code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' UpperCamelCase__ = range(2, 2_0 + 1) UpperCamelCase__ = [1_0**k for k in range(ks[-1] + 1)] UpperCamelCase__ = {} def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : List[Any] = sum(a_i[j] for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = sum(a_i[j] * base[j] for j in range(min(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = 0, 0 UpperCAmelCase__ : Dict = n - i UpperCAmelCase__ : Optional[int] = memo.get(lowerCAmelCase__ ) if sub_memo is not None: UpperCAmelCase__ : str = sub_memo.get(lowerCAmelCase__ ) if jumps is not None and len(lowerCAmelCase__ ) > 0: # find and make the largest jump without going over UpperCAmelCase__ : Union[str, Any] = -1 for _k in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase__ : List[str] = _k break if max_jump >= 0: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase__ : Union[str, Any] = diff + c for j in range(min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) ): UpperCAmelCase__ , UpperCAmelCase__ : Dict = divmod(lowerCAmelCase__ , 10 ) if new_c > 0: add(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCAmelCase__ : Optional[Any] = [] else: UpperCAmelCase__ : Dict = {c: []} UpperCAmelCase__ : List[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase__ , UpperCAmelCase__ : str = next_term(lowerCAmelCase__ , k - 1 , i + dn , lowerCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase__ , UpperCAmelCase__ : List[str] = compute(lowerCAmelCase__ , lowerCAmelCase__ , i + dn , lowerCAmelCase__ ) diff += _diff dn += terms_jumped UpperCAmelCase__ : Union[str, Any] = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase__ : Tuple = 0 while j < len(lowerCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCAmelCase__ , (diff, dn, k) ) return (diff, dn) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(lowerCAmelCase__ ): a_i.extend([0 for _ in range(k - len(lowerCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase__ : int = i UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = 0, 0, 0 for j in range(len(lowerCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase__ : Dict = ds_c + ds_b diff += addend UpperCAmelCase__ : Union[str, Any] = 0 for j in range(lowerCAmelCase__ ): UpperCAmelCase__ : Tuple = a_i[j] + addend UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = divmod(lowerCAmelCase__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return diff, i - start_i def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): UpperCAmelCase__ : Optional[int] = digits[j] + addend if s >= 10: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = divmod(lowerCAmelCase__ , 10 ) UpperCAmelCase__ : Optional[int] = addend // 10 + quotient else: UpperCAmelCase__ : List[Any] = s UpperCAmelCase__ : List[str] = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = divmod(lowerCAmelCase__ , 10 ) digits.append(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ = 10**15 ) -> int: UpperCAmelCase__ : Union[str, Any] = [1] UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : Any = 0 while True: UpperCAmelCase__ , UpperCAmelCase__ : int = next_term(lowerCAmelCase__ , 20 , i + dn , lowerCAmelCase__ ) dn += terms_jumped if dn == n - i: break UpperCAmelCase__ : Optional[Any] = 0 for j in range(len(lowerCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
1
'''simple docstring''' import math import random def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value UpperCamelCase__ = 0.02 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> float: UpperCAmelCase__ : Union[str, Any] = float(2 * (random.randint(1 , 1_00 )) - 1 ) for _ in range(lowerCAmelCase__ ): # Forward propagation UpperCAmelCase__ : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCAmelCase__ : Union[str, Any] = (expected / 1_00) - layer_a # Error delta UpperCAmelCase__ : int = layer_1_error * sigmoid_function(lowerCAmelCase__ , lowerCAmelCase__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = int(input('''Expected value: ''')) UpperCamelCase__ = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a__ ( lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : int = int(number**0.5 ) return number == sq * sq def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int]: UpperCAmelCase__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase__ : int = x_den * y_den * z_den UpperCAmelCase__ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def a__ ( lowerCAmelCase__ = 35 ) -> int: UpperCAmelCase__ : set = set() UpperCAmelCase__ : int UpperCAmelCase__ : Fraction = Fraction(0 ) UpperCAmelCase__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase__ : str = x_num * y_den + x_den * y_num UpperCAmelCase__ : int = x_den * y_den UpperCAmelCase__ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : Optional[int] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase__ : int = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase__ : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase__ : Any = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : str = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : str = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : str = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 UpperCAmelCase__ : Union[str, Any] = x_num * y_num UpperCAmelCase__ : Optional[Any] = x_den * y_num + x_num * y_den UpperCAmelCase__ : Dict = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : Union[str, Any] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase__ : Any = x_num * x_num * y_num * y_num UpperCAmelCase__ : Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : Any = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : List[str] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : str = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowerCamelCase_ ( nn.Module ): def __init__( self : List[Any] , _A : int , _A : int , _A : int , _A : Optional[int]=0.0 , _A : Optional[int] = None , _A : str = "geglu" , _A : Optional[int] = None , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = False , _A : bool = True , _A : str = "layer_norm" , _A : bool = False , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[int] = only_cross_attention UpperCAmelCase__ : List[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' UpperCAmelCase__ : str = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCAmelCase__ : Union[str, Any] = AdaLayerNorm(_A , _A ) elif self.use_ada_layer_norm_zero: UpperCAmelCase__ : int = AdaLayerNormZero(_A , _A ) else: UpperCAmelCase__ : Optional[int] = nn.LayerNorm(_A , elementwise_affine=_A ) UpperCAmelCase__ : List[str] = Attention( query_dim=_A , heads=_A , dim_head=_A , dropout=_A , bias=_A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCAmelCase__ : List[str] = ( AdaLayerNorm(_A , _A ) if self.use_ada_layer_norm else nn.LayerNorm(_A , elementwise_affine=_A ) ) UpperCAmelCase__ : Any = Attention( query_dim=_A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_A , dim_head=_A , dropout=_A , bias=_A , upcast_attention=_A , ) # is self-attn if encoder_hidden_states is none else: UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : int = None # 3. Feed-forward UpperCAmelCase__ : Dict = nn.LayerNorm(_A , elementwise_affine=_A ) UpperCAmelCase__ : str = FeedForward(_A , dropout=_A , activation_fn=_A , final_dropout=_A ) # let chunk size default to None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Tuple = 0 def lowercase_ ( self : Any , _A : Optional[int] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = chunk_size UpperCAmelCase__ : Any = dim def lowercase_ ( self : int , _A : torch.FloatTensor , _A : Optional[torch.FloatTensor] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[torch.LongTensor] = None , _A : Dict[str, Any] = None , _A : Optional[torch.LongTensor] = None , ): '''simple docstring''' if self.use_ada_layer_norm: UpperCAmelCase__ : int = self.norma(_A , _A ) elif self.use_ada_layer_norm_zero: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.norma( _A , _A , _A , hidden_dtype=hidden_states.dtype ) else: UpperCAmelCase__ : Any = self.norma(_A ) UpperCAmelCase__ : Any = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCAmelCase__ : Dict = self.attna( _A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_A , **_A , ) if self.use_ada_layer_norm_zero: UpperCAmelCase__ : str = gate_msa.unsqueeze(1 ) * attn_output UpperCAmelCase__ : Dict = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCAmelCase__ : Dict = ( self.norma(_A , _A ) if self.use_ada_layer_norm else self.norma(_A ) ) UpperCAmelCase__ : Union[str, Any] = self.attna( _A , encoder_hidden_states=_A , attention_mask=_A , **_A , ) UpperCAmelCase__ : Dict = attn_output + hidden_states # 3. Feed-forward UpperCAmelCase__ : Any = self.norma(_A ) if self.use_ada_layer_norm_zero: UpperCAmelCase__ : int = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) UpperCAmelCase__ : Tuple = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCAmelCase__ : List[Any] = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: UpperCAmelCase__ : Optional[Any] = self.ff(_A ) if self.use_ada_layer_norm_zero: UpperCAmelCase__ : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output UpperCAmelCase__ : Tuple = ff_output + hidden_states return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : List[Any] , _A : int , _A : Optional[int] = None , _A : int = 4 , _A : float = 0.0 , _A : str = "geglu" , _A : bool = False , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[int] = int(dim * mult ) UpperCAmelCase__ : int = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCAmelCase__ : List[str] = GELU(_A , _A ) if activation_fn == "gelu-approximate": UpperCAmelCase__ : Optional[int] = GELU(_A , _A , approximate='''tanh''' ) elif activation_fn == "geglu": UpperCAmelCase__ : List[Any] = GEGLU(_A , _A ) elif activation_fn == "geglu-approximate": UpperCAmelCase__ : Optional[int] = ApproximateGELU(_A , _A ) UpperCAmelCase__ : List[Any] = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A , _A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def lowercase_ ( self : int , _A : Union[str, Any] ): '''simple docstring''' for module in self.net: UpperCAmelCase__ : Dict = module(_A ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : int , _A : int , _A : int , _A : str = "none" ): '''simple docstring''' super().__init__() UpperCAmelCase__ : int = nn.Linear(_A , _A ) UpperCAmelCase__ : Optional[int] = approximate def lowercase_ ( self : Any , _A : str ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(_A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowercase_ ( self : List[Any] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = self.proj(_A ) UpperCAmelCase__ : Dict = self.gelu(_A ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Dict , _A : int , _A : int ): '''simple docstring''' super().__init__() UpperCAmelCase__ : List[str] = nn.Linear(_A , dim_out * 2 ) def lowercase_ ( self : Optional[int] , _A : List[str] ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowercase_ ( self : Optional[int] , _A : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.proj(_A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_A ) class lowerCamelCase_ ( nn.Module ): def __init__( self : Union[str, Any] , _A : int , _A : int ): '''simple docstring''' super().__init__() UpperCAmelCase__ : List[str] = nn.Linear(_A , _A ) def lowercase_ ( self : int , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = self.proj(_A ) return x * torch.sigmoid(1.7_0_2 * x ) class lowerCamelCase_ ( nn.Module ): def __init__( self : Any , _A : Optional[int] , _A : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase__ : int = nn.Embedding(_A , _A ) UpperCAmelCase__ : Any = nn.SiLU() UpperCAmelCase__ : List[str] = nn.Linear(_A , embedding_dim * 2 ) UpperCAmelCase__ : Optional[Any] = nn.LayerNorm(_A , elementwise_affine=_A ) def lowercase_ ( self : List[str] , _A : Union[str, Any] , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.linear(self.silu(self.emb(_A ) ) ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = torch.chunk(_A , 2 ) UpperCAmelCase__ : int = self.norm(_A ) * (1 + scale) + shift return x class lowerCamelCase_ ( nn.Module ): def __init__( self : int , _A : str , _A : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase__ : List[Any] = CombinedTimestepLabelEmbeddings(_A , _A ) UpperCAmelCase__ : Any = nn.SiLU() UpperCAmelCase__ : List[Any] = nn.Linear(_A , 6 * embedding_dim , bias=_A ) UpperCAmelCase__ : Any = nn.LayerNorm(_A , elementwise_affine=_A , eps=1e-6 ) def lowercase_ ( self : Optional[Any] , _A : int , _A : int , _A : Optional[int] , _A : str=None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.linear(self.silu(self.emb(_A , _A , hidden_dtype=_A ) ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = emb.chunk(6 , dim=1 ) UpperCAmelCase__ : Union[str, Any] = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[int] , _A : int , _A : int , _A : int , _A : Optional[str] = None , _A : float = 1e-5 ): '''simple docstring''' super().__init__() UpperCAmelCase__ : int = num_groups UpperCAmelCase__ : Optional[int] = eps if act_fn is None: UpperCAmelCase__ : Optional[int] = None else: UpperCAmelCase__ : Optional[int] = get_activation(_A ) UpperCAmelCase__ : str = nn.Linear(_A , out_dim * 2 ) def lowercase_ ( self : List[str] , _A : Dict , _A : List[str] ): '''simple docstring''' if self.act: UpperCAmelCase__ : Optional[Any] = self.act(_A ) UpperCAmelCase__ : Dict = self.linear(_A ) UpperCAmelCase__ : int = emb[:, :, None, None] UpperCAmelCase__ , UpperCAmelCase__ : Any = emb.chunk(2 , dim=1 ) UpperCAmelCase__ : str = F.group_norm(_A , self.num_groups , eps=self.eps ) UpperCAmelCase__ : int = x * (1 + scale) + shift return x
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable UpperCamelCase__ = list[list[float | int]] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Matrix: UpperCAmelCase__ : int = len(lowerCAmelCase__ ) UpperCAmelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowerCAmelCase__ )] UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float for row in range(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[str] = matrix[row][col] UpperCAmelCase__ : Optional[int] = vector[row][0] UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = 0 while row < size and col < size: # pivoting UpperCAmelCase__ : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowerCAmelCase__ , lowerCAmelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCAmelCase__ , UpperCAmelCase__ : Dict = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = augmented[rowa][col] / augmented[row][col] UpperCAmelCase__ : Optional[int] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowerCAmelCase__ ): for row in range(lowerCAmelCase__ ): UpperCAmelCase__ : int = augmented[row][col] / augmented[col][col] for cola in range(lowerCAmelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowerCAmelCase__ ) ] def a__ ( lowerCAmelCase__ ) -> Callable[[int], int]: UpperCAmelCase__ : int = len(lowerCAmelCase__ ) UpperCAmelCase__ : Matrix = [[0 for _ in range(lowerCAmelCase__ )] for _ in range(lowerCAmelCase__ )] UpperCAmelCase__ : Matrix = [[0] for _ in range(lowerCAmelCase__ )] UpperCAmelCase__ : Matrix UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int for x_val, y_val in enumerate(lowerCAmelCase__ ): for col in range(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = (x_val + 1) ** (size - col - 1) UpperCAmelCase__ : Dict = y_val UpperCAmelCase__ : Optional[Any] = solve(lowerCAmelCase__ , lowerCAmelCase__ ) def interpolated_func(lowerCAmelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowerCAmelCase__ ) ) return interpolated_func def a__ ( lowerCAmelCase__ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def a__ ( lowerCAmelCase__ = question_function , lowerCAmelCase__ = 10 ) -> int: UpperCAmelCase__ : list[int] = [func(lowerCAmelCase__ ) for x_val in range(1 , order + 1 )] UpperCAmelCase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Callable[[int], int] UpperCAmelCase__ : int for poly in polynomials: UpperCAmelCase__ : str = 1 while func(lowerCAmelCase__ ) == poly(lowerCAmelCase__ ): x_val += 1 ret += poly(lowerCAmelCase__ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] UpperCamelCase__ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] UpperCamelCase__ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) UpperCamelCase__ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) UpperCamelCase__ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: for tf_name, hf_name in patterns: UpperCAmelCase__ : Any = k.replace(lowerCAmelCase__ , lowerCAmelCase__ ) return k def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> BigBirdPegasusForConditionalGeneration: UpperCAmelCase__ : List[str] = BigBirdPegasusConfig(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = BigBirdPegasusForConditionalGeneration(lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = torch_model.state_dict() UpperCAmelCase__ : Tuple = {} # separating decoder weights UpperCAmelCase__ : str = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} UpperCAmelCase__ : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): UpperCAmelCase__ : Dict = [k.endswith(lowerCAmelCase__ ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase__ ): continue UpperCAmelCase__ : Optional[int] = DECODER_PATTERNS UpperCAmelCase__ : Optional[Any] = rename_state_dict_key(lowerCAmelCase__ , lowerCAmelCase__ ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase__ : Tuple = v.T UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase__ ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): UpperCAmelCase__ : Any = [k.endswith(lowerCAmelCase__ ) for ending in KEYS_TO_IGNORE] if any(lowerCAmelCase__ ): continue UpperCAmelCase__ : Any = REMAINING_PATTERNS UpperCAmelCase__ : Optional[int] = rename_state_dict_key(lowerCAmelCase__ , lowerCAmelCase__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): UpperCAmelCase__ : List[str] = v.T UpperCAmelCase__ : str = torch.from_numpy(lowerCAmelCase__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" UpperCAmelCase__ : Optional[int] = mapping['''model.embed_positions.weight'''] UpperCAmelCase__ : int = mapping.pop('''model.embed_positions.weight''' ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = torch_model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) UpperCAmelCase__ : Any = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = tf.train.list_variables(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = {} UpperCAmelCase__ : List[Any] = ['''global_step'''] for name, shape in tqdm(lowerCAmelCase__ , desc='''converting tf checkpoint to dict''' ): UpperCAmelCase__ : Optional[Any] = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ : Any = tf.train.load_variable(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = array return tf_weights def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : str = get_tf_weights_as_numpy(lowerCAmelCase__ ) UpperCAmelCase__ : Any = convert_bigbird_pegasus(lowerCAmelCase__ , lowerCAmelCase__ ) torch_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
'''simple docstring''' UpperCamelCase__ = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
