(_lowercase , _lowercase , cur_len=_lowercase ) return scores lowercase_ = jax.jit(_lowercase ) lowercase_ = jax.jit(_lowercase ) lowercase_ = jitted_run_no_processor_list(_lowercase , _lowercase , _lowercase ) lowercase_ = jitted_run_processor_list(_lowercase , _lowercase , _lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = """Hello world! cécé herlolip""" SCREAMING_SNAKE_CASE__ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple ): '''simple docstring''' lowercase_ = BertAbsConfig( temp_dir="." , finetune_bert=SCREAMING_SNAKE_CASE__ , large=SCREAMING_SNAKE_CASE__ , share_emb=SCREAMING_SNAKE_CASE__ , use_bert_emb=SCREAMING_SNAKE_CASE__ , encoder="bert" , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowercase_ = torch.load(SCREAMING_SNAKE_CASE__ , lambda __lowerCamelCase , __lowerCamelCase : storage ) lowercase_ = AbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("cpu" ) , SCREAMING_SNAKE_CASE__ ) original.eval() lowercase_ = BertAbsSummarizer(SCREAMING_SNAKE_CASE__ , torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) lowercase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs lowercase_ = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) lowercase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) lowercase_ = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(SCREAMING_SNAKE_CASE__ )) ) lowercase_ = torch.tensor(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowercase_ = encoder_input_ids lowercase_ = decoder_input_ids lowercase_ = lowercase_ = None lowercase_ = None lowercase_ = lowercase_ = None lowercase_ = lowercase_ = None lowercase_ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowercase_ = original(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] lowercase_ = original.generator(SCREAMING_SNAKE_CASE__ ) lowercase_ = new_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] lowercase_ = new_model.generator(SCREAMING_SNAKE_CASE__ ) lowercase_ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(SCREAMING_SNAKE_CASE__ ) ) lowercase_ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(SCREAMING_SNAKE_CASE__ ) ) lowercase_ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict() , "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
from math import pi, sqrt def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ): '''simple docstring''' if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(a__ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(a__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' assert gamma(0.5 ) == sqrt(a__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE__ = 1.0 while num: SCREAMING_SNAKE_CASE__ = float(input("""Gamma of: """)) print(f"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = """tiny-wmt19-en-ru""" # Build # borrowed from a test SCREAMING_SNAKE_CASE__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] SCREAMING_SNAKE_CASE__ = dict(zip(vocab, range(len(vocab)))) SCREAMING_SNAKE_CASE__ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ = Path(tmpdirname) SCREAMING_SNAKE_CASE__ = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] SCREAMING_SNAKE_CASE__ = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] SCREAMING_SNAKE_CASE__ = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) SCREAMING_SNAKE_CASE__ = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) SCREAMING_SNAKE_CASE__ = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) SCREAMING_SNAKE_CASE__ = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test SCREAMING_SNAKE_CASE__ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") SCREAMING_SNAKE_CASE__ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , UpperCAmelCase = 1 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' lowercase_ = self.unet.config.sample_size lowercase_ = (batch_size, 3, img_size, img_size) lowercase_ = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) lowercase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper lowercase_ = self.scheduler.schedule[t] lowercase_ = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat lowercase_ = self.scheduler.add_noise_to_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. lowercase_ = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev lowercase_ = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. lowercase_ = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample lowercase_ = self.scheduler.step_correct( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step_output.prev_sample , step_output["derivative"] , ) lowercase_ = step_output.prev_sample lowercase_ = (sample / 2 + 0.5).clamp(0 , 1 ) lowercase_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 100 ): '''simple docstring''' lowercase_ = (n * (n + 1) // 2) ** 2 lowercase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' lowercase_ = [] lowercase_ = set({"(", "[", "{"} ) lowercase_ = set({")", "]", "}"} ) lowercase_ = {"{": "}", "[": "]", "(": ")"} for i in range(len(_SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_SCREAMING_SNAKE_CASE ) == 0 or (len(_SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_SCREAMING_SNAKE_CASE ) == 0 def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = input("Enter sequence of brackets: " ) if is_balanced(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE , "is balanced" ) else: print(_SCREAMING_SNAKE_CASE , "is not balanced" ) if __name__ == "__main__": main()
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Any=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: List[Any]=0 ): '''simple docstring''' lowercase_ = [] for old_item in old_list: lowercase_ = old_item.replace("in_layers.0" , "norm1" ) lowercase_ = new_item.replace("in_layers.2" , "conv1" ) lowercase_ = new_item.replace("out_layers.0" , "norm2" ) lowercase_ = new_item.replace("out_layers.3" , "conv2" ) lowercase_ = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowercase_ = new_item.replace("skip_connection" , "conv_shortcut" ) lowercase_ = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=0 ): '''simple docstring''' lowercase_ = [] for old_item in old_list: lowercase_ = old_item lowercase_ = new_item.replace("norm.weight" , "group_norm.weight" ) lowercase_ = new_item.replace("norm.bias" , "group_norm.bias" ) lowercase_ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowercase_ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowercase_ = shave_segments(UpperCamelCase__ , n_shave_prefix_segments=UpperCamelCase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any]=None , __lowerCamelCase: List[str]=None , __lowerCamelCase: List[Any]=None ): '''simple docstring''' assert isinstance(UpperCamelCase__ , UpperCamelCase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase_ = old_checkpoint[path] lowercase_ = old_tensor.shape[0] // 3 lowercase_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase_ = old_tensor.shape[0] // config['''num_head_channels'''] // 3 lowercase_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase_ = old_tensor.split(channels // num_heads , dim=1 ) lowercase_ = query.reshape(UpperCamelCase__ ) lowercase_ = key.reshape(UpperCamelCase__ ) lowercase_ = value.reshape(UpperCamelCase__ ) for path in paths: lowercase_ = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase_ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowercase_ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowercase_ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowercase_ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase_ = old_checkpoint[path['''old''']][:, :, 0] else: lowercase_ = old_checkpoint[path['''old''']] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Tuple ): '''simple docstring''' lowercase_ = {} lowercase_ = checkpoint['''time_embed.0.weight'''] lowercase_ = checkpoint['''time_embed.0.bias'''] lowercase_ = checkpoint['''time_embed.2.weight'''] lowercase_ = checkpoint['''time_embed.2.bias'''] lowercase_ = checkpoint['''input_blocks.0.0.weight'''] lowercase_ = checkpoint['''input_blocks.0.0.bias'''] lowercase_ = checkpoint['''out.0.weight'''] lowercase_ = checkpoint['''out.0.bias'''] lowercase_ = checkpoint['''out.2.weight'''] lowercase_ = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only lowercase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowercase_ = { layer_id: [key for key in checkpoint if F'input_blocks.{layer_id}' in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the middle blocks only lowercase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowercase_ = { layer_id: [key for key in checkpoint if F'middle_block.{layer_id}' in key] for layer_id in range(UpperCamelCase__ ) } # Retrieves the keys for the output blocks only lowercase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowercase_ = { layer_id: [key for key in checkpoint if F'output_blocks.{layer_id}' in key] for layer_id in range(UpperCamelCase__ ) } for i in range(1 , UpperCamelCase__ ): lowercase_ = (i - 1) // (config['''num_res_blocks'''] + 1) lowercase_ = (i - 1) % (config['''num_res_blocks'''] + 1) lowercase_ = [key for key in input_blocks[i] if F'input_blocks.{i}.0' in key] lowercase_ = [key for key in input_blocks[i] if F'input_blocks.{i}.1' in key] if F'input_blocks.{i}.0.op.weight' in checkpoint: lowercase_ = checkpoint[ F'input_blocks.{i}.0.op.weight' ] lowercase_ = checkpoint[ F'input_blocks.{i}.0.op.bias' ] continue lowercase_ = renew_resnet_paths(UpperCamelCase__ ) lowercase_ = {'''old''': F'input_blocks.{i}.0', '''new''': F'down_blocks.{block_id}.resnets.{layer_in_block_id}'} lowercase_ = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path, resnet_op] , config=UpperCamelCase__ ) if len(UpperCamelCase__ ): lowercase_ = renew_attention_paths(UpperCamelCase__ ) lowercase_ = { '''old''': F'input_blocks.{i}.1', '''new''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase_ = { F'input_blocks.{i}.1.qkv.bias': { '''key''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'input_blocks.{i}.1.qkv.weight': { '''key''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': F'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ , ) lowercase_ = middle_blocks[0] lowercase_ = middle_blocks[1] lowercase_ = middle_blocks[2] lowercase_ = renew_resnet_paths(UpperCamelCase__ ) assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ ) lowercase_ = renew_resnet_paths(UpperCamelCase__ ) assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , config=UpperCamelCase__ ) lowercase_ = renew_attention_paths(UpperCamelCase__ ) lowercase_ = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , attention_paths_to_split=UpperCamelCase__ , config=UpperCamelCase__ ) for i in range(UpperCamelCase__ ): lowercase_ = i // (config['''num_res_blocks'''] + 1) lowercase_ = i % (config['''num_res_blocks'''] + 1) lowercase_ = [shave_segments(UpperCamelCase__ , 2 ) for name in output_blocks[i]] lowercase_ = {} for layer in output_block_layers: lowercase_ = layer.split("." )[0], shave_segments(UpperCamelCase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(UpperCamelCase__ ) else: lowercase_ = [layer_name] if len(UpperCamelCase__ ) > 1: lowercase_ = [key for key in output_blocks[i] if F'output_blocks.{i}.0' in key] lowercase_ = [key for key in output_blocks[i] if F'output_blocks.{i}.1' in key] lowercase_ = renew_resnet_paths(UpperCamelCase__ ) lowercase_ = renew_resnet_paths(UpperCamelCase__ ) lowercase_ = {'''old''': F'output_blocks.{i}.0', '''new''': F'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , config=UpperCamelCase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase_ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowercase_ = checkpoint[ F'output_blocks.{i}.{index}.conv.weight' ] lowercase_ = checkpoint[ F'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(UpperCamelCase__ ) == 2: lowercase_ = [] if len(UpperCamelCase__ ): lowercase_ = renew_attention_paths(UpperCamelCase__ ) lowercase_ = { '''old''': F'output_blocks.{i}.1', '''new''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase_ = { F'output_blocks.{i}.1.qkv.bias': { '''key''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', '''query''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', '''value''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, F'output_blocks.{i}.1.qkv.weight': { '''key''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', '''query''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', '''value''': F'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=UpperCamelCase__ , ) else: lowercase_ = renew_resnet_paths(UpperCamelCase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase_ = '''.'''.join(["output_blocks", str(UpperCamelCase__ ), path["old"]] ) lowercase_ = '''.'''.join(["up_blocks", str(UpperCamelCase__ ), "resnets", str(UpperCamelCase__ ), path["new"]] ) lowercase_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read()) SCREAMING_SNAKE_CASE__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE__ = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) SCREAMING_SNAKE_CASE__ = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) SCREAMING_SNAKE_CASE__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = logging.get_logger() # the current default level is logging.WARNING lowercase_ = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCAmelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = logging.get_verbosity() lowercase_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase_ = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCAmelCase ) as cl: logger.warning(UpperCAmelCase ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCAmelCase ) as cl: logger.warning(UpperCAmelCase ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCAmelCase ) as cl: logger.warning(UpperCAmelCase ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(UpperCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def A__ ( self ) -> Optional[int]: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var lowercase_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase_ = os.getenv("TRANSFORMERS_VERBOSITY" , UpperCAmelCase ) lowercase_ = logging.log_levels[env_level_str] lowercase_ = logging.get_verbosity() self.assertEqual( UpperCAmelCase , UpperCAmelCase , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level lowercase_ = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def A__ ( self ) -> int: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() lowercase_ = logging.logging.getLogger() with CaptureLogger(UpperCAmelCase ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def A__ ( self ) -> int: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() lowercase_ = logging.get_logger("transformers.models.bart.tokenization_bart" ) lowercase_ = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCAmelCase ) as cl: logger.warning_advice(UpperCAmelCase ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCAmelCase ) as cl: logger.warning_advice(UpperCAmelCase ) self.assertEqual(cl.out , msg + "\n" ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
SCREAMING_SNAKE_CASE__ = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = 'src/transformers' # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(R"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(R"""^\s*else:""") def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: Optional[int] ): '''simple docstring''' if _re_test_backend.search(__UpperCAmelCase ) is None: return None lowercase_ = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: Any ): '''simple docstring''' with open(__UpperCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: lowercase_ = f.readlines() lowercase_ = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure lowercase_ = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowercase_ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): lowercase_ = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] lowercase_ = re.findall("\[([^\]]+)\]" , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowercase_ = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: lowercase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowercase_ = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowercase_ = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: lowercase_ = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(", " ) lowercase_ = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: lowercase_ = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(", " ) lowercase_ = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 lowercase_ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase_ = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowercase_ = lines[line_index] lowercase_ = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase_ = {"none": objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowercase_ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase_ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase_ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowercase_ = lines[line_index] lowercase_ = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase_ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict ): '''simple docstring''' def find_duplicates(_SCREAMING_SNAKE_CASE: str ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase_ = [] for key in import_dict_objects.keys(): lowercase_ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowercase_ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase_ = "base imports" if key == "none" else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: lowercase_ = os.path.join(__UpperCAmelCase , "__init__.py" ) lowercase_ = parse_init(__UpperCAmelCase ) if objects is not None: lowercase_ = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: lowercase_ = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError("\n\n".join(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob("*.py" ) ) ) == 0: continue lowercase_ = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) lowercase_ = short_path.replace(os.path.sep , "." ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue lowercase_ = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) lowercase_ = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules SCREAMING_SNAKE_CASE__ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = importlib.util.spec_from_file_location( "transformers" , os.path.join(__UpperCAmelCase , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase_ = spec.loader.load_module() lowercase_ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCAmelCase ) > 0: lowercase_ = "\n".join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
from __future__ import annotations import math def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list , __lowerCamelCase: list ): '''simple docstring''' if len(lowercase_ ) != 2 or len(a[0] ) != 2 or len(lowercase_ ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) lowercase_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list , __lowerCamelCase: list ): '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase_ ) ) ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list , __lowerCamelCase: list ): '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase_ ) ) ] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list ): '''simple docstring''' if len(lowercase_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) lowercase_ = len(lowercase_ ) lowercase_ = matrix_length // 2 lowercase_ = [[a[i][j] for j in range(lowercase_ , lowercase_ )] for i in range(lowercase_ )] lowercase_ = [ [a[i][j] for j in range(lowercase_ , lowercase_ )] for i in range(lowercase_ , lowercase_ ) ] lowercase_ = [[a[i][j] for j in range(lowercase_ )] for i in range(lowercase_ )] lowercase_ = [[a[i][j] for j in range(lowercase_ )] for i in range(lowercase_ , lowercase_ )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list ): '''simple docstring''' return len(lowercase_ ), len(matrix[0] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list ): '''simple docstring''' print("\n".join(str(lowercase_ ) for line in matrix ) ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list , __lowerCamelCase: list ): '''simple docstring''' if matrix_dimensions(lowercase_ ) == (2, 2): return default_matrix_multiplication(lowercase_ , lowercase_ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(lowercase_ ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = split_matrix(lowercase_ ) lowercase_ = actual_strassen(lowercase_ , matrix_subtraction(lowercase_ , lowercase_ ) ) lowercase_ = actual_strassen(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) lowercase_ = actual_strassen(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) lowercase_ = actual_strassen(lowercase_ , matrix_subtraction(lowercase_ , lowercase_ ) ) lowercase_ = actual_strassen(matrix_addition(lowercase_ , lowercase_ ) , matrix_addition(lowercase_ , lowercase_ ) ) lowercase_ = actual_strassen(matrix_subtraction(lowercase_ , lowercase_ ) , matrix_addition(lowercase_ , lowercase_ ) ) lowercase_ = actual_strassen(matrix_subtraction(lowercase_ , lowercase_ ) , matrix_addition(lowercase_ , lowercase_ ) ) lowercase_ = matrix_addition(matrix_subtraction(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) , lowercase_ ) lowercase_ = matrix_addition(lowercase_ , lowercase_ ) lowercase_ = matrix_addition(lowercase_ , lowercase_ ) lowercase_ = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) , lowercase_ ) # construct the new matrix from our 4 quadrants lowercase_ = [] for i in range(len(lowercase_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: list , __lowerCamelCase: list ): '''simple docstring''' if matrix_dimensions(lowercase_ )[1] != matrix_dimensions(lowercase_ )[0]: lowercase_ = ( "Unable to multiply these matrices, please check the dimensions.\n" F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(lowercase_ ) lowercase_ = matrix_dimensions(lowercase_ ) lowercase_ = matrix_dimensions(lowercase_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] lowercase_ = max(*lowercase_ , *lowercase_ ) lowercase_ = int(math.pow(2 , math.ceil(math.loga(lowercase_ ) ) ) ) lowercase_ = matrixa lowercase_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowercase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) lowercase_ = actual_strassen(lowercase_ , lowercase_ ) # Removing the additional zeros for i in range(0 , lowercase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] SCREAMING_SNAKE_CASE__ = [[0, 2, 1, 1], [1_6, 2, 3, 3], [2, 2, 7, 7], [1_3, 1_1, 2_2, 4]] print(strassen(matrixa, matrixa))
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = hf_hub_url(repo_id=A_ , path=A_ , revision=A_ ) assert url == F'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(A_ )}'
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int]=None , **__lowerCamelCase: str ): '''simple docstring''' lowercase_ = [x.strip() for x in open(_lowercase ).readlines()] lowercase_ = [x.strip() for x in open(_lowercase ).readlines()][: len(_lowercase )] lowercase_ = calculate_rouge(_lowercase , _lowercase , **_lowercase ) if save_path is not None: save_json(_lowercase , _lowercase , indent=_lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
SCREAMING_SNAKE_CASE__ = 8.3144598 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example SCREAMING_SNAKE_CASE__ = 3_0_0 SCREAMING_SNAKE_CASE__ = 2_8 SCREAMING_SNAKE_CASE__ = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