'''simple docstring''' import numpy as np def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1E-12 , lowerCAmelCase__ = 1_00 , ) -> tuple[float, np.ndarray]: assert np.shape(lowerCAmelCase__ )[0] == np.shape(lowerCAmelCase__ )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase__ )[0] == np.shape(lowerCAmelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase__ ) == np.iscomplexobj(lowerCAmelCase__ ) UpperCAmelCase__ : str = np.iscomplexobj(lowerCAmelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = 1E12 while not convergence: # Multiple matrix by the vector. UpperCAmelCase__ : Optional[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) # Normalize the resulting output vector. UpperCAmelCase__ : Optional[int] = w / np.linalg.norm(lowerCAmelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCAmelCase__ : str = vector.conj().T if is_complex else vector.T UpperCAmelCase__ : List[str] = np.dot(lowerCAmelCase__ , np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Check convergence. UpperCAmelCase__ : int = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Dict = lambda_ if is_complex: UpperCAmelCase__ : List[Any] = np.real(lambda_ ) return lambda_, vector def a__ ( ) -> None: UpperCAmelCase__ : Tuple = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCAmelCase__ : str = np.array([41, 4, 20] ) UpperCAmelCase__ : List[Any] = real_input_matrix.astype(np.complexaaa ) UpperCAmelCase__ : List[str] = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCAmelCase__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCAmelCase__ : str = real_input_matrix UpperCAmelCase__ : Union[str, Any] = real_vector elif problem_type == "complex": UpperCAmelCase__ : Dict = complex_input_matrix UpperCAmelCase__ : Optional[int] = complex_vector # Our implementation. UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = power_iteration(lowerCAmelCase__ , lowerCAmelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = np.linalg.eigh(lowerCAmelCase__ ) # Last eigenvalue is the maximum one. UpperCAmelCase__ : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCAmelCase__ : Tuple = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase__ ) - np.abs(lowerCAmelCase__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
299
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
1
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = None ) -> list[list[str]]: UpperCAmelCase__ : Optional[Any] = word_bank or [] # create a table UpperCAmelCase__ : int = len(lowerCAmelCase__ ) + 1 UpperCAmelCase__ : list[list[list[str]]] = [] for _ in range(lowerCAmelCase__ ): table.append([] ) # seed value UpperCAmelCase__ : str = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase__ )] == word: UpperCAmelCase__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase__ )]: combination.reverse() return table[len(lowerCAmelCase__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
299
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ = 1_00_00_00 ) -> int: UpperCAmelCase__ : Dict = set(range(3 , lowerCAmelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase__ , lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Union[str, Any] = [float(lowerCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase__ , limit + 1 , lowerCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ProphetNetTokenizer lowerCAmelCase__ = False def lowercase_ ( self : List[Any] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase_ ( self : Union[str, Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Optional[Any] = '''unwanted, running''' return input_text, output_text def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase__ : List[Any] = {} for i, token in enumerate(_A ): UpperCAmelCase__ : Optional[Any] = i UpperCAmelCase__ : Optional[Any] = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase__ : List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Tuple = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowercase_ ( self : Any ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase__ : Any = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) UpperCAmelCase__ : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A ) UpperCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Tuple: if config_name_or_path is None: UpperCAmelCase__ : List[Any] = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: UpperCAmelCase__ : Tuple = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase__ : Dict = question_encoder_name_or_path UpperCAmelCase__ : Dict = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. UpperCAmelCase__ : Dict = RagConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = gen_config UpperCAmelCase__ : Any = question_encoder_config UpperCAmelCase__ : List[Any] = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) rag_model.save_pretrained(lowerCAmelCase__ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase__ ) # Save tokenizers. UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
299
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ = 10_00 ) -> int: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = 1, 1 UpperCAmelCase__ : Tuple = 2 while True: UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : int = fa + fa UpperCAmelCase__ , UpperCAmelCase__ : Tuple = fa, f index += 1 for _ in str(lowerCAmelCase__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCamelCase__ = '''src/diffusers''' UpperCamelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCamelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCamelCase__ = spec.loader.load_module() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return line.startswith(lowerCAmelCase__ ) or len(lowerCAmelCase__ ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , lowerCAmelCase__ ) is not None def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Dict = object_name.split('''.''' ) UpperCAmelCase__ : Optional[int] = 0 # First let's find the module where our object lives. UpperCAmelCase__ : Optional[Any] = parts[i] while i < len(lowerCAmelCase__ ) and not os.path.isfile(os.path.join(lowerCAmelCase__ , F"""{module}.py""" ) ): i += 1 if i < len(lowerCAmelCase__ ): UpperCAmelCase__ : List[str] = os.path.join(lowerCAmelCase__ , parts[i] ) if i >= len(lowerCAmelCase__ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowerCAmelCase__ , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase__ : List[Any] = f.readlines() # Now let's find the class / func in the code! UpperCAmelCase__ : str = '''''' UpperCAmelCase__ : Optional[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase__ ) and re.search(RF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase__ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCAmelCase__ : Union[str, Any] = line_index while line_index < len(lowerCAmelCase__ ) and _should_continue(lines[line_index] , lowerCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase__ : Dict = lines[start_index:line_index] return "".join(lowerCAmelCase__ ) UpperCamelCase__ = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCamelCase__ = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCamelCase__ = re.compile(R'''<FILL\s+[^>]*>''') def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = code.split('''\n''' ) UpperCAmelCase__ : List[str] = 0 while idx < len(lowerCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase__ ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def a__ ( lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : Union[str, Any] = len(get_indent(lowerCAmelCase__ ) ) > 0 if has_indent: UpperCAmelCase__ : Tuple = F"""class Bla:\n{code}""" UpperCAmelCase__ : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=lowerCAmelCase__ ) UpperCAmelCase__ : int = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : str = style_docstrings_in_code(lowerCAmelCase__ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ) -> Tuple: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase__ : Union[str, Any] = f.readlines() UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = search.groups() UpperCAmelCase__ : str = find_code_in_diffusers(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = get_indent(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCAmelCase__ : Union[str, Any] = theoretical_indent UpperCAmelCase__ : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCAmelCase__ : Any = True while line_index < len(lowerCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase__ ): break UpperCAmelCase__ : Tuple = lines[line_index] UpperCAmelCase__ : int = _should_continue(lowerCAmelCase__ , lowerCAmelCase__ ) and re.search(F"""^{indent}# End copy""" , lowerCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCAmelCase__ : Optional[Any] = lines[start_index:line_index] UpperCAmelCase__ : List[Any] = ''''''.join(lowerCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies UpperCAmelCase__ : Tuple = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(lowerCAmelCase__ ) is None] UpperCAmelCase__ : Any = '''\n'''.join(lowerCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase__ ) > 0: UpperCAmelCase__ : str = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) UpperCAmelCase__ : List[Any] = [_re_replace_pattern.search(lowerCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = pattern.groups() UpperCAmelCase__ : Optional[Any] = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if option.strip() == "all-casing": UpperCAmelCase__ : Any = re.sub(obja.lower() , obja.lower() , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = re.sub(obja.upper() , obja.upper() , lowerCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCAmelCase__ : Dict = blackify(lines[start_index - 1] + theoretical_code ) UpperCAmelCase__ : Union[str, Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCAmelCase__ : str = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCAmelCase__ : Optional[Any] = start_index + 1 if overwrite and len(lowerCAmelCase__ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lowerCAmelCase__ ) return diffs def a__ ( lowerCAmelCase__ = False ) -> Optional[int]: UpperCAmelCase__ : Any = glob.glob(os.path.join(lowerCAmelCase__ , '''**/*.py''' ) , recursive=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = [] for filename in all_files: UpperCAmelCase__ : Optional[int] = is_copy_consistent(lowerCAmelCase__ , lowerCAmelCase__ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowerCAmelCase__ ) > 0: UpperCAmelCase__ : Optional[Any] = '''\n'''.join(lowerCAmelCase__ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCamelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
'''simple docstring''' from math import factorial UpperCamelCase__ = {str(digit): factorial(digit) for digit in range(1_0)} def a__ ( lowerCAmelCase__ ) -> int: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowerCAmelCase__ ) ) def a__ ( lowerCAmelCase__ = 60 , lowerCAmelCase__ = 1_00_00_00 ) -> int: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCAmelCase__ : int = 0 # the cached sizes of the previous chains UpperCAmelCase__ : dict[int, int] = {} for start_chain_element in range(1 , lowerCAmelCase__ ): # The temporary set will contain the elements of the chain UpperCAmelCase__ : Optional[int] = set() UpperCAmelCase__ : Optional[int] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase__ : str = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowerCAmelCase__ ) chain_set_length += 1 UpperCAmelCase__ : Optional[int] = digit_factorial_sum(lowerCAmelCase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase__ : Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ = 10_00 ) -> int: UpperCAmelCase__ : Optional[Any] = 2**power UpperCAmelCase__ : Optional[Any] = 0 while n: UpperCAmelCase__ , UpperCAmelCase__ : Any = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int , _A : Dict , _A : List[str]=7 , _A : str=3 , _A : Dict=18 , _A : Optional[Any]=30 , _A : List[str]=400 , _A : Any=True , _A : Any=None , _A : Union[str, Any]=True , _A : List[str]=None , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = size if size is not None else {'''shortest_edge''': 20} UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : Union[str, Any] = num_channels UpperCAmelCase__ : Dict = image_size UpperCAmelCase__ : str = min_resolution UpperCAmelCase__ : int = max_resolution UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : Optional[Any] = do_center_crop UpperCAmelCase__ : Dict = crop_size UpperCAmelCase__ : Union[str, Any] = do_flip_channel_order def lowercase_ ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = MobileViTImageProcessor if is_vision_available() else None def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = MobileViTImageProcessingTester(self ) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) self.assertTrue(hasattr(_A , '''do_center_crop''' ) ) self.assertTrue(hasattr(_A , '''center_crop''' ) ) self.assertTrue(hasattr(_A , '''do_flip_channel_order''' ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase__ : Tuple = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase__ : Dict = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
'''simple docstring''' from math import ceil def a__ ( lowerCAmelCase__ = 10_01 ) -> int: UpperCAmelCase__ : Tuple = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase__ : Dict = 2 * i + 1 UpperCAmelCase__ : str = 2 * i UpperCAmelCase__ : Any = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCamelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
299
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
1
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def a__ ( lowerCAmelCase__="ro" , lowerCAmelCase__="en" , lowerCAmelCase__="wmt16" , lowerCAmelCase__=None ) -> None: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) UpperCAmelCase__ : Tuple = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) UpperCAmelCase__ : int = datasets.load_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) if save_dir is None: UpperCAmelCase__ : Any = F"""{dataset}-{pair}""" UpperCAmelCase__ : List[Any] = Path(lowerCAmelCase__ ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets UpperCAmelCase__ : List[Any] = '''val''' if split == '''validation''' else split UpperCAmelCase__ : List[Any] = save_dir.joinpath(F"""{fn}.source""" ) UpperCAmelCase__ : List[Any] = save_dir.joinpath(F"""{fn}.target""" ) UpperCAmelCase__ : List[str] = src_path.open('''w+''' ) UpperCAmelCase__ : List[Any] = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): UpperCAmelCase__ : Optional[int] = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
299
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'markuplm' def __init__( self : Dict , _A : Union[str, Any]=30_522 , _A : Any=768 , _A : Optional[int]=12 , _A : str=12 , _A : Any=3_072 , _A : int="gelu" , _A : int=0.1 , _A : Optional[int]=0.1 , _A : Dict=512 , _A : Dict=2 , _A : Union[str, Any]=0.0_2 , _A : Dict=1e-12 , _A : Optional[Any]=0 , _A : Tuple=0 , _A : Dict=2 , _A : Any=256 , _A : Tuple=1_024 , _A : Union[str, Any]=216 , _A : str=1_001 , _A : str=32 , _A : Optional[Any]=50 , _A : Tuple="absolute" , _A : str=True , _A : Tuple=None , **_A : Tuple , ): '''simple docstring''' super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : int = type_vocab_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Optional[int] = position_embedding_type UpperCAmelCase__ : int = use_cache UpperCAmelCase__ : int = classifier_dropout # additional properties UpperCAmelCase__ : Union[str, Any] = max_depth UpperCAmelCase__ : Tuple = max_xpath_tag_unit_embeddings UpperCAmelCase__ : List[Any] = max_xpath_subs_unit_embeddings UpperCAmelCase__ : List[str] = tag_pad_id UpperCAmelCase__ : Union[str, Any] = subs_pad_id UpperCAmelCase__ : List[Any] = xpath_unit_hidden_size
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Tuple: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def a__ ( lowerCAmelCase__ ) -> list[tuple[int, int]]: UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List[Any] = len(lowerCAmelCase__ ) # No of vertices in graph UpperCAmelCase__ : Optional[int] = [0] * n UpperCAmelCase__ : Dict = [False] * n def dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[Any] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , id_ ) UpperCAmelCase__ : Any = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase__ : Tuple = min(low[at] , low[to] ) UpperCAmelCase__ : list[tuple[int, int]] = [] for i in range(lowerCAmelCase__ ): if not visited[i]: dfs(lowerCAmelCase__ , -1 , lowerCAmelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCamelCase_ : lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowercase_ ( self : int ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowercase_ ( self : Dict ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = torch.arange(self.height * self.width ) UpperCAmelCase__ : str = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , *UpperCAmelCase__ : Any = self.shape UpperCAmelCase__ : Optional[int] = int(np.prod(_A ) ) UpperCAmelCase__ : Any = self.get_image_coords() UpperCAmelCase__ : str = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase__ : int = self.get_camera_rays(_A ) UpperCAmelCase__ : Any = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowercase_ ( self : List[str] , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__ : str = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase__ : str = coords.view(_A , -1 , 2 ) UpperCAmelCase__ : Any = self.resolution() UpperCAmelCase__ : Any = self.fov() UpperCAmelCase__ : Optional[int] = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase__ : List[str] = fracs * torch.tan(fov / 2 ) UpperCAmelCase__ : Tuple = fracs.view(_A , -1 , 2 ) UpperCAmelCase__ : int = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase__ : Dict = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase__ : List[str] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def lowercase_ ( self : List[Any] , _A : int , _A : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def a__ ( lowerCAmelCase__ ) -> DifferentiableProjectiveCamera: UpperCAmelCase__ : int = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : List[str] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCAmelCase__ : List[str] = np.array([np.sin(lowerCAmelCase__ ), np.cos(lowerCAmelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase__ : Optional[Any] = -z * 4 UpperCAmelCase__ : Optional[Any] = np.array([np.cos(lowerCAmelCase__ ), -np.sin(lowerCAmelCase__ ), 0.0] ) UpperCAmelCase__ : str = np.cross(lowerCAmelCase__ , lowerCAmelCase__ ) origins.append(lowerCAmelCase__ ) xs.append(lowerCAmelCase__ ) ys.append(lowerCAmelCase__ ) zs.append(lowerCAmelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , width=lowerCAmelCase__ , height=lowerCAmelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase__ )) , )
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCamelCase__ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } UpperCamelCase__ = { '''facebook/mbart-large-en-ro''': 1_0_2_4, '''facebook/mbart-large-cc25''': 1_0_2_4, } # fmt: off UpperCamelCase__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __init__( self : Union[str, Any] , _A : Tuple , _A : str="<s>" , _A : Optional[Any]="</s>" , _A : int="</s>" , _A : List[Any]="<s>" , _A : Tuple="<unk>" , _A : Optional[Any]="<pad>" , _A : str="<mask>" , _A : Any=None , _A : Optional[int]=None , _A : Union[str, Any]=None , _A : Optional[Dict[str, Any]] = None , _A : Any=None , **_A : List[str] , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token UpperCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) UpperCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) UpperCAmelCase__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Tuple = len(self.sp_model ) UpperCAmelCase__ : Dict = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } UpperCAmelCase__ : Tuple = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase__ : str = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase__ : str = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = self.__dict__.copy() UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[str] = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase_ ( self : Dict ): '''simple docstring''' return self._src_lang @src_lang.setter def lowercase_ ( self : List[str] , _A : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self : Tuple , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) UpperCAmelCase__ : Union[str, Any] = [1] * len(self.prefix_tokens ) UpperCAmelCase__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def lowercase_ ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : Optional[Any] , _A : str , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : List[str] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase__ : str = src_lang UpperCAmelCase__ : str = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) UpperCAmelCase__ : Optional[int] = self.convert_tokens_to_ids(_A ) UpperCAmelCase__ : int = tgt_lang_id return inputs def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self : str , _A : str ): '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def lowercase_ ( self : List[Any] , _A : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ : Union[str, Any] = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self : Optional[Any] , _A : Dict ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self : Optional[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Dict = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def lowercase_ ( self : Optional[int] , _A : str , _A : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Tuple = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: UpperCAmelCase__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def lowercase_ ( self : str , _A : List[str] , _A : str = "en_XX" , _A : Optional[List[str]] = None , _A : str = "ro_RO" , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = src_lang UpperCAmelCase__ : Dict = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def lowercase_ ( self : List[str] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self : Any ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self : Optional[int] , _A : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.lang_code_to_id[src_lang] UpperCAmelCase__ : int = [] UpperCAmelCase__ : str = [self.eos_token_id, self.cur_lang_code] def lowercase_ ( self : List[str] , _A : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.lang_code_to_id[lang] UpperCAmelCase__ : str = [] UpperCAmelCase__ : Dict = [self.eos_token_id, self.cur_lang_code]
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' from math import pi, sqrt def a__ ( lowerCAmelCase__ ) -> float: if num <= 0: raise ValueError('''math domain error''' ) if num > 1_7_1.5: raise OverflowError('''math range error''' ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def a__ ( ) -> None: assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase__ = 1.0 while num: UpperCamelCase__ = float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = MvpTokenizer lowerCAmelCase__ = MvpTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = filter_roberta_detectors def lowercase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase__ : Tuple = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ : List[str] = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def lowercase_ ( self : Tuple , **_A : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : List[str] , **_A : List[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Optional[int] , _A : Optional[int] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self : Tuple ): '''simple docstring''' return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : List[str] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ : int = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) # Test that special tokens are reset @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : List[Any] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Union[str, Any] = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = ['''A long paragraph for summarization.'''] UpperCAmelCase__ : Optional[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : str = tokenizer(_A , text_target=_A , return_tensors='''pt''' ) UpperCAmelCase__ : Any = inputs['''input_ids'''] UpperCAmelCase__ : Any = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : str = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : str = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase__ : Dict = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase__ : str = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ ) -> float: if not nums: raise ValueError('''List is empty''' ) return sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionInstructPixaPixPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase__ : List[Any] = PNDMScheduler(skip_prk_steps=_A ) torch.manual_seed(0 ) UpperCAmelCase__ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCAmelCase__ : List[str] = CLIPTextModel(_A ) UpperCAmelCase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase__ : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : List[Any] , _A : Optional[int] , _A : str=0 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : List[str] = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ) if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : Dict = torch.manual_seed(_A ) else: UpperCAmelCase__ : Any = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase__ : Dict = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : str = sd_pipe(**_A ).images UpperCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Optional[int] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Optional[Any] = self.get_dummy_components() UpperCAmelCase__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase__ : Optional[int] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : str = '''french fries''' UpperCAmelCase__ : Optional[Any] = sd_pipe(**_A , negative_prompt=_A ) UpperCAmelCase__ : List[Any] = output.images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase__ : Tuple = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : str = [inputs['''prompt''']] * 2 UpperCAmelCase__ : Optional[Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase__ : List[str] = torch.from_numpy(_A ).unsqueeze(0 ).to(_A ) UpperCAmelCase__ : Dict = image / 2 + 0.5 UpperCAmelCase__ : Dict = image.permute(0 , 3 , 1 , 2 ) UpperCAmelCase__ : List[Any] = image.repeat(2 , 1 , 1 , 1 ) UpperCAmelCase__ : Any = sd_pipe(**_A ).images UpperCAmelCase__ : List[str] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) UpperCAmelCase__ : Optional[Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : Dict = self.get_dummy_components() UpperCAmelCase__ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) UpperCAmelCase__ : int = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase__ : List[str] = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : Optional[Any] = sd_pipe(**_A ).images UpperCAmelCase__ : int = image[0, -3:, -3:, -1] UpperCAmelCase__ : str = [round(_A , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(_A ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : List[str] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = StableDiffusionInstructPixaPixPipeline(**_A ) UpperCAmelCase__ : Tuple = VaeImageProcessor(do_resize=_A , do_normalize=_A ) UpperCAmelCase__ : Optional[int] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) )[0] UpperCAmelCase__ : Tuple = components['''vae'''] UpperCAmelCase__ : Union[str, Any] = self.get_dummy_inputs_by_type(_A , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): UpperCAmelCase__ : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() UpperCAmelCase__ : Optional[int] = pipe(**_A )[0] UpperCAmelCase__ : List[str] = np.abs(out - out_latents_inputs ).max() self.assertLess(_A , 1e-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str , _A : Dict=0 ): '''simple docstring''' UpperCAmelCase__ : str = torch.manual_seed(_A ) UpperCAmelCase__ : List[str] = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) UpperCAmelCase__ : List[str] = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Union[str, Any] = self.get_inputs() UpperCAmelCase__ : List[str] = pipe(**_A ).images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) UpperCAmelCase__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : List[Any] = self.get_inputs() UpperCAmelCase__ : List[str] = pipe(**_A ).images UpperCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : Any = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A ) UpperCAmelCase__ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : Optional[Any] = self.get_inputs() UpperCAmelCase__ : List[str] = pipe(**_A ).images UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ : List[Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = 0 def callback_fn(_A : int , _A : int , _A : torch.FloatTensor ) -> None: UpperCAmelCase__ : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: UpperCAmelCase__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase__ : Any = latents[0, -3:, -3:, -1] UpperCAmelCase__ : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: UpperCAmelCase__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) UpperCAmelCase__ : List[str] = latents[0, -3:, -3:, -1] UpperCAmelCase__ : Union[str, Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase__ : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : List[Any] = self.get_inputs() pipe(**_A , callback=_A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self : str ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=_A , torch_dtype=torch.floataa ) UpperCAmelCase__ : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ : Optional[int] = self.get_inputs() UpperCAmelCase__ : Optional[int] = pipe(**_A ) UpperCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 UpperCAmelCase__ : Any = inputs['''image'''].resize((504, 504) ) UpperCAmelCase__ : str = '''timbrooks/instruct-pix2pix''' UpperCAmelCase__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( _A , safety_checker=_A , ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() UpperCAmelCase__ : List[Any] = pipe(**_A ) UpperCAmelCase__ : Union[str, Any] = output.images[0] UpperCAmelCase__ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) UpperCAmelCase__ : Any = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
299
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
1
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
299
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
1
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase__ = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase__ = [0, 2_5, 5_0] UpperCamelCase__ = [2_5, 5_0, 7_5] UpperCamelCase__ = fuzz.membership.trimf(X, abca) UpperCamelCase__ = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase__ = np.ones(7_5) UpperCamelCase__ = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase__ = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase__ = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase__ = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase__ = logging.getLogger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'summarization' lowerCAmelCase__ = ['loss'] lowerCAmelCase__ = ROUGE_KEYS lowerCAmelCase__ = 'rouge2' def __init__( self : str , _A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase__ : Optional[int] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_A , num_labels=_A , mode=self.mode , **_A ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) UpperCAmelCase__ : Optional[int] = Path(self.output_dir ) / '''metrics.json''' UpperCAmelCase__ : Tuple = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Optional[int] = defaultdict(_A ) UpperCAmelCase__ : Optional[Any] = self.config.model_type UpperCAmelCase__ : int = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size UpperCAmelCase__ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase__ : Dict = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } UpperCAmelCase__ : str = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase__ : Any = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"""target_lens: {self.target_lens}""" assert self.target_lens["train"] <= self.target_lens["test"], f"""target_lens: {self.target_lens}""" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) UpperCAmelCase__ : Tuple = get_git_info()['''repo_sha'''] UpperCAmelCase__ : List[str] = hparams.num_workers UpperCAmelCase__ : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _A ): UpperCAmelCase__ : Dict = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase__ : Dict = self.decoder_start_token_id UpperCAmelCase__ : Union[str, Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase__ : Optional[int] = self.hparams.eval_max_gen_length else: UpperCAmelCase__ : Union[str, Any] = self.model.config.max_length UpperCAmelCase__ : Tuple = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase_ ( self : List[str] , _A : Dict[str, torch.Tensor] ): '''simple docstring''' UpperCAmelCase__ : int = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_A , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) UpperCAmelCase__ : int = True return readable_batch def lowercase_ ( self : Union[str, Any] , _A : List[Any] , **_A : Union[str, Any] ): '''simple docstring''' return self.model(_A , **_A ) def lowercase_ ( self : str , _A : List[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.tokenizer.batch_decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) return lmap(str.strip , _A ) def lowercase_ ( self : Optional[int] , _A : dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.tokenizer.pad_token_id UpperCAmelCase__ , UpperCAmelCase__ : Any = batch['''input_ids'''], batch['''attention_mask'''] UpperCAmelCase__ : Any = batch['''labels'''] if isinstance(self.model , _A ): UpperCAmelCase__ : Tuple = self.model._shift_right(_A ) else: UpperCAmelCase__ : Dict = shift_tokens_right(_A , _A ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase__ : int = decoder_input_ids self.save_readable_batch(_A ) UpperCAmelCase__ : List[str] = self(_A , attention_mask=_A , decoder_input_ids=_A , use_cache=_A ) UpperCAmelCase__ : Optional[Any] = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase__ : Dict = nn.CrossEntropyLoss(ignore_index=_A ) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase__ : int = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: UpperCAmelCase__ : Dict = nn.functional.log_softmax(_A , dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = label_smoothed_nll_loss( _A , _A , self.hparams.label_smoothing , ignore_index=_A ) return (loss,) @property def lowercase_ ( self : Tuple ): '''simple docstring''' return self.tokenizer.pad_token_id def lowercase_ ( self : Optional[int] , _A : List[Any] , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self._step(_A ) UpperCAmelCase__ : Optional[int] = dict(zip(self.loss_names , _A ) ) # tokens per batch UpperCAmelCase__ : Optional[int] = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() UpperCAmelCase__ : Dict = batch['''input_ids'''].shape[0] UpperCAmelCase__ : Dict = batch['''input_ids'''].eq(self.pad ).sum() UpperCAmelCase__ : Union[str, Any] = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase_ ( self : Tuple , _A : Dict , _A : Optional[int] ): '''simple docstring''' return self._generative_step(_A ) def lowercase_ ( self : str , _A : Optional[Any] , _A : Optional[Any]="val" ): '''simple docstring''' self.step_count += 1 UpperCAmelCase__ : Tuple = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} UpperCAmelCase__ : Optional[int] = losses['''loss'''] UpperCAmelCase__ : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } UpperCAmelCase__ : List[str] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase__ : torch.FloatTensor = torch.tensor(_A ).type_as(_A ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_A ) UpperCAmelCase__ : str = {f"""{prefix}_avg_{k}""": x for k, x in losses.items()} UpperCAmelCase__ : Dict = self.step_count self.metrics[prefix].append(_A ) # callback writes this to self.metrics_save_path UpperCAmelCase__ : int = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"""{prefix}_loss""": loss, f"""{prefix}_{self.val_metric}""": metric_tensor, } def lowercase_ ( self : Any , _A : List[Any] , _A : Tuple ): '''simple docstring''' return calculate_rouge(_A , _A ) def lowercase_ ( self : Dict , _A : dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase__ : Tuple = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_A , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase__ : List[Any] = (time.time() - ta) / batch['''input_ids'''].shape[0] UpperCAmelCase__ : List[str] = self.ids_to_clean_text(_A ) UpperCAmelCase__ : List[str] = self.ids_to_clean_text(batch['''labels'''] ) UpperCAmelCase__ : Any = self._step(_A ) UpperCAmelCase__ : List[str] = dict(zip(self.loss_names , _A ) ) UpperCAmelCase__ : Dict = self.calc_generative_metrics(_A , _A ) UpperCAmelCase__ : int = np.mean(lmap(_A , _A ) ) base_metrics.update(gen_time=_A , gen_len=_A , preds=_A , target=_A , **_A ) return base_metrics def lowercase_ ( self : List[str] , _A : str , _A : Dict ): '''simple docstring''' return self._generative_step(_A ) def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' return self.validation_epoch_end(_A , prefix='''test''' ) def lowercase_ ( self : str , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.n_obs[type_path] UpperCAmelCase__ : Optional[int] = self.target_lens[type_path] UpperCAmelCase__ : List[Any] = self.dataset_class( self.tokenizer , type_path=_A , n_obs=_A , max_target_length=_A , **self.dataset_kwargs , ) return dataset def lowercase_ ( self : Optional[Any] , _A : str , _A : int , _A : bool = False ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_dataset(_A ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase__ : Optional[Any] = dataset.make_sortish_sampler(_A , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase__ : Union[str, Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _A , batch_sampler=_A , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _A , batch_size=_A , collate_fn=dataset.collate_fn , shuffle=_A , num_workers=self.num_workers , sampler=_A , ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_A ) return dataloader def lowercase_ ( self : str ): '''simple docstring''' return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def lowercase_ ( self : Dict ): '''simple docstring''' return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase_ ( _A : Tuple , _A : List[Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(_A , _A ) add_generic_args(_A , _A ) parser.add_argument( '''--max_source_length''' , default=1_024 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_A , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_A ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_A ) parser.add_argument('''--max_tokens_per_batch''' , type=_A , default=_A ) parser.add_argument('''--logger_name''' , type=_A , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_A , default=500 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_A , default=-1 , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_A , default='''summarization''' , required=_A , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_A , default=0.0 , required=_A ) parser.add_argument('''--src_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--tgt_lang''' , type=_A , default='''''' , required=_A ) parser.add_argument('''--eval_beams''' , type=_A , default=_A , required=_A ) parser.add_argument( '''--val_metric''' , type=_A , default=_A , required=_A , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_A , default=_A , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_A , default=1 , required=_A , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_A , default=-1 , required=_A , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'translation' lowerCAmelCase__ = ['loss'] lowerCAmelCase__ = ['bleu'] lowerCAmelCase__ = 'bleu' def __init__( self : List[str] , _A : Tuple , **_A : Optional[Any] ): '''simple docstring''' super().__init__(_A , **_A ) UpperCAmelCase__ : Optional[Any] = hparams.src_lang UpperCAmelCase__ : Any = hparams.tgt_lang def lowercase_ ( self : Dict , _A : Any , _A : Any ): '''simple docstring''' return calculate_bleu(_A , _A ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=lowerCAmelCase__ ) check_output_dir(lowerCAmelCase__ , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase__ : SummarizationModule = SummarizationModule(lowerCAmelCase__ ) else: UpperCAmelCase__ : SummarizationModule = TranslationModule(lowerCAmelCase__ ) UpperCAmelCase__ : str = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): UpperCAmelCase__ : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase__ : Tuple = os.environ.get('''WANDB_PROJECT''' , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = WandbLogger(name=model.output_dir.name , project=lowerCAmelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase__ : Dict = WandbLogger(name=model.output_dir.name , project=F"""hf_{dataset}""" ) if args.early_stopping_patience >= 0: UpperCAmelCase__ : List[Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = args.val_metric == '''loss''' UpperCAmelCase__ : pl.Trainer = generic_train( lowerCAmelCase__ , lowerCAmelCase__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , lowerCAmelCase__ ) , early_stopping_callback=lowerCAmelCase__ , logger=lowerCAmelCase__ , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model UpperCAmelCase__ : str = '''''' UpperCAmelCase__ : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=lowerCAmelCase__ ) ) if checkpoints: UpperCAmelCase__ : List[Any] = checkpoints[-1] UpperCAmelCase__ : List[str] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() UpperCamelCase__ = pl.Trainer.add_argparse_args(parser) UpperCamelCase__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ = parser.parse_args() main(args)