SCREAMING_SNAKE_CASE__ = 2_5_6 # Modulus to hash a string SCREAMING_SNAKE_CASE__ = 1_0_0_0_0_0_3 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = len(_a ) lowercase_ = len(_a ) if p_len > t_len: return False lowercase_ = 0 lowercase_ = 0 lowercase_ = 1 # Calculating the hash of pattern and substring of text for i in range(_a ): lowercase_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = "abc1abc12" lowercase_ = "alskfjaldsabc1abc1abc12k23adsfabcabc" lowercase_ = "alskfjaldsk23adsfabcabc" assert rabin_karp(_a , _a ) and not rabin_karp(_a , _a ) # Test 2) lowercase_ = "ABABX" lowercase_ = "ABABZABABYABABX" assert rabin_karp(_a , _a ) # Test 3) lowercase_ = "AAAB" lowercase_ = "ABAAAAAB" assert rabin_karp(_a , _a ) # Test 4) lowercase_ = "abcdabcy" lowercase_ = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_a , _a ) # Test 5) lowercase_ = "Lü" lowercase_ = "Lüsai" assert rabin_karp(_a , _a ) lowercase_ = "Lue" assert not rabin_karp(_a , _a ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: str = " " ): '''simple docstring''' lowercase_ = [] lowercase_ = 0 for index, char in enumerate(__lowerCAmelCase ): if char == separator: split_words.append(string[last_index:index] ) lowercase_ = index + 1 elif index + 1 == len(__lowerCAmelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" lowerCAmelCase__ = """all_checks""" lowerCAmelCase__ = """basic_checks""" lowerCAmelCase__ = """no_checks""" class __lowerCamelCase ( a__): """simple docstring""" pass class __lowerCamelCase ( a__): """simple docstring""" pass class __lowerCamelCase ( a__): """simple docstring""" pass class __lowerCamelCase ( a__): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict , __lowerCamelCase: Any=None ): '''simple docstring''' if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_lowercase ) - set(_lowercase ) ) ) if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_lowercase ) - set(_lowercase ) ) ) lowercase_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowercase_ = " for " + verification_name if verification_name is not None else "" if len(_lowercase ) > 0: raise NonMatchingChecksumError( F'Checksums didn\'t match{for_verification_name}:\n' F'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __lowerCamelCase ( a__): """simple docstring""" pass class __lowerCamelCase ( a__): """simple docstring""" pass class __lowerCamelCase ( a__): """simple docstring""" pass class __lowerCamelCase ( a__): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict ): '''simple docstring''' if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise ExpectedMoreSplits(str(set(_lowercase ) - set(_lowercase ) ) ) if len(set(_lowercase ) - set(_lowercase ) ) > 0: raise UnexpectedSplits(str(set(_lowercase ) - set(_lowercase ) ) ) lowercase_ = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_lowercase ) > 0: raise NonMatchingSplitsSizesError(str(_lowercase ) ) logger.info("All the splits matched successfully." ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: bool = True ): '''simple docstring''' if record_checksum: lowercase_ = shaaaa() with open(_lowercase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(_lowercase ) lowercase_ = m.hexdigest() else: lowercase_ = None return {"num_bytes": os.path.getsize(_lowercase ), "checksum": checksum} def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """▁""" SCREAMING_SNAKE_CASE__ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } SCREAMING_SNAKE_CASE__ = { """facebook/s2t-small-librispeech-asr""": 1_0_2_4, } SCREAMING_SNAKE_CASE__ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] SCREAMING_SNAKE_CASE__ = {"""mustc""": MUSTC_LANGS} class __lowerCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = MAX_MODEL_INPUT_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = [] def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<unk>" , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , **UpperCAmelCase , ) -> str: '''simple docstring''' lowercase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , do_upper_case=a__ , do_lower_case=a__ , tgt_lang=a__ , lang_codes=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) lowercase_ = do_upper_case lowercase_ = do_lower_case lowercase_ = load_json(a__ ) lowercase_ = {v: k for k, v in self.encoder.items()} lowercase_ = spm_file lowercase_ = load_spm(a__ , self.sp_model_kwargs ) if lang_codes is not None: lowercase_ = lang_codes lowercase_ = LANGUAGES[lang_codes] lowercase_ = [F'<lang:{lang}>' for lang in self.langs] lowercase_ = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} lowercase_ = self.lang_tokens lowercase_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase_ = {} @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) @property def A__ ( self ) -> List[str]: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = new_tgt_lang self.set_tgt_lang_special_tokens(a__ ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.lang_code_to_id[tgt_lang] lowercase_ = [lang_code_id] def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return self.sp_model.encode(a__ , out_type=a__ ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' return self.encoder.get(a__ , self.encoder[self.unk_token] ) def A__ ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' return self.decoder.get(a__ , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = [] lowercase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase_ = self.sp_model.decode(a__ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase_ = [] else: current_sub_tokens.append(a__ ) lowercase_ = self.sp_model.decode(a__ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> str: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> Any: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) lowercase_ = [1] * len(self.prefix_tokens ) lowercase_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(a__ )) + suffix_ones return prefix_ones + ([0] * len(a__ )) + ([0] * len(a__ )) + suffix_ones def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: '''simple docstring''' lowercase_ = self.__dict__.copy() lowercase_ = None return state def __setstate__( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ = {} lowercase_ = load_spm(self.spm_file , self.sp_model_kwargs ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> str: '''simple docstring''' lowercase_ = Path(a__ ) assert save_dir.is_dir(), F'{save_directory} should be a directory' lowercase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(a__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , a__ ) elif not os.path.isfile(self.spm_file ): with open(a__ , "wb" ) as fi: lowercase_ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (str(a__ ), str(a__ )) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: Dict[str, Any] ): '''simple docstring''' lowercase_ = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: return json.load(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str ): '''simple docstring''' with open(__lowerCamelCase , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple ): '''simple docstring''' lowercase_ = multiprocessing.Manager() lowercase_ = manager.list() lowercase_ = multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("timed out" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase_ = shutil.rmtree lowercase_ = os.rmdir lowercase_ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase_ = {} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append("passed" ) except TimeoutException: result.append("timed out" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. lowercase_ = rmtree lowercase_ = rmdir lowercase_ = chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' def signal_handler(__lowerCamelCase: Tuple , __lowerCamelCase: Optional[int] ): raise TimeoutException("Timed out!" ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class __lowerCamelCase ( __lowerCAmelCase ): """simple docstring""" pass class __lowerCamelCase ( io.StringIO ): """simple docstring""" def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' raise OSError def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' raise OSError def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' raise OSError def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: '''simple docstring''' return False class __lowerCamelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" lowerCAmelCase__ = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if root == ".": yield return lowercase_ = os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str]=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase_ = None lowercase_ = None import os lowercase_ = "1" lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None import shutil lowercase_ = None lowercase_ = None lowercase_ = None import subprocess lowercase_ = None # type: ignore lowercase_ = None import sys lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") SCREAMING_SNAKE_CASE__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) SCREAMING_SNAKE_CASE__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' with open(lowerCAmelCase__ , "rb" ) as f: lowercase_ = Image.open(lowerCAmelCase__ ) return im.convert("RGB" ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase__ = field(default=_lowerCAmelCase , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase__ = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def A__ ( self ) -> Tuple: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowerCAmelCase )} , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase__ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase__ = field(default=_lowerCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase__ = field( default=_lowerCAmelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = torch.stack([example["pixel_values"] for example in examples] ) lowercase_ = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase_ = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowercase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: lowercase_ = {} if data_args.train_dir is not None: lowercase_ = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: lowercase_ = os.path.join(data_args.validation_dir , "**" ) lowercase_ = load_dataset( "imagefolder" , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase_ = None if """validation""" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: lowercase_ = dataset["""train"""].train_test_split(data_args.train_val_split ) lowercase_ = split["""train"""] lowercase_ = split["""test"""] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowercase_ = dataset["""train"""].features["""labels"""].names lowercase_ = {}, {} for i, label in enumerate(lowerCAmelCase__ ): lowercase_ = str(lowerCAmelCase__ ) lowercase_ = label # Load the accuracy metric from the datasets package lowercase_ = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowerCamelCase: Dict ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) lowercase_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowercase_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) lowercase_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: lowercase_ = image_processor.size["""shortest_edge"""] else: lowercase_ = (image_processor.size["""height"""], image_processor.size["""width"""]) lowercase_ = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) lowercase_ = Compose( [ RandomResizedCrop(lowerCAmelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) lowercase_ = Compose( [ Resize(lowerCAmelCase__ ), CenterCrop(lowerCAmelCase__ ), ToTensor(), normalize, ] ) def train_transforms(__lowerCamelCase: List[str] ): lowercase_ = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["""image"""] ] return example_batch def val_transforms(__lowerCamelCase: Optional[Any] ): lowercase_ = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["""image"""]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: lowercase_ = ( dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: lowercase_ = ( dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(lowerCAmelCase__ ) # Initalize our trainer lowercase_ = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: lowercase_ = None if training_args.resume_from_checkpoint is not None: lowercase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ = last_checkpoint lowercase_ = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase_ = trainer.evaluate() trainer.log_metrics("eval" , lowerCAmelCase__ ) trainer.save_metrics("eval" , lowerCAmelCase__ ) # Write model card and (optionally) push to hub lowercase_ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """image-classification""", """dataset""": data_args.dataset_name, """tags""": ["""image-classification""", """vision"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> str: '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="utf-8" , check=UpperCamelCase__ , ) assert hasattr(self , "env" ) def A__ ( self , UpperCAmelCase=1 ) -> Dict: '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-single' , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = self.create_estimator() # run training estimator.fit() # result dataframe lowercase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCamelCase__ )
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ): '''simple docstring''' if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence lowercase_ = gray_code_sequence_string(lowerCamelCase_ ) # # convert them to integers for i in range(len(lowerCamelCase_ ) ): lowercase_ = int(sequence[i] , 2 ) return sequence def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase_ = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase_ = gray_code_sequence_string(bit_count - 1 ) lowercase_ = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase_ = '0' + smaller_sequence[i] sequence.append(lowerCamelCase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase_ = '1' + smaller_sequence[i] sequence.append(lowerCamelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__ = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } SCREAMING_SNAKE_CASE__ = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class __lowerCamelCase ( __a ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = SqueezeBertTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="[UNK]" , UpperCAmelCase="[SEP]" , UpperCAmelCase="[PAD]" , UpperCAmelCase="[CLS]" , UpperCAmelCase="[MASK]" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase__ ) != tokenize_chinese_chars ): lowercase_ = getattr(UpperCamelCase__ , normalizer_state.pop("type" ) ) lowercase_ = do_lower_case lowercase_ = strip_accents lowercase_ = tokenize_chinese_chars lowercase_ = normalizer_class(**UpperCamelCase__ ) lowercase_ = do_lower_case def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( _lowerCAmelCase ): """simple docstring""" lowerCAmelCase__ = (UnCLIPScheduler,) def A__ ( self , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_lowercase ) return config def A__ ( self ) -> Any: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowercase ) def A__ ( self ) -> List[Any]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def A__ ( self ) -> Tuple: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowercase ) def A__ ( self ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowercase ) def A__ ( self ) -> Dict: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowercase , prev_timestep=_lowercase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="fixed_small_log" ) lowercase_ = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5 def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config(variance_type="learned_range" ) lowercase_ = scheduler_class(**_lowercase ) lowercase_ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowercase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowercase ) - -5.7998052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowercase ) - -0.0010011 < 1e-5 def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**_lowercase ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual lowercase_ = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(_lowercase ) ) lowercase_ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3284743 ) < 1e-3 def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = self.scheduler_classes[0] lowercase_ = self.get_scheduler_config() lowercase_ = scheduler_class(**_lowercase ) scheduler.set_timesteps(25 ) lowercase_ = scheduler.timesteps lowercase_ = self.dummy_model() lowercase_ = self.dummy_sample_deter lowercase_ = torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual lowercase_ = model(_lowercase , _lowercase ) if i + 1 == timesteps.shape[0]: lowercase_ = None else: lowercase_ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase_ = scheduler.step( _lowercase , _lowercase , _lowercase , prev_timestep=_lowercase , generator=_lowercase ).prev_sample lowercase_ = pred_prev_sample lowercase_ = torch.sum(torch.abs(_lowercase ) ) lowercase_ = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3362038 ) < 1e-3 def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> int: '''simple docstring''' pass
370
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL SCREAMING_SNAKE_CASE__ = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: tuple , __lowerCamelCase: Path , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int]=False , ): '''simple docstring''' output_path.parent.mkdir(parents=a__ , exist_ok=a__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , use_external_data_format=a__ , enable_onnx_checker=a__ , opset_version=a__ , ) else: export( a__ , a__ , f=output_path.as_posix() , input_names=a__ , output_names=a__ , dynamic_axes=a__ , do_constant_folding=a__ , opset_version=a__ , ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase_ = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: lowercase_ = "cpu" lowercase_ = Path(a__ ) # VAE DECODER lowercase_ = AutoencoderKL.from_pretrained(model_path + "/vae" ) lowercase_ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase_ = vae_decoder.decode onnx_export( a__ , model_args=( torch.randn(1 , a__ , 25 , 25 ).to(device=a__ , dtype=a__ ), False, ) , output_path=output_path / "vae_decoder" / "model.onnx" , ordered_input_names=["latent_sample", "return_dict"] , output_names=["sample"] , dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } , opset=a__ , ) del vae_decoder if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") SCREAMING_SNAKE_CASE__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
371
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Any="attention" ): '''simple docstring''' lowercase_ = lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) lowercase_ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) lowercase_ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) lowercase_ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowercase_ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) lowercase_ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] lowercase_ = (wi_a, wi_a) else: lowercase_ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] lowercase_ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict , *, __lowerCamelCase: int , __lowerCamelCase: bool , __lowerCamelCase: bool = False ): '''simple docstring''' lowercase_ = traverse_util.flatten_dict(variables["target"] ) lowercase_ = {"/".join(__lowerCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase_ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __lowerCamelCase ) lowercase_ = collections.OrderedDict() # Shared embeddings. lowercase_ = old["token_embedder/embedding"] # Encoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "encoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , __lowerCamelCase , "encoder" ).T lowercase_ = old["encoder/encoder_norm/scale"] if not scalable_attention: lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "encoder" ).T lowercase_ = tax_relpos_bias_lookup( __lowerCamelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__lowerCamelCase ): # Block i, layer 0 (Self Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_self_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "self_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 1 (Cross Attention). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_cross_attention_layer_norm" ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = tax_attention_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "encoder_decoder_attention" ) lowercase_ = layer_norm lowercase_ = k.T lowercase_ = o.T lowercase_ = q.T lowercase_ = v.T # Block i, layer 2 (MLP). lowercase_ = tax_layer_norm_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , "pre_mlp_layer_norm" ) lowercase_ , lowercase_ = tax_mlp_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" , __lowerCamelCase ) lowercase_ = layer_norm if split_mlp_wi: lowercase_ = wi[0].T lowercase_ = wi[1].T else: lowercase_ = wi.T lowercase_ = wo.T if scalable_attention: # convert the rel_embedding of each layer lowercase_ = tax_relpos_bias_lookup(__lowerCamelCase , __lowerCamelCase , "decoder" ).T lowercase_ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase_ = old["decoder/logits_dense/kernel"].T return new def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: bool ): '''simple docstring''' lowercase_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) lowercase_ = state_dict["shared.weight"] return state_dict def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowercase_ = convert_tax_to_pytorch( __lowerCamelCase , num_layers=config.num_layers , is_encoder_only=__lowerCamelCase , scalable_attention=__lowerCamelCase ) lowercase_ = make_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ): '''simple docstring''' lowercase_ = MTaConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase_ = UMTaEncoderModel(__lowerCamelCase ) else: lowercase_ = UMTaForConditionalGeneration(__lowerCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(__lowerCamelCase ) print("Done" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
297
0
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ = logging.getLogger() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = {} lowercase_ = os.path.join(__a , "all_results.json" ) if os.path.exists(__a ): with open(__a , "r" ) as f: lowercase_ = json.load(__a ) else: raise ValueError(F'can\'t find {path}' ) return results SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> List[Any]: '''simple docstring''' import xla_spawn lowercase_ = self.get_auto_remove_tmp_dir() lowercase_ = F'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(_A , "argv" , _A ): lowercase_ = time() xla_spawn.main() lowercase_ = time() lowercase_ = get_results(_A ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def A__ ( self ) -> str: '''simple docstring''' import xla_spawn lowercase_ = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_A , "argv" , _A ): xla_spawn.main()
350
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError("Input value must be a 'int' type" ) return bin(__lowerCamelCase ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
297