299
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
1
'''simple docstring''' import baseaa def a__ ( lowerCAmelCase__ ) -> bytes: return baseaa.baaencode(string.encode('''utf-8''' ) ) def a__ ( lowerCAmelCase__ ) -> str: return baseaa.baadecode(lowerCAmelCase__ ).decode('''utf-8''' ) if __name__ == "__main__": UpperCamelCase__ = '''Hello World!''' UpperCamelCase__ = baseaa_encode(test) print(encoded) UpperCamelCase__ = baseaa_decode(encoded) print(decoded)
299
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
1
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCamelCase__ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase_ : lowerCAmelCase__ = PegasusConfig lowerCAmelCase__ = {} lowerCAmelCase__ = 'gelu' def __init__( self : int , _A : List[str] , _A : int=13 , _A : Tuple=7 , _A : str=True , _A : Tuple=False , _A : Optional[int]=99 , _A : Any=32 , _A : Optional[int]=5 , _A : List[Any]=4 , _A : Optional[Any]=37 , _A : Union[str, Any]=0.1 , _A : Union[str, Any]=0.1 , _A : Optional[int]=20 , _A : Tuple=2 , _A : int=1 , _A : str=0 , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Dict = seq_length UpperCAmelCase__ : Dict = is_training UpperCAmelCase__ : int = use_labels UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Union[str, Any] = hidden_size UpperCAmelCase__ : Dict = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : Any = max_position_embeddings UpperCAmelCase__ : Optional[Any] = eos_token_id UpperCAmelCase__ : str = pad_token_id UpperCAmelCase__ : Tuple = bos_token_id def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase__ : Optional[Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ : List[str] = prepare_pegasus_inputs_dict(_A , _A , _A ) return config, inputs_dict def lowercase_ ( self : List[str] , _A : Tuple , _A : str , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = 20 UpperCAmelCase__ : List[str] = model_class_name(_A ) UpperCAmelCase__ : List[Any] = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase__ : Any = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) UpperCAmelCase__ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase__ : List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : int = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase__ : Tuple = model.decode( decoder_input_ids[:, -1:] , _A , decoder_attention_mask=_A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_A , ) UpperCAmelCase__ : Dict = model.decode(_A , _A ) UpperCAmelCase__ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase_ ( self : Optional[int] , _A : str , _A : Dict , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 20 UpperCAmelCase__ : Optional[Any] = model_class_name(_A ) UpperCAmelCase__ : List[str] = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase__ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase__ : str = model.init_cache(decoder_input_ids.shape[0] , _A , _A ) UpperCAmelCase__ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ : List[str] = model.decode( decoder_input_ids[:, :-1] , _A , decoder_attention_mask=_A , past_key_values=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase__ : List[Any] = model.decode( decoder_input_ids[:, -1:] , _A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_A , decoder_position_ids=_A , ) UpperCAmelCase__ : Tuple = model.decode(_A , _A , decoder_attention_mask=_A ) UpperCAmelCase__ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase__ : Tuple = np.not_equal(lowerCAmelCase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ : List[str] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = FlaxPegasusModelTester(self ) UpperCAmelCase__ : List[Any] = ConfigTester(self , config_class=_A ) def lowercase_ ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_A , _A , _A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_A , _A , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : List[str] = self._prepare_for_class(_A , _A ) UpperCAmelCase__ : Tuple = model_class(_A ) @jax.jit def encode_jitted(_A : List[str] , _A : Any=None , **_A : Union[str, Any] ): return model.encode(input_ids=_A , attention_mask=_A ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : Optional[int] = encode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Dict = encode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ : int = model_class(_A ) UpperCAmelCase__ : Union[str, Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase__ : Dict = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_A : List[str] , _A : Dict , _A : Optional[Any] ): return model.decode( decoder_input_ids=_A , decoder_attention_mask=_A , encoder_outputs=_A , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase__ : str = decode_jitted(**_A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase__ : Dict = decode_jitted(**_A ).to_tuple() self.assertEqual(len(_A ) , len(_A ) ) for jitted_output, output in zip(_A , _A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase__ : Tuple = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=_A ) UpperCAmelCase__ : Dict = np.ones((1, 1) ) UpperCAmelCase__ : Optional[Any] = model(_A ) self.assertIsNotNone(_A ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) UpperCAmelCase__ : Optional[Any] = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) UpperCAmelCase__ : Optional[Any] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCAmelCase__ : Union[str, Any] = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] UpperCAmelCase__ : List[Any] = tokenizer(_A , return_tensors='''np''' , truncation=_A , max_length=512 , padding=_A ) UpperCAmelCase__ : Optional[int] = model.generate(**_A , num_beams=2 ).sequences UpperCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(_A , skip_special_tokens=_A ) assert tgt_text == decoded
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> str: return " ".join( ''''''.join(word[::-1] ) if len(lowerCAmelCase__ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
299
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase__ = 2 class lowerCamelCase_ : def __init__( self : int , *, # begin keyword-only arguments _A : str="<s>" , _A : List[Any]="<pad>" , _A : int="</s>" , _A : Tuple="<unk>" , _A : Dict=None , ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = bos, unk, pad, eos UpperCAmelCase__ : Any = [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : Any = {} UpperCAmelCase__ : Optional[Any] = self.add_symbol(_A ) UpperCAmelCase__ : Tuple = self.add_symbol(_A ) UpperCAmelCase__ : Tuple = self.add_symbol(_A ) UpperCAmelCase__ : Any = self.add_symbol(_A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_A ) UpperCAmelCase__ : Any = len(self.symbols ) def __eq__( self : List[str] , _A : int ): '''simple docstring''' return self.indices == other.indices def __getitem__( self : List[str] , _A : Optional[Any] ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Optional[int] ): '''simple docstring''' return len(self.symbols ) def __contains__( self : Dict , _A : List[str] ): '''simple docstring''' return sym in self.indices @classmethod def lowercase_ ( cls : Any , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = cls() d.add_from_file(_A ) return d def lowercase_ ( self : Any , _A : Optional[Any] , _A : Optional[int]=1 , _A : Dict=False ): '''simple docstring''' if word in self.indices and not overwrite: UpperCAmelCase__ : Tuple = self.indices[word] UpperCAmelCase__ : Optional[int] = self.count[idx] + n return idx else: UpperCAmelCase__ : Union[str, Any] = len(self.symbols ) UpperCAmelCase__ : Dict = idx self.symbols.append(_A ) self.count.append(_A ) return idx def lowercase_ ( self : Optional[int] , _A : Optional[Any] ): '''simple docstring''' return 0 def lowercase_ ( self : Dict , _A : Dict ): '''simple docstring''' if isinstance(_A , _A ): try: with open(_A , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(_A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(_A ) ) return UpperCAmelCase__ : List[str] = f.readlines() UpperCAmelCase__ : Any = self._load_meta(_A ) for line in lines[indices_start_line:]: try: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase__ : int = True UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = line.rsplit(''' ''' , 1 ) else: UpperCAmelCase__ : int = False UpperCAmelCase__ : Optional[int] = int(_A ) UpperCAmelCase__ : Any = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(_A ) ) self.add_symbol(_A , n=_A , overwrite=_A ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def a__ ( lowerCAmelCase__ ) -> int: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : Union[str, Any] = dict((re.sub(R'''@@$''' , '''''' , lowerCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , lowerCAmelCase__ ), v) for k, v in d.items() ) UpperCAmelCase__ : List[Any] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] UpperCAmelCase__ : Union[str, Any] = d[k] # restore return da def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: # prep if not os.path.exists(lowerCAmelCase__ ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models UpperCAmelCase__ : str = os.path.join(lowerCAmelCase__ , '''checkpoint.pt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) UpperCAmelCase__ : str = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) UpperCAmelCase__ : Dict = chkpt['''cfg''']['''model'''] # dicts UpperCAmelCase__ : List[Any] = os.path.join(lowerCAmelCase__ , '''dict.txt''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) UpperCAmelCase__ : Tuple = Dictionary.load(lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : int = len(lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # merges_file (bpecodes) UpperCAmelCase__ : Optional[Any] = os.path.join(lowerCAmelCase__ , '''bpecodes''' ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) UpperCAmelCase__ : Union[str, Any] = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) # model config UpperCAmelCase__ : Any = os.path.join(lowerCAmelCase__ , '''config.json''' ) UpperCAmelCase__ : Any = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.0_2, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1E-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # tokenizer config UpperCAmelCase__ : List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Dict = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 10_24, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ , indent=lowerCAmelCase__ ) ) # model UpperCAmelCase__ : Tuple = chkpt['''model'''] # remove unneeded keys UpperCAmelCase__ : Optional[Any] = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): UpperCAmelCase__ : str = model_state_dict.pop(lowerCAmelCase__ ) else: UpperCAmelCase__ : Union[str, Any] = model_state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase__ : Dict = BioGptConfig.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = BioGptForCausalLM(lowerCAmelCase__ ) # check that it loads ok model_new.load_state_dict(lowerCAmelCase__ ) # save UpperCAmelCase__ : Union[str, Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) print('''Conversion is done!''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
1
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( enum.Enum ): lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 @add_end_docstrings(__a ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'generated' def __init__( self : List[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowercase_ ( self : int , _A : List[str]=None , _A : List[Any]=None , _A : Any=None , _A : Union[str, Any]=None , _A : int=None , _A : Any=None , **_A : int , ): '''simple docstring''' UpperCAmelCase__ : int = {} if truncation is not None: UpperCAmelCase__ : Union[str, Any] = truncation UpperCAmelCase__ : Union[str, Any] = generate_kwargs UpperCAmelCase__ : Optional[Any] = {} if return_tensors is not None and return_type is None: UpperCAmelCase__ : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase__ : Any = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase__ : str = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase__ : Tuple = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase__ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase_ ( self : Optional[Any] , _A : int , _A : int , _A : int ): '''simple docstring''' return True def lowercase_ ( self : List[str] , *_A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase__ : str = ([prefix + arg for arg in args[0]],) UpperCAmelCase__ : str = True elif isinstance(args[0] , _A ): UpperCAmelCase__ : Optional[Any] = (prefix + args[0],) UpperCAmelCase__ : str = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) UpperCAmelCase__ : Union[str, Any] = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : int , *_A : Tuple , **_A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowercase_ ( self : Union[str, Any] , _A : Union[str, Any] , _A : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def lowercase_ ( self : Optional[int] , _A : Dict , **_A : List[Any] ): '''simple docstring''' if self.framework == "pt": UpperCAmelCase__ , UpperCAmelCase__ : List[str] = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase__ , UpperCAmelCase__ : Dict = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase__ : Dict = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase__ : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase__ : Optional[int] = self.model.generate(**_A , **_A ) UpperCAmelCase__ : Union[str, Any] = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase__ : List[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase__ : Any = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowercase_ ( self : Dict , _A : Dict , _A : List[Any]=ReturnType.TEXT , _A : Optional[Any]=False ): '''simple docstring''' UpperCAmelCase__ : int = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase__ : Dict = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase__ : List[str] = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(__a ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'summary' def __call__( self : Union[str, Any] , *_A : Any , **_A : List[str] ): '''simple docstring''' return super().__call__(*_A , **_A ) def lowercase_ ( self : Tuple , _A : int , _A : int , _A : int ): '''simple docstring''' if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(__a ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'translation' def lowercase_ ( self : int , _A : int , _A : int , _A : int ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowercase_ ( self : List[str] , *_A : Dict , _A : Optional[Any]=TruncationStrategy.DO_NOT_TRUNCATE , _A : str=None , _A : List[str]=None ): '''simple docstring''' if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def lowercase_ ( self : Optional[Any] , _A : Dict=None , _A : List[str]=None , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = super()._sanitize_parameters(**_A ) if src_lang is not None: UpperCAmelCase__ : List[str] = src_lang if tgt_lang is not None: UpperCAmelCase__ : Union[str, Any] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase__ : List[str] = kwargs.get('''task''' , self.task ) UpperCAmelCase__ : Union[str, Any] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY UpperCAmelCase__ : List[Any] = items[1] UpperCAmelCase__ : Dict = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Any , *_A : Optional[Any] , **_A : Tuple ): '''simple docstring''' return super().__call__(*_A , **_A )
299
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
1
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase_ : def __init__( self : List[str] , _A : Any , _A : Optional[int]=sys.maxsize ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bilinear''' UpperCAmelCase__ : str = max_size UpperCAmelCase__ : Dict = short_edge_length def __call__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Dict = [] for img in imgs: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = img.shape[:2] # later: provide list and randomly choose index for resize UpperCAmelCase__ : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img UpperCAmelCase__ : Union[str, Any] = size * 1.0 / min(_A , _A ) if h < w: UpperCAmelCase__ , UpperCAmelCase__ : Any = size, scale * w else: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = scale * h, size if max(_A , _A ) > self.max_size: UpperCAmelCase__ : Union[str, Any] = self.max_size * 1.0 / max(_A , _A ) UpperCAmelCase__ : str = newh * scale UpperCAmelCase__ : Optional[int] = neww * scale UpperCAmelCase__ : List[str] = int(neww + 0.5 ) UpperCAmelCase__ : Dict = int(newh + 0.5 ) if img.dtype == np.uinta: UpperCAmelCase__ : List[str] = Image.fromarray(_A ) UpperCAmelCase__ : Dict = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) UpperCAmelCase__ : Dict = np.asarray(_A ) else: UpperCAmelCase__ : Optional[Any] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw UpperCAmelCase__ : Union[str, Any] = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A ).squeeze(0 ) img_augs.append(_A ) return img_augs class lowerCamelCase_ : def __init__( self : List[str] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) UpperCAmelCase__ : Dict = cfg.INPUT.FORMAT UpperCAmelCase__ : List[Any] = cfg.SIZE_DIVISIBILITY UpperCAmelCase__ : List[Any] = cfg.PAD_VALUE UpperCAmelCase__ : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST UpperCAmelCase__ : List[Any] = cfg.MODEL.DEVICE UpperCAmelCase__ : Optional[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) UpperCAmelCase__ : List[str] = lambda _A : (x - self.pixel_mean) / self.pixel_std def lowercase_ ( self : Tuple , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = tuple(max(_A ) for s in zip(*[img.shape for img in images] ) ) UpperCAmelCase__ : Dict = [im.shape[-2:] for im in images] UpperCAmelCase__ : List[str] = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A ) ] return torch.stack(_A ), torch.tensor(_A ) def __call__( self : Dict , _A : Tuple , _A : str=False ): '''simple docstring''' with torch.no_grad(): if not isinstance(_A , _A ): UpperCAmelCase__ : Optional[int] = [images] if single_image: assert len(_A ) == 1 for i in range(len(_A ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_A , images.pop(_A ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge UpperCAmelCase__ : Optional[Any] = torch.tensor([im.shape[:2] for im in images] ) UpperCAmelCase__ : Any = self.aug(_A ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic UpperCAmelCase__ : Dict = [self.normalizer(_A ) for x in images] # now pad them to do the following operations UpperCAmelCase__ , UpperCAmelCase__ : str = self.pad(_A ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad UpperCAmelCase__ : List[str] = torch.true_divide(_A , _A ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: assert torch.isfinite(lowerCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = box_size tensor[:, 0].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCAmelCase__ )
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
299
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
1
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase__ = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[Any] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) return sd def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=rename_keys_prefix ) -> int: UpperCAmelCase__ : int = OrderedDict() UpperCAmelCase__ : Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue UpperCAmelCase__ : int = key for name_pair in rename_keys_prefix: UpperCAmelCase__ : Any = new_key.replace(name_pair[0] , name_pair[1] ) UpperCAmelCase__ : Optional[int] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately UpperCAmelCase__ : int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: UpperCAmelCase__ : List[str] = '''pretraining''' if "vcr" in checkpoint_path: UpperCAmelCase__ : Optional[int] = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: UpperCAmelCase__ : Any = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: UpperCAmelCase__ : Dict = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: UpperCAmelCase__ : Union[str, Any] = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: UpperCAmelCase__ : Any = {'''visual_embedding_dim''': 5_12} UpperCAmelCase__ : List[Any] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: UpperCAmelCase__ : Union[str, Any] = {'''visual_embedding_dim''': 20_48} UpperCAmelCase__ : Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: UpperCAmelCase__ : Optional[Any] = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} UpperCAmelCase__ : str = '''vqa''' elif "nlvr" in checkpoint_path: UpperCAmelCase__ : Optional[int] = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } UpperCAmelCase__ : Tuple = '''nlvr''' UpperCAmelCase__ : Dict = VisualBertConfig(**lowerCAmelCase__ ) # Load State Dict UpperCAmelCase__ : List[Any] = load_state_dict(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = get_new_dict(lowerCAmelCase__ , lowerCAmelCase__ ) if model_type == "pretraining": UpperCAmelCase__ : Tuple = VisualBertForPreTraining(lowerCAmelCase__ ) elif model_type == "vqa": UpperCAmelCase__ : str = VisualBertForQuestionAnswering(lowerCAmelCase__ ) elif model_type == "nlvr": UpperCAmelCase__ : Any = VisualBertForVisualReasoning(lowerCAmelCase__ ) elif model_type == "multichoice": UpperCAmelCase__ : Dict = VisualBertForMultipleChoice(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) # Save Checkpoints Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def a__ ( lowerCAmelCase__ ) -> Tuple: # getting number of pixels in the image UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase__ = imread('''image_data/lena.jpg''', 1) # convert to its negative UpperCamelCase__ = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = MobileBertTokenizer lowerCAmelCase__ = MobileBertTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = filter_non_english lowerCAmelCase__ = 'google/mobilebert-uncased' def lowercase_ ( self : Any ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase__ : Any = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowercase_ ( self : List[Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : str = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Union[str, Any] = '''unwanted, running''' return input_text, output_text def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def lowercase_ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Any = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) UpperCAmelCase__ : Any = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Optional[Any] = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[int] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : List[str] = self.get_rust_tokenizer() UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing UpperCAmelCase__ : str = self.get_tokenizer(do_lower_case=_A ) UpperCAmelCase__ : Dict = self.get_rust_tokenizer(do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = '''UNwant\u00E9d,running''' UpperCAmelCase__ : int = tokenizer.tokenize(_A ) UpperCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Tuple = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Optional[int] = self.get_rust_tokenizer() UpperCAmelCase__ : Any = tokenizer.encode(_A ) UpperCAmelCase__ : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase__ : Dict = {} for i, token in enumerate(_A ): UpperCAmelCase__ : str = i UpperCAmelCase__ : Dict = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowercase_ ( self : Any ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowercase_ ( self : str ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) UpperCAmelCase__ : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(_A ) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowercase_ ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Tuple = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase__ : int = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) UpperCAmelCase__ : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False UpperCAmelCase__ : Optional[int] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ['''的''', '''人''', '''有'''] UpperCAmelCase__ : Optional[int] = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(_A ) UpperCAmelCase__ : str = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = tokenizer_r.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : List[str] = tokenizer_r.convert_ids_to_tokens(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase__ : int = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Dict = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCAmelCase__ : List[Any] = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(lowerCAmelCase__ ) , '''Postfix'''.center(lowerCAmelCase__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=''' | ''' , ) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , (''''''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : Optional[Any] = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": UpperCAmelCase__ : Union[str, Any] = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCAmelCase__ : Any = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCamelCase__ = input('''\nEnter an Infix Equation = ''') # Input an Infix equation UpperCamelCase__ = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_A ).to(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase__ : Dict = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids UpperCAmelCase__ : int = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids UpperCAmelCase__ : Optional[Any] = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss UpperCAmelCase__ : Optional[int] = -(labels.shape[-1] * loss.item()) UpperCAmelCase__ : Optional[int] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
299
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
1
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = TextToVideoSDPipeline lowerCAmelCase__ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. lowerCAmelCase__ = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase__ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase__ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase__ : Tuple = CLIPTextModel(_A ) UpperCAmelCase__ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase__ : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowercase_ ( self : int , _A : Any , _A : int=0 ): '''simple docstring''' if str(_A ).startswith('''mps''' ): UpperCAmelCase__ : Optional[int] = torch.manual_seed(_A ) else: UpperCAmelCase__ : Optional[Any] = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : Optional[int] = TextToVideoSDPipeline(**_A ) UpperCAmelCase__ : Any = sd_pipe.to(_A ) sd_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(_A ) UpperCAmelCase__ : List[str] = '''np''' UpperCAmelCase__ : str = sd_pipe(**_A ).frames UpperCAmelCase__ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCAmelCase__ : List[str] = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self : Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A , expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Any ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) UpperCAmelCase__ : Optional[Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) UpperCAmelCase__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase__ : Dict = pipe.to('''cuda''' ) UpperCAmelCase__ : List[Any] = '''Spiderman is surfing''' UpperCAmelCase__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase__ : Dict = pipe(_A , generator=_A , num_inference_steps=25 , output_type='''pt''' ).frames UpperCAmelCase__ : Dict = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) UpperCAmelCase__ : Tuple = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) UpperCAmelCase__ : int = pipe.to('''cuda''' ) UpperCAmelCase__ : Optional[Any] = '''Spiderman is surfing''' UpperCAmelCase__ : int = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = pipe(_A , generator=_A , num_inference_steps=2 , output_type='''pt''' ).frames UpperCAmelCase__ : Any = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
299
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') UpperCamelCase__ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) UpperCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase_ : lowerCAmelCase__ = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'A folder containing the training data.'} ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'A folder containing the validation data.'} ) lowerCAmelCase__ = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) lowerCAmelCase__ = field(default=3_2 , metadata={'help': 'The size of the square patches to use for masking.'} ) lowerCAmelCase__ = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = {} if self.train_dir is not None: UpperCAmelCase__ : List[str] = self.train_dir if self.validation_dir is not None: UpperCAmelCase__ : Dict = self.validation_dir UpperCAmelCase__ : List[Any] = data_files if data_files else None @dataclass class lowerCamelCase_ : lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__a )} , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field(default=__a , metadata={'help': 'Name or path of preprocessor config.'} ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) lowerCAmelCase__ = field( default=__a , metadata={'help': 'Stride to use for the encoder.'} , ) class lowerCamelCase_ : def __init__( self : List[str] , _A : Optional[Any]=192 , _A : str=32 , _A : List[Any]=4 , _A : Optional[int]=0.6 ): '''simple docstring''' UpperCAmelCase__ : List[Any] = input_size UpperCAmelCase__ : str = mask_patch_size UpperCAmelCase__ : Dict = model_patch_size UpperCAmelCase__ : int = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) UpperCAmelCase__ : Optional[Any] = self.input_size // self.mask_patch_size UpperCAmelCase__ : Dict = self.mask_patch_size // self.model_patch_size UpperCAmelCase__ : Optional[int] = self.rand_size**2 UpperCAmelCase__ : Any = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = np.random.permutation(self.token_count )[: self.mask_count] UpperCAmelCase__ : Dict = np.zeros(self.token_count , dtype=_A ) UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : Dict = mask.reshape((self.rand_size, self.rand_size) ) UpperCAmelCase__ : List[Any] = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = torch.stack([example['''pixel_values'''] for example in examples] ) UpperCAmelCase__ : Optional[Any] = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def a__ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , lowerCAmelCase__ , lowerCAmelCase__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ : Dict = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. UpperCAmelCase__ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase__ : Optional[Any] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase__ ) and data_args.train_val_split > 0.0: UpperCAmelCase__ : Optional[int] = ds['''train'''].train_test_split(data_args.train_val_split ) UpperCAmelCase__ : List[str] = split['''train'''] UpperCAmelCase__ : Any = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : Any = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(model_args.config_name_or_path , **lowerCAmelCase__ ) elif model_args.model_name_or_path: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: UpperCAmelCase__ : str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(lowerCAmelCase__ , '''decoder_type''' ): UpperCAmelCase__ : int = '''simmim''' # adapt config UpperCAmelCase__ : List[Any] = model_args.image_size if model_args.image_size is not None else config.image_size UpperCAmelCase__ : int = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCAmelCase__ : int = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase__ : Optional[int] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase__ ) elif model_args.model_name_or_path: UpperCAmelCase__ : Dict = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase__ ) else: UpperCAmelCase__ : Dict = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCAmelCase__ : int = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCAmelCase__ : Optional[Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase__ : Tuple = AutoModelForMaskedImageModeling.from_config(lowerCAmelCase__ ) if training_args.do_train: UpperCAmelCase__ : Optional[Any] = ds['''train'''].column_names else: UpperCAmelCase__ : int = ds['''validation'''].column_names if data_args.image_column_name is not None: UpperCAmelCase__ : Optional[Any] = data_args.image_column_name elif "image" in column_names: UpperCAmelCase__ : int = '''image''' elif "img" in column_names: UpperCAmelCase__ : List[Any] = '''img''' else: UpperCAmelCase__ : Dict = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCAmelCase__ : str = Compose( [ Lambda(lambda lowerCAmelCase__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.6_7, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCAmelCase__ : str = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[Any] = [transforms(lowerCAmelCase__ ) for image in examples[image_column_name]] UpperCAmelCase__ : Optional[Any] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: UpperCAmelCase__ : int = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCAmelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: UpperCAmelCase__ : List[str] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCAmelCase__ ) # Initialize our trainer UpperCAmelCase__ : Any = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: UpperCAmelCase__ : Optional[Any] = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ : Tuple = last_checkpoint UpperCAmelCase__ : Any = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ : Optional[int] = trainer.evaluate() trainer.log_metrics('''eval''' , lowerCAmelCase__ ) trainer.save_metrics('''eval''' , lowerCAmelCase__ ) # Write model card and (optionally) push to hub UpperCAmelCase__ : Union[str, Any] = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) if __name__ == "__main__": main()
299
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
1
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( __a ): lowerCAmelCase__ = (DDPMParallelScheduler,) def lowercase_ ( self : Optional[Any] , **_A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**_A ) return config def lowercase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def lowercase_ ( self : List[str] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def lowercase_ ( self : int ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_A ) def lowercase_ ( self : int ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def lowercase_ ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.scheduler_classes[0] UpperCAmelCase__ : Optional[int] = self.get_scheduler_config() UpperCAmelCase__ : List[str] = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config() UpperCAmelCase__ : Union[str, Any] = scheduler_class(**_A ) UpperCAmelCase__ : Optional[Any] = len(_A ) UpperCAmelCase__ : Any = self.dummy_model() UpperCAmelCase__ : Dict = self.dummy_sample_deter UpperCAmelCase__ : Any = self.dummy_sample_deter + 0.1 UpperCAmelCase__ : Optional[Any] = self.dummy_sample_deter - 0.1 UpperCAmelCase__ : Optional[Any] = samplea.shape[0] UpperCAmelCase__ : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCAmelCase__ : List[Any] = torch.arange(_A )[0:3, None].repeat(1 , _A ) UpperCAmelCase__ : List[str] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCAmelCase__ : int = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) UpperCAmelCase__ : Dict = torch.sum(torch.abs(_A ) ) UpperCAmelCase__ : Dict = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Dict = self.scheduler_classes[0] UpperCAmelCase__ : Optional[Any] = self.get_scheduler_config() UpperCAmelCase__ : int = scheduler_class(**_A ) UpperCAmelCase__ : Any = len(_A ) UpperCAmelCase__ : Optional[int] = self.dummy_model() UpperCAmelCase__ : Optional[int] = self.dummy_sample_deter UpperCAmelCase__ : List[Any] = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual UpperCAmelCase__ : Union[str, Any] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample UpperCAmelCase__ : Union[str, Any] = pred_prev_sample UpperCAmelCase__ : Tuple = torch.sum(torch.abs(_A ) ) UpperCAmelCase__ : str = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = self.scheduler_classes[0] UpperCAmelCase__ : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase__ : List[Any] = scheduler_class(**_A ) UpperCAmelCase__ : List[str] = len(_A ) UpperCAmelCase__ : List[str] = self.dummy_model() UpperCAmelCase__ : Any = self.dummy_sample_deter UpperCAmelCase__ : str = torch.manual_seed(0 ) for t in reversed(range(_A ) ): # 1. predict noise residual UpperCAmelCase__ : Tuple = model(_A , _A ) # 2. predict previous mean of sample x_t-1 UpperCAmelCase__ : Tuple = scheduler.step(_A , _A , _A , generator=_A ).prev_sample UpperCAmelCase__ : Dict = pred_prev_sample UpperCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(_A ) ) UpperCAmelCase__ : List[str] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config() UpperCAmelCase__ : Optional[int] = scheduler_class(**_A ) UpperCAmelCase__ : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_A ) UpperCAmelCase__ : Optional[int] = scheduler.timesteps for i, timestep in enumerate(_A ): if i == len(_A ) - 1: UpperCAmelCase__ : str = -1 else: UpperCAmelCase__ : Tuple = timesteps[i + 1] UpperCAmelCase__ : Any = scheduler.previous_timestep(_A ) UpperCAmelCase__ : Union[str, Any] = prev_t.item() self.assertEqual(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.scheduler_classes[0] UpperCAmelCase__ : Tuple = self.get_scheduler_config() UpperCAmelCase__ : Optional[Any] = scheduler_class(**_A ) UpperCAmelCase__ : Any = [100, 87, 50, 51, 0] with self.assertRaises(_A , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.scheduler_classes[0] UpperCAmelCase__ : Tuple = self.get_scheduler_config() UpperCAmelCase__ : str = scheduler_class(**_A ) UpperCAmelCase__ : List[str] = [100, 87, 50, 1, 0] UpperCAmelCase__ : Optional[Any] = len(_A ) with self.assertRaises(_A , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_A , timesteps=_A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.scheduler_classes[0] UpperCAmelCase__ : List[str] = self.get_scheduler_config() UpperCAmelCase__ : Tuple = scheduler_class(**_A ) UpperCAmelCase__ : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( _A , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_A )
299