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: dict ): '''simple docstring''' return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: np.ndarray ): '''simple docstring''' lowercase_ = XGBClassifier() classifier.fit(A__ , A__ ) return classifier def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = load_iris() lowercase_ = data_handling(A__ ) lowercase_ = train_test_split( A__ , A__ , test_size=0.25 ) lowercase_ = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowercase_ = xgboost(A__ , A__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A__ , A__ , A__ , display_labels=A__ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
351
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = 42 class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase_ = num_attention_heads lowercase_ = attention_head_dim lowercase_ = num_attention_heads * attention_head_dim lowercase_ = in_channels lowercase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowercase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowercase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ) -> Optional[Any]: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = hidden_states.shape lowercase_ = batch_frames // num_frames lowercase_ = hidden_states lowercase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowercase_ = self.norm(UpperCAmelCase ) lowercase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowercase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowercase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowercase_ = self.proj_out(UpperCAmelCase ) lowercase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowercase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
297
0
"""simple docstring""" from math import ceil def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int = 1001 ): '''simple docstring''' lowercase_ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase_ = 2 * i + 1 lowercase_ = 2 * i lowercase_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
352
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: np.ndarray , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) lowercase_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.abs(np.fft.fft(__lowerCamelCase ) ) lowercase_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds lowercase_ = get_bounds(__lowerCamelCase , __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__lowerCamelCase ) plt.show() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: FilterType , __lowerCamelCase: int ): '''simple docstring''' lowercase_ = 512 lowercase_ = [1] + [0] * (size - 1) lowercase_ = [filter_type.process(__lowerCamelCase ) for item in inputs] lowercase_ = [0] * (samplerate - size) # zero-padding outputs += filler lowercase_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__lowerCamelCase , -2 * pi ) ) plt.show()
297
0
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' lowercase_ = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowercase_ = [] lowercase_ = list(range(__lowerCamelCase ) ) # Find permutation while factorials: lowercase_ = factorials.pop() lowercase_ , lowercase_ = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
353
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """RUCAIBox/mvp""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = MvpTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="replace" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase_ = "post_processor" lowercase_ = getattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) if tokenizer_component_instance: lowercase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ = tuple(state["sep"] ) if "cls" in state: lowercase_ = tuple(state["cls"] ) lowercase_ = False if state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = add_prefix_space lowercase_ = True if state.get("trim_offsets" , UpperCAmelCase ) != trim_offsets: lowercase_ = trim_offsets lowercase_ = True if changes_to_apply: lowercase_ = getattr(UpperCAmelCase , state.pop("type" ) ) lowercase_ = component_class(**UpperCAmelCase ) setattr(self.backend_tokenizer , UpperCAmelCase , UpperCAmelCase ) @property def A__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else value lowercase_ = value def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: '''simple docstring''' lowercase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
297
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowerCamelCase ( lowercase_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = params lowercase_ = np.array(a__ ) lowercase_ = np.array([len(a__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.lengths ) def A__ ( self ) -> str: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.params.max_model_input_size lowercase_ = self.lengths > max_len logger.info(F'Splitting {sum(a__ )} too long sequences.' ) def divide_chunks(UpperCAmelCase , UpperCAmelCase ): return [l[i : i + n] for i in range(0 , len(a__ ) , a__ )] lowercase_ = [] lowercase_ = [] if self.params.mlm: lowercase_ , lowercase_ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: lowercase_ , lowercase_ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase_ = np.insert(a__ , 0 , a__ ) if sub_s[-1] != sep_id: lowercase_ = np.insert(a__ , len(a__ ) , a__ ) assert len(a__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(a__ ) new_tok_ids.extend(a__ ) new_lengths.extend([len(a__ ) for l in sub_seqs] ) lowercase_ = np.array(a__ ) lowercase_ = np.array(a__ ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = len(self ) lowercase_ = self.lengths > 11 lowercase_ = self.token_ids[indices] lowercase_ = self.lengths[indices] lowercase_ = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def A__ ( self ) -> Any: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase_ = self.params.special_tok_ids["unk_token"] lowercase_ = len(self ) lowercase_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase_ = (unk_occs / self.lengths) < 0.5 lowercase_ = self.token_ids[indices] lowercase_ = self.lengths[indices] lowercase_ = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def A__ ( self ) -> Any: '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def A__ ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = [t[0] for t in batch] lowercase_ = [t[1] for t in batch] assert len(a__ ) == len(a__ ) # Max for paddings lowercase_ = max(a__ ) # Pad token ids if self.params.mlm: lowercase_ = self.params.special_tok_ids["pad_token"] else: lowercase_ = self.params.special_tok_ids["unk_token"] lowercase_ = [list(t.astype(a__ ) ) + [pad_idx] * (max_seq_len_ - len(a__ )) for t in token_ids] assert len(tk_ ) == len(a__ ) assert all(len(a__ ) == max_seq_len_ for t in tk_ ) lowercase_ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase_ = torch.tensor(a__ ) # (bs) return tk_t, lg_t
354
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableUnCLIPImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase__ = frozenset([] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 32 lowercase_ = embedder_hidden_size # image encoding components lowercase_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowercase_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCAmelCase , projection_dim=UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowercase_ = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase ) lowercase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowercase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase , layers_per_block=1 , upcast_attention=UpperCAmelCase , use_linear_projection=UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL() lowercase_ = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Tuple: '''simple docstring''' if str(UpperCAmelCase ).startswith("mps" ): lowercase_ = torch.manual_seed(UpperCAmelCase ) else: lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowercase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if pil_image: lowercase_ = input_image * 0.5 + 0.5 lowercase_ = input_image.clamp(0 , 1 ) lowercase_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ = DiffusionPipeline.numpy_to_pil(UpperCAmelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.get_dummy_components() lowercase_ = StableUnCLIPImgaImgPipeline(**UpperCAmelCase ) lowercase_ = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = self.get_dummy_inputs(UpperCAmelCase ) inputs.update({"image_embeds": None} ) lowercase_ = sd_pipe(**UpperCAmelCase ).images lowercase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A__ ( self ) -> int: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCAmelCase ) @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = pipe(UpperCAmelCase , "anime turle" , generator=UpperCAmelCase , output_type="np" ) lowercase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ = pipe( UpperCAmelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowercase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = BigBirdConfig.from_json_file(__lowerCamelCase ) print(F'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: lowercase_ = BigBirdForQuestionAnswering(__lowerCamelCase ) else: lowercase_ = BigBirdForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCamelCase , __lowerCamelCase , is_trivia_qa=__lowerCamelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
import baseaa def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: str ): '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def SCREAMING_SNAKE_CASE_ ( _SCREAMING_SNAKE_CASE: bytes ): '''simple docstring''' return baseaa.baadecode(lowerCamelCase_ ).decode("utf-8" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = 'Hello World!' SCREAMING_SNAKE_CASE__ = baseaa_encode(test) print(encoded) SCREAMING_SNAKE_CASE__ = baseaa_decode(encoded) print(decoded)
356
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Any: '''simple docstring''' lowercase_ = data def __iter__( self ) -> List[str]: '''simple docstring''' for element in self.data: yield element def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]=True ): '''simple docstring''' lowercase_ = Accelerator(even_batches=__lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: bool = False ): '''simple docstring''' if iterable: lowercase_ = DummyIterableDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) else: lowercase_ = TensorDataset(torch.as_tensor(range(__lowerCamelCase ) ) ) lowercase_ = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = accelerator.prepare(__lowerCamelCase ) return dl def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Accelerator , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[int] , __lowerCamelCase: List[int] , ): '''simple docstring''' lowercase_ = create_dataloader(accelerator=__lowerCamelCase , dataset_size=__lowerCamelCase , batch_size=__lowerCamelCase ) lowercase_ = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__lowerCamelCase ): lowercase_ = ddp_model(batch[0].float() ) lowercase_ = output.sum() loss.backward() batch_idxs.append(__lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = train_dl.batch_sampler.even_batches lowercase_ = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = True lowercase_ = False lowercase_ = create_accelerator(even_batches=__lowerCamelCase ) lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) lowercase_ = create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): lowercase_ = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() lowercase_ = torch.nn.Linear(1 , 1 ) lowercase_ = accelerator.prepare(__lowerCamelCase ) create_dataloader(__lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=__lowerCamelCase ) with warnings.catch_warnings(record=__lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__lowerCamelCase ): pass assert issubclass(w[-1].category , __lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) lowercase_ = accelerator.state.distributed_type lowercase_ = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__lowerCamelCase ) lowercase_ = original_state if __name__ == "__main__": main()
297
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = {} def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: type , __lowerCamelCase: Optional[str] , __lowerCamelCase: Optional[List[str]] = None , ): '''simple docstring''' lowercase_ = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) lowercase_ = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) lowercase_ = format_type def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Exception , __lowerCamelCase: Optional[str] , __lowerCamelCase: Optional[List[str]] = None ): '''simple docstring''' lowercase_ = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase_ = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: SCREAMING_SNAKE_CASE__ = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: SCREAMING_SNAKE_CASE__ = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: SCREAMING_SNAKE_CASE__ = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[str] , **__lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = get_format_type_from_alias(UpperCAmelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**UpperCAmelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
357
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = 1 lowercase_ = 3 lowercase_ = (32, 32) lowercase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase ) return image @property def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def A__ ( self ) -> str: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def A__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(UpperCAmelCase ) @property def A__ ( self ) -> Dict: '''simple docstring''' def extract(*UpperCAmelCase , **UpperCAmelCase ): class __lowerCamelCase : """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.ones([0] ) def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' self.pixel_values.to(UpperCAmelCase ) return self return Out() return extract def A__ ( self ) -> str: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) lowercase_ = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ) lowercase_ = output.images lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] lowercase_ = image[0, -3:, -3:, -1] lowercase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.dummy_cond_unet lowercase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) lowercase_ = self.dummy_vae lowercase_ = self.dummy_text_encoder lowercase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ = 77 lowercase_ = self.dummy_image.to(UpperCAmelCase ) # put models in fp16 lowercase_ = unet.half() lowercase_ = vae.half() lowercase_ = bert.half() # make sure here that pndm scheduler skips prk lowercase_ = AltDiffusionImgaImgPipeline( unet=UpperCAmelCase , scheduler=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , safety_checker=UpperCAmelCase , feature_extractor=self.dummy_extractor , ) lowercase_ = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=UpperCAmelCase ) lowercase_ = alt_pipe.to(UpperCAmelCase ) alt_pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = "A painting of a squirrel eating a burger" lowercase_ = torch.manual_seed(0 ) lowercase_ = alt_pipe( [prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , image=UpperCAmelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ = init_image.resize((760, 504) ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] lowercase_ = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ = init_image.resize((768, 512) ) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ = "BAAI/AltDiffusion" lowercase_ = AltDiffusionImgaImgPipeline.from_pretrained( UpperCAmelCase , safety_checker=UpperCAmelCase , ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) pipe.enable_attention_slicing() lowercase_ = "A fantasy landscape, trending on artstation" lowercase_ = torch.manual_seed(0 ) lowercase_ = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=UpperCAmelCase , output_type="np" , ) lowercase_ = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
297
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "ViTImageProcessor" lowerCAmelCase__ = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __snake_case , ) lowercase_ = kwargs.pop("feature_extractor" ) lowercase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__snake_case , __snake_case ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowercase_ = self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if visual_prompt is not None: lowercase_ = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: lowercase_ = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if visual_prompt is not None and images is not None: lowercase_ = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase_ = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __snake_case , ) return self.image_processor_class @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __snake_case , ) return self.image_processor
358
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=6 , UpperCAmelCase=17 , UpperCAmelCase=23 , UpperCAmelCase=11 , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def A__ ( self ) -> Optional[int]: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' lowercase_ = DecisionTransformerModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @slow def A__ ( self ) -> Tuple: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 10 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) lowercase_ = model.to(UpperCAmelCase ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.242793, -0.28693074, 0.8742613], [0.67815274, -0.08101085, -0.12952147]] , device=UpperCAmelCase ) lowercase_ = torch.tensor(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=UpperCAmelCase , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(UpperCAmelCase ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=UpperCAmelCase )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=UpperCAmelCase , actions=UpperCAmelCase , rewards=UpperCAmelCase , returns_to_go=UpperCAmelCase , timesteps=UpperCAmelCase , attention_mask=UpperCAmelCase , return_dict=UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
297
0
from pathlib import Path import fire from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any]="ro" , __lowerCamelCase: Optional[Any]="en" , __lowerCamelCase: List[str]="wmt16" , __lowerCamelCase: Tuple=None ): '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) lowercase_ = F'{src_lang}-{tgt_lang}' print(F'Converting {dataset}-{pair}' ) lowercase_ = datasets.load_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) if save_dir is None: lowercase_ = F'{dataset}-{pair}' lowercase_ = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(F'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets lowercase_ = "val" if split == "validation" else split lowercase_ = save_dir.joinpath(F'{fn}.source' ) lowercase_ = save_dir.joinpath(F'{fn}.target' ) lowercase_ = src_path.open("w+" ) lowercase_ = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase_ = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MraForMaskedLM""", """MraForMultipleChoice""", """MraForQuestionAnswering""", """MraForSequenceClassification""", """MraForTokenClassification""", """MraLayer""", """MraModel""", """MraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
297
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCamelCase ( __a ): """simple docstring""" lowerCAmelCase__ = """bert""" def __init__( self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=a__ , **a__ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = hidden_act lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = classifier_dropout class __lowerCamelCase ( __a ): """simple docstring""" @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' if self.task == "multiple-choice": lowercase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
360
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=18 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.48145466, 0.4578275, 0.40821073] , UpperCAmelCase=[0.26862954, 0.26130258, 0.27577711] , UpperCAmelCase=True , ) -> Tuple: '''simple docstring''' lowercase_ = size if size is not None else {'''height''': 224, '''width''': 224} lowercase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = image_size lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std lowercase_ = do_convert_rgb def A__ ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def A__ ( self , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=False ) -> int: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowercase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowercase_ = [] for i in range(self.batch_size ): lowercase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowercase_ = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] if torchify: lowercase_ = [torch.from_numpy(__A ) for x in image_inputs] return image_inputs @require_torch @require_vision class __lowerCamelCase ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ChineseCLIPImageProcessor if is_vision_available() else None def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=__A ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) self.assertTrue(hasattr(__A , "do_center_crop" ) ) self.assertTrue(hasattr(__A , "center_crop" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_convert_rgb" ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowercase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def A__ ( self ) -> int: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class __lowerCamelCase ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ChineseCLIPImageProcessor if is_vision_available() else None def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__A ) lowercase_ = 3 @property def A__ ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , "do_resize" ) ) self.assertTrue(hasattr(__A , "size" ) ) self.assertTrue(hasattr(__A , "do_center_crop" ) ) self.assertTrue(hasattr(__A , "center_crop" ) ) self.assertTrue(hasattr(__A , "do_normalize" ) ) self.assertTrue(hasattr(__A , "image_mean" ) ) self.assertTrue(hasattr(__A , "image_std" ) ) self.assertTrue(hasattr(__A , "do_convert_rgb" ) ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ = self.image_processor_tester.prepare_inputs(equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input lowercase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ = image_processing(__A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = "pixel_values" lowerCAmelCase__ = False lowerCAmelCase__ = TimmBackboneConfig def __init__( self , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , "timm" ) super().__init__(__a ) lowercase_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name." ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(__a , "out_features" ) and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead." ) lowercase_ = getattr(__a , "use_pretrained_backbone" , __a ) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False." ) # We just take the final layer by default. This matches the default for the transformers models. lowercase_ = config.out_indices if getattr(__a , "out_indices" , __a ) is not None else (-1,) lowercase_ = timm.create_model( config.backbone , pretrained=__a , features_only=config.features_only , in_chans=config.num_channels , out_indices=__a , **__a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowercase_ = self._backbone.return_layers lowercase_ = {layer["module"]: str(__a ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__a ) @classmethod def A__ ( cls , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"] ) from ...models.timm_backbone import TimmBackboneConfig lowercase_ = kwargs.pop("config" , TimmBackboneConfig() ) lowercase_ = kwargs.pop("use_timm_backbone" , __a ) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones" ) lowercase_ = kwargs.pop("num_channels" , config.num_channels ) lowercase_ = kwargs.pop("features_only" , config.features_only ) lowercase_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone ) lowercase_ = kwargs.pop("out_indices" , config.out_indices ) lowercase_ = TimmBackboneConfig( backbone=__a , num_channels=__a , features_only=__a , use_pretrained_backbone=__a , out_indices=__a , ) return super()._from_config(__a , **__a ) def A__ ( self , UpperCAmelCase ) -> Any: '''simple docstring''' pass def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowercase_ = self._all_layers lowercase_ = self._backbone(__a , **__a ) lowercase_ = self._return_layers lowercase_ = tuple(hidden_states[i] for i in self.out_indices ) else: lowercase_ = self._backbone(__a , **__a ) lowercase_ = None lowercase_ = tuple(__a ) lowercase_ = tuple(__a ) if hidden_states is not None else None if not return_dict: lowercase_ = (feature_maps,) if output_hidden_states: lowercase_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=__a , hidden_states=__a , attentions=__a )