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 , lowerCAmelCase__ = "bert-base-cased" ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : Dict = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase__ : Union[str, Any] = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: model.eval() UpperCAmelCase__ : Union[str, Any] = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**lowerCAmelCase__ ) UpperCAmelCase__ : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: UpperCAmelCase__ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase__ : Optional[int] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : Dict = metric.compute() return eval_metric["accuracy"] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # Initialize accelerator UpperCAmelCase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Dict = config['''lr'''] UpperCAmelCase__ : Union[str, Any] = int(config['''num_epochs'''] ) UpperCAmelCase__ : int = int(config['''seed'''] ) UpperCAmelCase__ : Optional[Any] = int(config['''batch_size'''] ) UpperCAmelCase__ : int = args.model_name_or_path set_seed(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ : Any = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : str = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer UpperCAmelCase__ : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase__ : List[str] = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase__ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Any = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase__ : str = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: UpperCAmelCase__ : Any = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ : Dict = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase__ : List[Any] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase__ : List[str] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase__ : Optional[Any] = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase__ : Optional[int] = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase__ : Any = int(lowerCAmelCase__ ) + 1 UpperCAmelCase__ : List[Any] = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.print('''resumed checkpoint performance:''' , lowerCAmelCase__ ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , '''r''' ) as f: UpperCAmelCase__ : Tuple = json.load(lowerCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase__ : List[Any] = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ : int = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = outputs.loss UpperCAmelCase__ : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase__ : List[Any] = F"""epoch_{epoch}""" UpperCAmelCase__ : Dict = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) UpperCAmelCase__ : Any = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = accuracy UpperCAmelCase__ : int = lr_scheduler.get_lr()[0] UpperCAmelCase__ : List[str] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase__ : str = epoch UpperCAmelCase__ : List[str] = overall_step accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( ) -> Tuple: UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=2 , help='''Number of train epochs.''' , ) UpperCAmelCase__ : Optional[int] = parser.parse_args() UpperCAmelCase__ : Optional[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
299
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCAmelCase__ : List[str] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_A ) , torch_builtin(_A ) ) ) self.assertFalse(torch.allclose(gelu_python(_A ) , gelu_new(_A ) ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCAmelCase__ : Tuple = get_activation('''gelu''' ) UpperCAmelCase__ : List[str] = get_activation('''gelu_10''' ) UpperCAmelCase__ : Union[str, Any] = torch_builtin(_A ) UpperCAmelCase__ : List[str] = geluaa(_A ) UpperCAmelCase__ : List[Any] = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_A ): get_activation('''bogus''' ) with self.assertRaises(_A ): get_activation(_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = get_activation('''gelu''' ) UpperCAmelCase__ : int = 1 UpperCAmelCase__ : List[Any] = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_A ): UpperCAmelCase__ : Dict = acta.a
299
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase__ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase__ = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
299
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
1
'''simple docstring''' import requests def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> None: UpperCAmelCase__ : Any = {'''Content-Type''': '''application/json'''} UpperCAmelCase__ : Optional[Any] = requests.post(lowerCAmelCase__ , json={'''text''': message_body} , headers=lowerCAmelCase__ ) if response.status_code != 2_00: UpperCAmelCase__ : List[Any] = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('''<YOUR MESSAGE BODY>''', '''<SLACK CHANNEL URL>''')
299
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
1
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCamelCase_ ( __a ): # to overwrite at feature extractactor specific tests lowerCAmelCase__ = None lowerCAmelCase__ = None @property def lowercase_ ( self : Any ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_A , '''feature_size''' ) ) self.assertTrue(hasattr(_A , '''sampling_rate''' ) ) self.assertTrue(hasattr(_A , '''padding_value''' ) ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[Any] = feat_extract.model_input_names[0] UpperCAmelCase__ : Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_A ) == len(_A ) for x, y in zip(_A , processed_features[input_name] ) ) ) UpperCAmelCase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) UpperCAmelCase__ : Optional[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Dict = feat_extract.model_input_names[0] UpperCAmelCase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) UpperCAmelCase__ : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_A ) UpperCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : Any = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) UpperCAmelCase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def lowercase_ ( self : List[str] , _A : Optional[int]=False ): '''simple docstring''' def _inputs_have_equal_length(_A : Union[str, Any] ): UpperCAmelCase__ : List[Any] = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(_A : int , _A : List[Any] ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1e-3 ): return False return True UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) UpperCAmelCase__ : Any = feat_extract.model_input_names[0] UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Tuple = self.feat_extract_tester.seq_length_diff UpperCAmelCase__ : Tuple = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase__ : str = self.feat_extract_tester.min_seq_length UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.batch_size UpperCAmelCase__ : List[Any] = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase__ : int = feat_extract.pad(_A , padding=_A ) UpperCAmelCase__ : Optional[Any] = input_a[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad(_A , padding='''longest''' ) UpperCAmelCase__ : List[str] = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad(_A , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase__ : Dict = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) UpperCAmelCase__ : Tuple = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''max_length''' )[input_name] UpperCAmelCase__ : Any = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , return_tensors='''np''' ) UpperCAmelCase__ : str = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ : int = feat_extract.pad(_A , pad_to_multiple_of=10 ) UpperCAmelCase__ : Tuple = input_a[input_name] UpperCAmelCase__ : Dict = feat_extract.pad(_A , padding='''longest''' , pad_to_multiple_of=10 ) UpperCAmelCase__ : str = input_a[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad( _A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_A ) UpperCAmelCase__ : List[Any] = input_a[input_name] UpperCAmelCase__ : Tuple = feat_extract.pad( _A , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_A , return_tensors='''np''' , ) UpperCAmelCase__ : Tuple = input_a[input_name] self.assertTrue(all(len(_A ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) UpperCAmelCase__ : Union[str, Any] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_A ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase__ : Union[str, Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def lowercase_ ( self : Dict , _A : Any=False ): '''simple docstring''' def _inputs_have_equal_length(_A : int ): UpperCAmelCase__ : List[Any] = len(input[0] ) for input_slice in input[1:]: if len(_A ) != length: return False return True def _inputs_are_equal(_A : Tuple , _A : List[Any] ): if len(_A ) != len(_A ): return False for input_slice_a, input_slice_a in zip(_A , _A ): if not np.allclose(np.asarray(_A ) , np.asarray(_A ) , atol=1e-3 ): return False return True UpperCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : List[str] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_A ) UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : List[Any] = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase__ : Optional[Any] = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_A ) UpperCAmelCase__ : Dict = input_a[input_name] UpperCAmelCase__ : str = feat_extract.pad(_A , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) UpperCAmelCase__ : int = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to smallest with np UpperCAmelCase__ : str = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_A , ) UpperCAmelCase__ : str = input_a[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) UpperCAmelCase__ : Optional[Any] = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) # truncate to middle UpperCAmelCase__ : Optional[int] = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_A , return_tensors='''np''' , ) UpperCAmelCase__ : Any = input_a[input_name] UpperCAmelCase__ : Any = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_A ) UpperCAmelCase__ : Tuple = input_a[input_name] UpperCAmelCase__ : List[str] = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) UpperCAmelCase__ : Dict = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertTrue(_inputs_are_equal(_A , _A ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_A ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''longest''' , truncation=_A )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_A ): feat_extract.pad(_A , padding='''longest''' , truncation=_A )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_A ): feat_extract.pad(_A , padding='''max_length''' , truncation=_A )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ : str = 12 UpperCAmelCase__ : int = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , truncation=_A , ) UpperCAmelCase__ : Optional[int] = input_a[input_name] UpperCAmelCase__ : Optional[int] = feat_extract.pad( _A , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_A , ) UpperCAmelCase__ : List[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase__ : Dict = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase__ : Optional[int] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_A ) ) self.assertFalse(_inputs_have_equal_length(_A ) ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self._check_padding(numpify=_A ) def lowercase_ ( self : Tuple ): '''simple docstring''' self._check_padding(numpify=_A ) def lowercase_ ( self : List[str] ): '''simple docstring''' self._check_truncation(numpify=_A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self._check_truncation(numpify=_A ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : str = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Tuple = feat_extract.model_input_names[0] UpperCAmelCase__ : Tuple = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Union[str, Any] = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad(_A , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : Dict = feat_extract.model_input_names[0] UpperCAmelCase__ : str = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : List[Any] = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCAmelCase__ : List[Any] = feat_extract.pad(_A , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.feat_extract_dict UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**_A ) UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : str = [len(_A ) for x in speech_inputs] UpperCAmelCase__ : Dict = feat_extract.model_input_names[0] UpperCAmelCase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Any = feat_extract.pad(_A , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.feat_extract_dict UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Any = self.feature_extraction_class(**_A ) UpperCAmelCase__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ : List[Any] = [len(_A ) for x in speech_inputs] UpperCAmelCase__ : List[str] = feat_extract.model_input_names[0] UpperCAmelCase__ : Any = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ : Dict = min(_A ) UpperCAmelCase__ : Optional[Any] = feat_extract.pad( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _A ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
299
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCAmelCase__ : Optional[Any] = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" UpperCAmelCase__ : Tuple = str(bin(lowerCAmelCase__ ) )[2:] UpperCAmelCase__ : List[str] = max(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) , b_binary.zfill(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
299
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
1
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase__ : int = _modexpt(lowerCAmelCase__ , exponent // 2 , lowerCAmelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(lowerCAmelCase__ , exponent - 1 , lowerCAmelCase__ )) % modulo_value def a__ ( lowerCAmelCase__ = 17_77 , lowerCAmelCase__ = 18_55 , lowerCAmelCase__ = 8 ) -> int: UpperCAmelCase__ : List[Any] = base for _ in range(1 , lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = _modexpt(lowerCAmelCase__ , lowerCAmelCase__ , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : str = DPTConfig() if "large" in checkpoint_url: UpperCAmelCase__ : List[Any] = 10_24 UpperCAmelCase__ : Any = 40_96 UpperCAmelCase__ : Tuple = 24 UpperCAmelCase__ : List[Any] = 16 UpperCAmelCase__ : Optional[Any] = [5, 11, 17, 23] UpperCAmelCase__ : int = [2_56, 5_12, 10_24, 10_24] UpperCAmelCase__ : Optional[Any] = (1, 3_84, 3_84) if "ade" in checkpoint_url: UpperCAmelCase__ : int = True UpperCAmelCase__ : List[Any] = 1_50 UpperCAmelCase__ : int = '''huggingface/label-files''' UpperCAmelCase__ : int = '''ade20k-id2label.json''' UpperCAmelCase__ : Optional[Any] = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase__ : Any = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase__ : Any = idalabel UpperCAmelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : Any = [1, 1_50, 4_80, 4_80] return config, expected_shape def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCAmelCase__ : Optional[int] = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: UpperCAmelCase__ : Any = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: UpperCAmelCase__ : List[str] = name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: UpperCAmelCase__ : Optional[int] = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: UpperCAmelCase__ : List[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: UpperCAmelCase__ : Any = name.replace('''proj''' , '''projection''' ) if "blocks" in name: UpperCAmelCase__ : Dict = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: UpperCAmelCase__ : List[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase__ : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: UpperCAmelCase__ : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase__ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: UpperCAmelCase__ : Optional[int] = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: UpperCAmelCase__ : int = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: UpperCAmelCase__ : List[Any] = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: UpperCAmelCase__ : Optional[Any] = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: UpperCAmelCase__ : Any = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: UpperCAmelCase__ : Optional[Any] = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: UpperCAmelCase__ : Union[str, Any] = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCAmelCase__ : Optional[int] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: UpperCAmelCase__ : List[str] = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: UpperCAmelCase__ : List[str] = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: UpperCAmelCase__ : str = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: UpperCAmelCase__ : Optional[Any] = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: UpperCAmelCase__ : Optional[int] = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCAmelCase__ : int = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: UpperCAmelCase__ : Tuple = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: UpperCAmelCase__ : List[Any] = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: UpperCAmelCase__ : Optional[Any] = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCAmelCase__ : List[str] = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: UpperCAmelCase__ : Any = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: UpperCAmelCase__ : str = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: UpperCAmelCase__ : List[Any] = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: UpperCAmelCase__ : Tuple = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: UpperCAmelCase__ : List[Any] = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: UpperCAmelCase__ : List[Any] = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: UpperCAmelCase__ : int = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: UpperCAmelCase__ : Optional[int] = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: UpperCAmelCase__ : Union[str, Any] = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: UpperCAmelCase__ : Union[str, Any] = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: UpperCAmelCase__ : Any = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ : int = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) UpperCAmelCase__ : Dict = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase__ : List[str] = in_proj_bias[: config.hidden_size] UpperCAmelCase__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ : Dict = in_proj_bias[-config.hidden_size :] def a__ ( ) -> str: UpperCAmelCase__ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: UpperCAmelCase__ , UpperCAmelCase__ : str = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL UpperCAmelCase__ : Any = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): UpperCAmelCase__ : int = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model UpperCAmelCase__ : Optional[Any] = DPTForSemanticSegmentation(lowerCAmelCase__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image UpperCAmelCase__ : Optional[Any] = 4_80 if '''ade''' in checkpoint_url else 3_84 UpperCAmelCase__ : List[str] = DPTImageProcessor(size=lowerCAmelCase__ ) UpperCAmelCase__ : Dict = prepare_img() UpperCAmelCase__ : Tuple = image_processor(lowerCAmelCase__ , return_tensors='''pt''' ) # forward pass UpperCAmelCase__ : List[str] = model(**lowerCAmelCase__ ).logits if '''ade''' in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth # Assert logits UpperCAmelCase__ : str = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: UpperCAmelCase__ : Optional[int] = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(lowerCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCAmelCase__ ) ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
299
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
1
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def a__ ( lowerCAmelCase__=None ) -> int: if subparsers is not None: UpperCAmelCase__ : Union[str, Any] = subparsers.add_parser('''env''' ) else: UpperCAmelCase__ : List[str] = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=lowerCAmelCase__ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase__ ) return parser def a__ ( lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = torch.__version__ UpperCAmelCase__ : List[str] = torch.cuda.is_available() UpperCAmelCase__ : int = is_xpu_available() UpperCAmelCase__ : int = is_npu_available() UpperCAmelCase__ : Union[str, Any] = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = load_config_from_file(args.config_file ).to_dict() UpperCAmelCase__ : int = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(lowerCAmelCase__ ), '''PyTorch NPU available''': str(lowerCAmelCase__ ), '''System RAM''': F"""{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB""", } if pt_cuda_available: UpperCAmelCase__ : Union[str, Any] = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) UpperCAmelCase__ : Any = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else F"""\t{accelerate_config}""" ) print(lowerCAmelCase__ ) UpperCAmelCase__ : Any = accelerate_config return info def a__ ( ) -> int: UpperCAmelCase__ : Optional[int] = env_command_parser() UpperCAmelCase__ : Tuple = parser.parse_args() env_command(lowerCAmelCase__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