362
import sys def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ): '''simple docstring''' lowercase_ = len(__lowerCamelCase ) lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] lowercase_ = [[0 for x in range(__lowerCamelCase )] for x in range(__lowerCamelCase )] for chain_length in range(2 , __lowerCamelCase ): for a in range(1 , n - chain_length + 1 ): lowercase_ = a + chain_length - 1 lowercase_ = sys.maxsize for c in range(__lowerCamelCase , __lowerCamelCase ): lowercase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ = cost lowercase_ = c return matrix, sol def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ): '''simple docstring''' if i == j: print("A" + str(__lowerCamelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCamelCase , __lowerCamelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCamelCase , optimal_solution[i][j] + 1 , __lowerCamelCase ) print(")" , end=" " ) def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = [30, 35, 15, 5, 10, 20, 25] lowercase_ = len(__lowerCamelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ , lowercase_ = matrix_chain_order(__lowerCamelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCamelCase , 1 , n - 1 ) if __name__ == "__main__": main()
297
0
from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
363
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float ): '''simple docstring''' return 10 - x * x def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float ): '''simple docstring''' if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase_ = a while (b - a) >= 0.01: # Find middle point lowercase_ = (a + b) / 2 # Check if middle point is root if equation(__lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(__lowerCamelCase ) * equation(__lowerCamelCase ) < 0: lowercase_ = c else: lowercase_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
297
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowerCamelCase ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowercase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase_ = CLIPTextModel(_A ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' if str(_A ).startswith("mps" ): lowercase_ = torch.manual_seed(_A ) else: lowercase_ = torch.Generator(device=_A ).manual_seed(_A ) lowercase_ = 2 lowercase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_A , device=torch.device(_A ) , ) lowercase_ = floats_tensor(control_image.shape , rng=random.Random(_A ) ).to(_A ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(_A ) ).convert("RGB" ).resize((64, 64) ) lowercase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def A__ ( self ) -> List[Any]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def A__ ( self ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = StableDiffusionControlNetImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCAmelCase ): if isinstance(_A , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_A ) torch.manual_seed(0 ) lowercase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_A ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase_ = CLIPTextModel(_A ) lowercase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase_ = MultiControlNetModel([controlneta, controlneta] ) lowercase_ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self , UpperCAmelCase , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' if str(_A ).startswith("mps" ): lowercase_ = torch.manual_seed(_A ) else: lowercase_ = torch.Generator(device=_A ).manual_seed(_A ) lowercase_ = 2 lowercase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_A , device=torch.device(_A ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_A , device=torch.device(_A ) , ), ] lowercase_ = floats_tensor(control_image[0].shape , rng=random.Random(_A ) ).to(_A ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(_A ) ).convert("RGB" ).resize((64, 64) ) lowercase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**_A ) pipe.to(_A ) lowercase_ = 10.0 lowercase_ = 4 lowercase_ = self.get_dummy_inputs(_A ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**_A )[0] lowercase_ = self.get_dummy_inputs(_A ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**_A , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowercase_ = self.get_dummy_inputs(_A ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**_A , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowercase_ = self.get_dummy_inputs(_A ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**_A , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def A__ ( self ) -> int: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A__ ( self ) -> Any: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_A ) except NotImplementedError: pass @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) lowercase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=_A , controlnet=_A ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_A ) lowercase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ = "evil space-punk bird" lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) lowercase_ = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) lowercase_ = pipe( _A , _A , control_image=_A , generator=_A , output_type="np" , num_inference_steps=50 , strength=0.6 , ) lowercase_ = output.images[0] assert image.shape == (512, 512, 3) lowercase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
364
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } SCREAMING_SNAKE_CASE__ = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any ): '''simple docstring''' with open(__lowerCamelCase , "r" ) as f: lowercase_ = f.read().splitlines() return [l.strip() for l in lines] class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , UpperCAmelCase , UpperCAmelCase="<unk>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<eos>" , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = load_vocab_file(UpperCAmelCase ) lowercase_ = dict(enumerate(self.all_tokens ) ) lowercase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ = unk_token lowercase_ = cls_token lowercase_ = pad_token lowercase_ = mask_token lowercase_ = eos_token lowercase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return text.split() def A__ ( self , UpperCAmelCase=False ) -> List[str]: '''simple docstring''' return len(self._id_to_token ) def A__ ( self ) -> Tuple: '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self._token_to_id.get(UpperCAmelCase , self._token_to_id.get(self.unk_token ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self._id_to_token.get(UpperCAmelCase , self.unk_token ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' lowercase_ = [self.cls_token_id] lowercase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ = [1] + ([0] * len(UpperCAmelCase )) + [1] if token_ids_a is not None: mask += [0] * len(UpperCAmelCase ) + [1] return mask def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = os.path.join(UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(UpperCAmelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: '''simple docstring''' return self.get_vocab_size(with_added_tokens=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = False ) -> int: '''simple docstring''' return super()._add_tokens(UpperCAmelCase , special_tokens=UpperCAmelCase )
297
0
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE__ = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ SCREAMING_SNAKE_CASE__ = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ SCREAMING_SNAKE_CASE__ = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> int: '''simple docstring''' if return_pvalue: lowercase_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
297
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = [] lowercase_ = [] for i in range(self.num_layers ): lowercase_ = self.in_channels if i == 0 else self.out_channels lowercase_ = FlaxResnetBlockaD( in_channels=UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase ) lowercase_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase ) lowercase_ = resnets lowercase_ = attentions if self.add_downsample: lowercase_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> str: '''simple docstring''' lowercase_ = () for resnet, attn in zip(self.resnets , self.attentions ): lowercase_ = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) lowercase_ = attn(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowercase_ = self.downsamplers_a(UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = jnp.floataa def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = [] for i in range(self.num_layers ): lowercase_ = self.in_channels if i == 0 else self.out_channels lowercase_ = FlaxResnetBlockaD( in_channels=UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase ) lowercase_ = resnets if self.add_downsample: lowercase_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' lowercase_ = () for resnet in self.resnets: lowercase_ = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: lowercase_ = self.downsamplers_a(UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = [] lowercase_ = [] for i in range(self.num_layers ): lowercase_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase_ = self.prev_output_channel if i == 0 else self.out_channels lowercase_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase ) lowercase_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase ) lowercase_ = resnets lowercase_ = attentions if self.add_upsample: lowercase_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states lowercase_ = res_hidden_states_tuple[-1] lowercase_ = res_hidden_states_tuple[:-1] lowercase_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase_ = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) lowercase_ = attn(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) if self.add_upsample: lowercase_ = self.upsamplers_a(UpperCAmelCase ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = True lowerCAmelCase__ = jnp.floataa def A__ ( self ) -> str: '''simple docstring''' lowercase_ = [] for i in range(self.num_layers ): lowercase_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels lowercase_ = self.prev_output_channel if i == 0 else self.out_channels lowercase_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase ) lowercase_ = resnets if self.add_upsample: lowercase_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Dict: '''simple docstring''' for resnet in self.resnets: # pop res hidden states lowercase_ = res_hidden_states_tuple[-1] lowercase_ = res_hidden_states_tuple[:-1] lowercase_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) lowercase_ = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) if self.add_upsample: lowercase_ = self.upsamplers_a(UpperCAmelCase ) return hidden_states class __lowerCamelCase ( nn.Module ): """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa def A__ ( self ) -> int: '''simple docstring''' lowercase_ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] lowercase_ = [] for _ in range(self.num_layers ): lowercase_ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase ) lowercase_ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase ) lowercase_ = resnets lowercase_ = attentions def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) -> Dict: '''simple docstring''' lowercase_ = self.resnets[0](UpperCAmelCase , UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): lowercase_ = attn(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) lowercase_ = resnet(UpperCAmelCase , UpperCAmelCase , deterministic=UpperCAmelCase ) return hidden_states
366
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowerCamelCase ( snake_case_ ): """simple docstring""" def A__ ( self ) -> int: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCAmelCase ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(UpperCAmelCase ): self.assertDictEqual(UpperCAmelCase , example_records[i] ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self._create_example_records() lowercase_ = Dataset.from_list(UpperCAmelCase ) lowercase_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def A__ ( self ) -> Any: # checks what happens with missing columns '''simple docstring''' lowercase_ = [{"col_1": 1}, {"col_2": "x"}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def A__ ( self ) -> List[Any]: # checks if the type can be inferred from the second record '''simple docstring''' lowercase_ = [{"col_1": []}, {"col_1": [1, 2]}] lowercase_ = Dataset.from_list(UpperCAmelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = Dataset.from_list([] ) self.assertEqual(len(UpperCAmelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
297
0
import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE__ = """ import os """ SCREAMING_SNAKE_CASE__ = """ def foo(): import os return False """ SCREAMING_SNAKE_CASE__ = """ def foo(): def bar(): if True: import os return False return bar() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os def foo(): try: import bar except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except (ImportError, AttributeError): raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except ImportError as e: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar except: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar import baz except ImportError: raise ValueError() """ SCREAMING_SNAKE_CASE__ = """ import os try: import bar import baz except ImportError: x = 1 raise ValueError() """ SCREAMING_SNAKE_CASE__ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , __lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = os.path.join(__lowerCamelCase , "test_file.py" ) with open(__lowerCamelCase , "w" ) as _tmp_file: _tmp_file.write(__lowerCamelCase ) lowercase_ = get_imports(__lowerCamelCase ) assert parsed_imports == ["os"]
367
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def A__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def A__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) lowercase_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) lowercase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) lowercase_ = DDPMScheduler() lowercase_ = AudioDiffusionPipeline(vqvae=UpperCAmelCase , unet=self.dummy_unet , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 ) lowercase_ = output.audios[0] lowercase_ = output.images[0] lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase , steps=4 , return_dict=UpperCAmelCase ) lowercase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 lowercase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) lowercase_ = DDIMScheduler() lowercase_ = self.dummy_vqvae_and_unet lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(raw_audio=UpperCAmelCase , generator=UpperCAmelCase , start_step=5 , steps=10 ) lowercase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 lowercase_ = self.dummy_unet_condition lowercase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCAmelCase , mel=UpperCAmelCase , scheduler=UpperCAmelCase ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) np.random.seed(0 ) lowercase_ = torch.rand((1, 1, 10) ) lowercase_ = pipe(generator=UpperCAmelCase , encoding=UpperCAmelCase ) lowercase_ = output.images[0] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = torch_device lowercase_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) lowercase_ = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowercase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(42 ) lowercase_ = pipe(generator=UpperCAmelCase ) lowercase_ = output.audios[0] lowercase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] lowercase_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] lowercase_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
297
0
import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: str ): '''simple docstring''' lowercase_ = multiprocessing.Manager() lowercase_ = manager.list() lowercase_ = multiprocessing.Process(target=snake_case_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("timed out" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase_ = shutil.rmtree lowercase_ = os.rmdir lowercase_ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase_ = {} with swallow_io(): with time_limit(snake_case_ ): exec(snake_case_ , snake_case_ ) result.append("passed" ) except TimeoutException: result.append("timed out" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. lowercase_ = rmtree lowercase_ = rmdir lowercase_ = chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ): '''simple docstring''' def signal_handler(__lowerCamelCase: Optional[Any] , __lowerCamelCase: int ): raise TimeoutException("Timed out!" ) signal.setitimer(signal.ITIMER_REAL , snake_case_ ) signal.signal(signal.SIGALRM , snake_case_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case_ ): with contextlib.redirect_stderr(snake_case_ ): with redirect_stdin(snake_case_ ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case_ ): yield dirname class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" pass class __lowerCamelCase ( io.StringIO ): """simple docstring""" def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Tuple: '''simple docstring''' raise OSError def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' raise OSError def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' raise OSError def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' return False class __lowerCamelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" lowerCAmelCase__ = """stdin""" @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ): '''simple docstring''' if root == ".": yield return lowercase_ = os.getcwd() os.chdir(snake_case_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case_ ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Any=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase_ = None lowercase_ = None import os lowercase_ = "1" lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None import shutil lowercase_ = None lowercase_ = None lowercase_ = None import subprocess lowercase_ = None # type: ignore lowercase_ = None import sys lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None lowercase_ = None
368
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") SCREAMING_SNAKE_CASE__ = int(input("""Enter number: """).strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
297
0
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = arr.split("," ) def A__ ( self ) -> int: '''simple docstring''' lowercase_ = [int(self.array[0] )] * len(self.array ) lowercase_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): lowercase_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) lowercase_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("""please input some numbers:""") SCREAMING_SNAKE_CASE__ = SubArray(whole_array) SCREAMING_SNAKE_CASE__ = array.solve_sub_array() print(("""the results is:""", re))
369
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[32, 64, 128] , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2"] , UpperCAmelCase=[1, 2] , ) -> Optional[int]: '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = patch_size lowercase_ = num_channels lowercase_ = embed_dim lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = num_heads lowercase_ = window_size lowercase_ = mlp_ratio lowercase_ = qkv_bias lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = drop_path_rate lowercase_ = hidden_act lowercase_ = use_absolute_embeddings lowercase_ = patch_norm lowercase_ = layer_norm_eps lowercase_ = initializer_range lowercase_ = is_training lowercase_ = scope lowercase_ = use_labels lowercase_ = type_sequence_label_size lowercase_ = encoder_stride lowercase_ = out_features lowercase_ = out_indices def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Optional[int]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' lowercase_ = FocalNetModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) lowercase_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowercase_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None lowercase_ = None lowercase_ = FocalNetBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = FocalNetForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForMaskedImageModeling(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = self.type_sequence_label_size lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ = 1 lowercase_ = FocalNetForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowercase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Optional[Any]: '''simple docstring''' return def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def A__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def A__ ( self ) -> Tuple: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.hidden_states lowercase_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # FocalNet has a different seq_length lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowercase_ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = reshaped_hidden_states[0].shape lowercase_ = ( reshaped_hidden_states[0].view(UpperCAmelCase , UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowercase_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowercase_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowercase_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = FocalNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowercase_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCAmelCase ) lowercase_ = self.default_image_processor lowercase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowercase_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCAmelCase ) # verify the logits lowercase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowercase_ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCamelCase ( snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (FocalNetBackbone,) if is_torch_available() else () lowerCAmelCase__ = FocalNetConfig lowerCAmelCase__ = False def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ = FocalNetModelTester(self )
297
0