'''simple docstring''' UpperCamelCase__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' UpperCamelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] UpperCamelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
299
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : List[Any] , _A : str , _A : int , _A : Dict=None , _A : str=None ): '''simple docstring''' UpperCAmelCase__ : List[str] = start UpperCAmelCase__ : List[str] = end UpperCAmelCase__ : int = val UpperCAmelCase__ : Optional[Any] = (start + end) // 2 UpperCAmelCase__ : Tuple = left UpperCAmelCase__ : Any = right def __repr__( self : List[Any] ): '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class lowerCamelCase_ : def __init__( self : List[str] , _A : Sequence , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : str = collection UpperCAmelCase__ : str = function if self.collection: UpperCAmelCase__ : Optional[Any] = self._build_tree(0 , len(_A ) - 1 ) def lowercase_ ( self : List[Any] , _A : str , _A : Dict ): '''simple docstring''' self._update_tree(self.root , _A , _A ) def lowercase_ ( self : List[str] , _A : Any , _A : Dict ): '''simple docstring''' return self._query_range(self.root , _A , _A ) def lowercase_ ( self : Tuple , _A : Dict , _A : Optional[int] ): '''simple docstring''' if start == end: return SegmentTreeNode(_A , _A , self.collection[start] ) UpperCAmelCase__ : str = (start + end) // 2 UpperCAmelCase__ : int = self._build_tree(_A , _A ) UpperCAmelCase__ : Tuple = self._build_tree(mid + 1 , _A ) return SegmentTreeNode(_A , _A , self.fn(left.val , right.val ) , _A , _A ) def lowercase_ ( self : int , _A : List[str] , _A : Any , _A : Optional[int] ): '''simple docstring''' if node.start == i and node.end == i: UpperCAmelCase__ : Tuple = val return if i <= node.mid: self._update_tree(node.left , _A , _A ) else: self._update_tree(node.right , _A , _A ) UpperCAmelCase__ : Union[str, Any] = self.fn(node.left.val , node.right.val ) def lowercase_ ( self : Optional[Any] , _A : Dict , _A : Union[str, Any] , _A : Any ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _A , _A ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _A , node.mid ) , self._query_range(node.right , node.mid + 1 , _A ) , ) else: # range in right child tree return self._query_range(node.right , _A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' if self.root is not None: UpperCAmelCase__ : List[str] = Queue() queue.put(self.root ) while not queue.empty(): UpperCAmelCase__ : Optional[int] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 5_0) UpperCamelCase__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
299
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
1
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def a__ ( lowerCAmelCase__ ) -> list[float]: UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : Any = len(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ): UpperCAmelCase__ : float = -1 for j in range(i + 1 , lowerCAmelCase__ ): if arr[i] < arr[j]: UpperCAmelCase__ : Tuple = arr[j] break result.append(lowerCAmelCase__ ) return result def a__ ( lowerCAmelCase__ ) -> list[float]: UpperCAmelCase__ : Tuple = [] for i, outer in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase__ : Optional[int] = inner break result.append(lowerCAmelCase__ ) return result def a__ ( lowerCAmelCase__ ) -> list[float]: UpperCAmelCase__ : Tuple = len(lowerCAmelCase__ ) UpperCAmelCase__ : list[float] = [] UpperCAmelCase__ : list[float] = [-1] * arr_size for index in reversed(range(lowerCAmelCase__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase__ : Optional[int] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
299
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ = 'maskformer-swin' lowerCAmelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , _A : Union[str, Any]=224 , _A : Optional[int]=4 , _A : Optional[int]=3 , _A : Any=96 , _A : int=[2, 2, 6, 2] , _A : Tuple=[3, 6, 12, 24] , _A : Tuple=7 , _A : List[Any]=4.0 , _A : Any=True , _A : Dict=0.0 , _A : Optional[Any]=0.0 , _A : Dict=0.1 , _A : Union[str, Any]="gelu" , _A : Union[str, Any]=False , _A : Any=0.0_2 , _A : Union[str, Any]=1e-5 , _A : List[str]=None , _A : Dict=None , **_A : List[Any] , ): '''simple docstring''' super().__init__(**__a ) UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Any = patch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = embed_dim UpperCAmelCase__ : Union[str, Any] = depths UpperCAmelCase__ : Dict = len(__a ) UpperCAmelCase__ : Optional[int] = num_heads UpperCAmelCase__ : Union[str, Any] = window_size UpperCAmelCase__ : Optional[Any] = mlp_ratio UpperCAmelCase__ : int = qkv_bias UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : Any = attention_probs_dropout_prob UpperCAmelCase__ : Dict = drop_path_rate UpperCAmelCase__ : List[str] = hidden_act UpperCAmelCase__ : int = use_absolute_embeddings UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ : Dict = int(embed_dim * 2 ** (len(__a ) - 1) ) UpperCAmelCase__ : Union[str, Any] = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__a ) + 1 )] UpperCAmelCase__ : Optional[int] = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
350
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase_ : def __init__( self : Tuple , _A : str , _A : Any=13 , _A : Dict=7 , _A : List[str]=False , _A : Optional[Any]=True , _A : str=False , _A : Optional[int]=True , _A : Union[str, Any]=33 , _A : Union[str, Any]=32 , _A : Optional[int]=5 , _A : int=4 , _A : List[str]=37 , _A : Union[str, Any]="gelu" , _A : Tuple=0.1 , _A : List[Any]=0.1 , _A : List[Any]=512 , _A : Union[str, Any]=16 , _A : Dict=2 , _A : Union[str, Any]=0.0_2 , _A : Any=3 , _A : List[Any]=4 , _A : List[str]=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : str = use_input_mask UpperCAmelCase__ : Optional[int] = use_token_type_ids UpperCAmelCase__ : List[str] = use_labels UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Optional[Any] = num_hidden_layers UpperCAmelCase__ : Dict = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : int = num_choices UpperCAmelCase__ : Union[str, Any] = scope def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : List[str] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase_ ( self : Dict , _A : Dict , _A : Tuple , _A : str , _A : Any , _A : Dict , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = EsmModel(config=__A ) model.to(__A ) model.eval() UpperCAmelCase__ : Dict = model(__A , attention_mask=__A ) UpperCAmelCase__ : Any = model(__A ) UpperCAmelCase__ : List[Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self : int , _A : Any , _A : Union[str, Any] , _A : List[Any] , _A : Any , _A : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = EsmForMaskedLM(config=__A ) model.to(__A ) model.eval() UpperCAmelCase__ : Optional[int] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Tuple , _A : Dict , _A : int ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : Optional[int] = EsmForTokenClassification(config=__A ) model.to(__A ) model.eval() UpperCAmelCase__ : Dict = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Optional[int] = config_and_inputs UpperCAmelCase__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( A__ , A__ , unittest.TestCase ): lowerCAmelCase__ = False lowerCAmelCase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ = () lowerCAmelCase__ = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = EsmModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase__ : List[Any] = type self.model_tester.create_and_check_model(*__A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Any = EsmModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase__ : Dict = EsmEmbeddings(config=__A ) UpperCAmelCase__ : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) UpperCAmelCase__ : str = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) UpperCAmelCase__ : List[Any] = create_position_ids_from_input_ids(__A , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__A , __A ) ) ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()[0] UpperCAmelCase__ : List[str] = EsmEmbeddings(config=__A ) UpperCAmelCase__ : int = torch.empty(2 , 4 , 30 ) UpperCAmelCase__ : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] UpperCAmelCase__ : Dict = torch.as_tensor([expected_single_positions, expected_single_positions] ) UpperCAmelCase__ : List[str] = embeddings.create_position_ids_from_inputs_embeds(__A ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__A , __A ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def lowercase_ ( self : str ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' pass @require_torch class lowerCamelCase_ ( A__ ): @slow def lowercase_ ( self : str ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : int = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() UpperCAmelCase__ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : Optional[int] = model(__A )[0] UpperCAmelCase__ : Optional[Any] = 33 UpperCAmelCase__ : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __A ) UpperCAmelCase__ : List[str] = torch.tensor( [[[8.9_2_1_5, -10.5_898, -6.4_6_7_1], [-6.3_9_6_7, -13.9_114, -1.1_2_1_2], [-7.7_8_1_2, -13.9_516, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase__ : Any = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() UpperCAmelCase__ : Dict = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase__ : Union[str, Any] = model(__A )[0] # compare the actual values for a slice. UpperCAmelCase__ : List[str] = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) )
351
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
0
'''simple docstring''' import functools from typing import Any def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: # Validation if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0: raise ValueError('''the string should be not empty string''' ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or not all( isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(__lowerCAmelCase ) > 0 for item in words ): raise ValueError('''the words should be a list of non-empty strings''' ) # Build trie UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Union[str, Any] = '''WORD_KEEPER''' for word in words: UpperCAmelCase__ : Dict = trie for c in word: if c not in trie_node: UpperCAmelCase__ : int = {} UpperCAmelCase__ : Union[str, Any] = trie_node[c] UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Union[str, Any] = len(__lowerCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(lowerCAmelCase__ ) -> bool: if index == len_string: return True UpperCAmelCase__ : List[str] = trie for i in range(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = trie_node.get(string[i] , __lowerCAmelCase ) if trie_node is None: return False if trie_node.get(__lowerCAmelCase , __lowerCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( a__ ): def __init__( self : Optional[Any] , *_A : Optional[Any] , **_A : str ): '''simple docstring''' warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
354
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCamelCase_ : def __init__( self : int , _A : Optional[Any] , _A : Optional[int]=13 , _A : List[Any]=7 , _A : Tuple=True , _A : List[Any]=True , _A : int=True , _A : List[str]=True , _A : List[str]=99 , _A : Optional[int]=32 , _A : Dict=2 , _A : Optional[int]=4 , _A : List[str]=37 , _A : Any="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : List[str]=512 , _A : Union[str, Any]=16 , _A : Tuple=2 , _A : Any=0.0_2 , _A : int=3 , _A : Union[str, Any]=4 , _A : List[Any]=None , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = 13 UpperCAmelCase__ : Optional[int] = 7 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : str = True UpperCAmelCase__ : int = True UpperCAmelCase__ : int = True UpperCAmelCase__ : Optional[Any] = 99 UpperCAmelCase__ : Dict = 32 UpperCAmelCase__ : Any = 2 UpperCAmelCase__ : int = 4 UpperCAmelCase__ : Optional[int] = 37 UpperCAmelCase__ : Any = 'gelu' UpperCAmelCase__ : Optional[Any] = 0.1 UpperCAmelCase__ : Optional[int] = 0.1 UpperCAmelCase__ : Tuple = 512 UpperCAmelCase__ : Tuple = 16 UpperCAmelCase__ : Optional[Any] = 2 UpperCAmelCase__ : Dict = 0.0_2 UpperCAmelCase__ : Tuple = 3 UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : Any = None def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Any = None if self.use_token_type_ids: UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Tuple = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : Any = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self : Dict , _A : int , _A : Optional[int] , _A : List[str] , _A : Tuple , _A : Union[str, Any] , _A : Dict , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFRoFormerModel(config=_a ) UpperCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCAmelCase__ : Any = [input_ids, input_mask] UpperCAmelCase__ : Optional[Any] = model(_a ) UpperCAmelCase__ : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Tuple , _A : int , _A : Optional[int] , _A : List[str] , _A : List[Any] , _A : Tuple , _A : Dict , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = True UpperCAmelCase__ : List[Any] = TFRoFormerForCausalLM(config=_a ) UpperCAmelCase__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ : Optional[Any] = model(_a )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase_ ( self : Tuple , _A : List[Any] , _A : int , _A : Any , _A : List[str] , _A : Dict , _A : int , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFRoFormerForMaskedLM(config=_a ) UpperCAmelCase__ : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ : Tuple = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int] , _A : str , _A : Dict , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.num_labels UpperCAmelCase__ : List[str] = TFRoFormerForSequenceClassification(config=_a ) UpperCAmelCase__ : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ : str = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Optional[Any] , _A : Union[str, Any] , _A : List[str] , _A : int , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_choices UpperCAmelCase__ : Tuple = TFRoFormerForMultipleChoice(config=_a ) UpperCAmelCase__ : Dict = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : Optional[Any] = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : int = tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCAmelCase__ : Any = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self : Dict , _A : Optional[int] , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : int , _A : List[str] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : Union[str, Any] = TFRoFormerForTokenClassification(config=_a ) UpperCAmelCase__ : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ : Any = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self : int , _A : Any , _A : Any , _A : Any , _A : Optional[Any] , _A : Any , _A : Union[str, Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = TFRoFormerForQuestionAnswering(config=_a ) UpperCAmelCase__ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCAmelCase__ : Tuple = model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase__ ) : Tuple = config_and_inputs UpperCAmelCase__ : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCAmelCase__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : str , _A : str , _A : List[Any] , _A : Any , _A : str , _A : Any ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = TFRoFormerModelTester(self ) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=_a , hidden_size=37 ) def lowercase_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_a ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(_a ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase__ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ : str = model(_a )[0] # TODO Replace vocab size UpperCAmelCase__ : List[str] = 50_000 UpperCAmelCase__ : int = [1, 6, vocab_size] self.assertEqual(output.shape , _a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase__ : str = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-4 ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): lowerCAmelCase__ = 1E-4 def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = tf.constant([[4, 10]] ) UpperCAmelCase__ : Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase__ : str = emba(input_ids.shape ) UpperCAmelCase__ : str = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(_a , _a , atol=self.tolerance ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) UpperCAmelCase__ : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase__ : Optional[Any] = emba.weight[:3, :5] tf.debugging.assert_near(_a , _a , atol=self.tolerance ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): lowerCAmelCase__ = 1E-4 def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase__ : List[str] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase__ : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase__ : str = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase__ : Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _a , _a , _a ) UpperCAmelCase__ : Tuple = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) UpperCAmelCase__ : List[str] = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _a , atol=self.tolerance )
355
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: # Construct model if gpta_config_file == "": UpperCAmelCase__ : Any = GPTaConfig() else: UpperCAmelCase__ : List[Any] = GPTaConfig.from_json_file(__snake_case ) UpperCAmelCase__ : Tuple = GPTaModel(__snake_case ) # Load weights from numpy load_tf_weights_in_gpta(__snake_case , __snake_case , __snake_case ) # Save pytorch-model UpperCAmelCase__ : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase__ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , __snake_case ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) UpperCamelCase__ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
356
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''encoder.layer_norm_for_extract''': '''layer_norm_for_extract''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''label_embs_concat''': '''label_embeddings_concat''', '''mask_emb''': '''masked_spec_embed''', '''spk_proj''': '''speaker_proj''', } UpperCamelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''label_embeddings_concat''', '''speaker_proj''', '''layer_norm_for_extract''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : int = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : Tuple = value else: UpperCAmelCase__ : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : Dict = fairseq_model.state_dict() UpperCAmelCase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : List[str] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Optional[int] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : List[str] = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ : Tuple = '''weight''' else: UpperCAmelCase__ : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Union[str, Any] = int(items[0] ) UpperCAmelCase__ : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : str = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True ) -> Any: if config_path is not None: UpperCAmelCase__ : Any = UniSpeechSatConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : int = UniSpeechSatConfig() UpperCAmelCase__ : Tuple = '''''' if is_finetuned: UpperCAmelCase__ : Optional[int] = UniSpeechSatForCTC(lowerCAmelCase__ ) else: UpperCAmelCase__ : List[Any] = UniSpeechSatForPreTraining(lowerCAmelCase__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCAmelCase__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
299
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Any , _A : Dict , _A : Union[str, Any]=13 , _A : Optional[int]=32 , _A : str=3 , _A : Any=4 , _A : Optional[int]=[10, 20, 30, 40] , _A : List[str]=[2, 2, 3, 2] , _A : List[Any]=True , _A : str=True , _A : Any=37 , _A : Any="gelu" , _A : Optional[Any]=10 , _A : int=0.0_2 , _A : int=["stage2", "stage3", "stage4"] , _A : Union[str, Any]=3 , _A : Dict=None , ): '''simple docstring''' UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : Union[str, Any] = num_stages UpperCAmelCase__ : int = hidden_sizes UpperCAmelCase__ : Union[str, Any] = depths UpperCAmelCase__ : Tuple = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Tuple = out_features UpperCAmelCase__ : int = num_labels UpperCAmelCase__ : int = scope UpperCAmelCase__ : List[Any] = num_stages def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Dict = self.get_config() return config, pixel_values, labels def lowercase_ ( self : int ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_snake_case , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_snake_case , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase_ ( self : List[Any] , _A : Tuple , _A : List[Any] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = UperNetForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() UpperCAmelCase__ : str = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase__ = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = UperNetModelTester(self ) UpperCAmelCase__ : str = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def lowercase_ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' return def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(_snake_case ) UpperCAmelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowercase_ ( self : int ): '''simple docstring''' def check_hidden_states_output(_A : Union[str, Any] , _A : Dict , _A : int ): UpperCAmelCase__ : str = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase__ : Dict = model(**self._prepare_for_class(_snake_case , _snake_case ) ) UpperCAmelCase__ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : str = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = _config_zero_init(_snake_case ) UpperCAmelCase__ : Any = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(config=_snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' pass @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Dict = UperNetForSemanticSegmentation.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def a__ ( ) -> str: """simple docstring""" UpperCAmelCase__ : Tuple = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) UpperCAmelCase__ : List[str] = Image.open(__A ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) UpperCAmelCase__ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_snake_case ) UpperCAmelCase__ : Optional[Any] = prepare_img() UpperCAmelCase__ : int = processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(**_snake_case ) UpperCAmelCase__ : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _snake_case ) UpperCAmelCase__ : Dict = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1e-4 ) ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) UpperCAmelCase__ : List[str] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_snake_case ) UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : List[Any] = processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) with torch.no_grad(): UpperCAmelCase__ : Union[str, Any] = model(**_snake_case ) UpperCAmelCase__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _snake_case ) UpperCAmelCase__ : List[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1e-4 ) )
357
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase__ = random.Random() if is_torch_available(): import torch def a__ ( lowerCAmelCase__ , lowerCAmelCase__=1.0 , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Optional[Any]: if rng is None: UpperCAmelCase__ : List[str] = global_rng UpperCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Any , _A : List[str] , _A : int=7 , _A : Dict=400 , _A : Tuple=2_000 , _A : Optional[int]=1 , _A : List[Any]=0.0 , _A : Any=16_000 , _A : int=True , _A : str=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Dict = min_seq_length UpperCAmelCase__ : str = max_seq_length UpperCAmelCase__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase__ : Optional[Any] = feature_size UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : Tuple = return_attention_mask UpperCAmelCase__ : str = do_normalize def lowercase_ ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : int , _A : Optional[Any]=False , _A : Any=False ): '''simple docstring''' def _flatten(_A : Union[str, Any] ): return list(itertools.chain(*_A ) ) if equal_length: UpperCAmelCase__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase__ : Dict = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = ASTFeatureExtractor def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : int = ASTFeatureExtractionTester(self ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase__ : List[Any] = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase__ : str = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[Any] = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched UpperCAmelCase__ : Optional[Any] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : Optional[int] = feat_extract(_A , padding=_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase__ : Any = np.asarray(_A ) UpperCAmelCase__ : int = feat_extract(_A , return_tensors='''np''' ).input_values UpperCAmelCase__ : List[str] = feat_extract(_A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' import torch UpperCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase__ : Any = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase__ : str = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase__ : Any = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' from datasets import load_dataset UpperCAmelCase__ : Tuple = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase__ : List[Any] = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase__ : Optional[Any] = self._load_datasamples(1 ) UpperCAmelCase__ : Optional[int] = ASTFeatureExtractor() UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
299
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase_ ( lowercase__ ): lowerCAmelCase__ = 0 lowerCAmelCase__ = False lowerCAmelCase__ = 3.0 class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_UpperCamelCase ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} ) @require_cuda def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCAmelCase__ : Union[str, Any] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCAmelCase__ : Optional[Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _UpperCamelCase ) @require_multi_gpu def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase__ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) UpperCamelCase__ = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase__ = torch.nn.Linear(1_0_0, 2_0_0) UpperCamelCase__ = accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase__ = '' UpperCamelCase__ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
358
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
0
'''simple docstring''' def a__ ( lowerCAmelCase__ = 1_00_00_00 ) -> Any: UpperCAmelCase__ : Optional[int] = set(range(3 , lowerCAmelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase__ , lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Tuple = [float(lowerCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase__ , limit + 1 , lowerCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
359
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> float: UpperCAmelCase__ : Tuple = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: UpperCAmelCase__ : List[str] = 1 - (matter_density + radiation_density + dark_energy) UpperCAmelCase__ : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) UpperCAmelCase__ : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation UpperCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
299
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class lowerCamelCase_ ( A_ ): lowerCAmelCase__ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) lowerCAmelCase__ = Features({'text': Value('string' )} ) lowerCAmelCase__ = Features({} ) lowerCAmelCase__ = "text" @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return {self.text_column: "text"}
360
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase__ = logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : str = 3 UpperCAmelCase__ : str = (32, 32) UpperCAmelCase__ : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Tuple = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : int ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : Dict ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = 4 UpperCAmelCase__ : Dict = 4 UpperCAmelCase__ : List[str] = (32, 32) UpperCAmelCase__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : List[Any] = torch.tensor([10] ).to(_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : Tuple ): '''simple docstring''' return (4, 32, 32) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (4, 32, 32) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } UpperCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model.to(_A ) UpperCAmelCase__ : Dict = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_A ) model_accelerate.to(_A ) model_accelerate.eval() UpperCAmelCase__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : Union[str, Any] = noise.to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor([10] * noise.shape[0] ).to(_A ) UpperCAmelCase__ : Any = model_accelerate(_A , _A )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase__ , UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_A , low_cpu_mem_usage=_A ) model_normal_load.to(_A ) model_normal_load.eval() UpperCAmelCase__ : Optional[int] = model_normal_load(_A , _A )['''sample'''] assert torch_all_close(_A , _A , rtol=1e-3 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) UpperCAmelCase__ : str = noise.to(_A ) UpperCAmelCase__ : str = torch.tensor([10] * noise.shape[0] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : List[Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-3 ) ) class lowerCamelCase_ ( __a , __a , unittest.TestCase ): lowerCAmelCase__ = UNetaDModel lowerCAmelCase__ = 'sample' @property def lowercase_ ( self : Any , _A : str=(32, 32) ): '''simple docstring''' UpperCAmelCase__ : Tuple = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Dict = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_A ) return {"sample": noise, "timestep": time_step} @property def lowercase_ ( self : List[str] ): '''simple docstring''' return (3, 32, 32) @property def lowercase_ ( self : List[Any] ): '''simple docstring''' return (3, 32, 32) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } UpperCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_A ) UpperCAmelCase__ : List[str] = self.dummy_input UpperCAmelCase__ : Dict = floats_tensor((4, 3) + (256, 256) ).to(_A ) UpperCAmelCase__ : Optional[Any] = noise UpperCAmelCase__ : Any = model(**_A ) assert image is not None, "Make sure output is not None" @slow def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_A ) UpperCAmelCase__ : Optional[Any] = 4 UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : Dict = (256, 256) UpperCAmelCase__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : Optional[int] = model(_A , _A ).sample UpperCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Tuple = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_A ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : Any = 3 UpperCAmelCase__ : int = (32, 32) UpperCAmelCase__ : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(_A ) UpperCAmelCase__ : Optional[Any] = torch.tensor(batch_size * [1e-4] ).to(_A ) with torch.no_grad(): UpperCAmelCase__ : int = model(_A , _A ).sample UpperCAmelCase__ : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase__ : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_A , _A , rtol=1e-2 ) ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
299
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCAmelCase__ : List[str] = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(_a ) , torch_builtin(_a ) ) ) self.assertFalse(torch.allclose(gelu_python(_a ) , gelu_new(_a ) ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) UpperCAmelCase__ : Optional[Any] = get_activation('''gelu''' ) UpperCAmelCase__ : str = get_activation('''gelu_10''' ) UpperCAmelCase__ : Dict = torch_builtin(_a ) UpperCAmelCase__ : Tuple = geluaa(_a ) UpperCAmelCase__ : str = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(_a ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowercase_ ( self : Dict ): '''simple docstring''' get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(_a ): get_activation('''bogus''' ) with self.assertRaises(_a ): get_activation(_a ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_activation('''gelu''' ) UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : int = get_activation('''gelu''' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(_a ): UpperCAmelCase__ : Tuple = acta.a
361
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[float, list[float]]: UpperCAmelCase__ : Optional[Any] = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase__ : Optional[Any] = [v / w for v, w in zip(lowerCAmelCase__ , lowerCAmelCase__ )] index.sort(key=lambda lowerCAmelCase__ : ratio[i] , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : float = 0 UpperCAmelCase__ : list[float] = [0] * len(lowerCAmelCase__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ : List[str] = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ : Tuple = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
299
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
362
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : int , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Tuple , *_A : Tuple , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[str] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *_A : Any , **_A : int ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[Any] , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Dict , **_A : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : Any , **_A : Tuple ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : int , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Dict ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Optional[int] , **_A : int ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class lowerCamelCase_ ( metaclass=__a ): lowerCAmelCase__ = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *_A : Union[str, Any] , **_A : Dict ): '''simple docstring''' requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : List[str] , *_A : str , **_A : List[str] ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase_ ( cls : Dict , *_A : str , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
299
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase_ ( metaclass=__lowercase ): lowerCAmelCase__ = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Dict , *_A : List[str] , **_A : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowercase_ ( cls : Any , *_A : Optional[Any] , **_A : Any ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def lowercase_ ( cls : Union[str, Any] , *_A : Dict , **_A : Optional[int] ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
363
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
299
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ = { '''roberta-base''': 5_1_2, '''roberta-large''': 5_1_2, '''roberta-large-mnli''': 5_1_2, '''distilroberta-base''': 5_1_2, '''roberta-base-openai-detector''': 5_1_2, '''roberta-large-openai-detector''': 5_1_2, } class lowerCamelCase_ ( a_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase__ = RobertaTokenizer def __init__( self : Optional[int] , _A : Any=None , _A : List[str]=None , _A : Union[str, Any]=None , _A : Dict="replace" , _A : Union[str, Any]="<s>" , _A : Dict="</s>" , _A : List[str]="</s>" , _A : Any="<s>" , _A : Tuple="<unk>" , _A : Optional[int]="<pad>" , _A : Any="<mask>" , _A : Union[str, Any]=False , _A : List[Any]=True , **_A : Union[str, Any] , ): '''simple docstring''' super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , errors=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , **lowercase_ , ) UpperCAmelCase__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase_ ) != add_prefix_space: UpperCAmelCase__ : str = getattr(lowercase_ , pre_tok_state.pop('''type''' ) ) UpperCAmelCase__ : Union[str, Any] = add_prefix_space UpperCAmelCase__ : Tuple = pre_tok_class(**lowercase_ ) UpperCAmelCase__ : Optional[int] = add_prefix_space UpperCAmelCase__ : Dict = '''post_processor''' UpperCAmelCase__ : List[Any] = getattr(self.backend_tokenizer , lowercase_ , lowercase_ ) if tokenizer_component_instance: UpperCAmelCase__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ : List[Any] = tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase__ : int = tuple(state['''cls'''] ) UpperCAmelCase__ : List[Any] = False if state.get('''add_prefix_space''' , lowercase_ ) != add_prefix_space: UpperCAmelCase__ : Optional[int] = add_prefix_space UpperCAmelCase__ : List[Any] = True if state.get('''trim_offsets''' , lowercase_ ) != trim_offsets: UpperCAmelCase__ : Dict = trim_offsets UpperCAmelCase__ : List[Any] = True if changes_to_apply: UpperCAmelCase__ : str = getattr(lowercase_ , state.pop('''type''' ) ) UpperCAmelCase__ : str = component_class(**lowercase_ ) setattr(self.backend_tokenizer , lowercase_ , lowercase_ ) @property def lowercase_ ( self : Dict ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self : int , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else value UpperCAmelCase__ : List[Any] = value def lowercase_ ( self : Optional[Any] , *_A : Union[str, Any] , **_A : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = kwargs.get('''is_split_into_words''' , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_ ) def lowercase_ ( self : Any , *_A : int , **_A : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = kwargs.get('''is_split_into_words''' , lowercase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_ ) def lowercase_ ( self : Dict , _A : List[str] , _A : Tuple = None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ ) def lowercase_ ( self : List[str] , _A : int , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Tuple , _A : List[Any] , _A : Union[str, Any] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
364
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class lowerCamelCase_ ( __a ): def __get__( self : str , _A : Tuple , _A : List[str]=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) UpperCAmelCase__ : Union[str, Any] = '''__cached_''' + self.fget.__name__ UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if cached is None: UpperCAmelCase__ : Dict = self.fget(_A ) setattr(_A , _A , _A ) return cached def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: if is_torch_fx_proxy(lowerCAmelCase__ ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> Any: return isinstance(lowerCAmelCase__ , np.ndarray ) def a__ ( lowerCAmelCase__ ) -> int: return _is_numpy(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: import torch return isinstance(lowerCAmelCase__ , torch.device ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import torch if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) else: return False return isinstance(lowerCAmelCase__ , torch.dtype ) def a__ ( lowerCAmelCase__ ) -> Optional[int]: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> List[Any]: import tensorflow as tf return isinstance(lowerCAmelCase__ , tf.Tensor ) def a__ ( lowerCAmelCase__ ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(lowerCAmelCase__ ) return type(lowerCAmelCase__ ) == tf.Tensor def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase__ , jnp.ndarray ) def a__ ( lowerCAmelCase__ ) -> List[Any]: return False if not is_flax_available() else _is_jax(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return [to_py_obj(lowerCAmelCase__ ) for o in obj] elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ).tolist() elif isinstance(lowerCAmelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def a__ ( lowerCAmelCase__ ) -> Tuple: if isinstance(lowerCAmelCase__ , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase__ ) for k, v in obj.items()} elif isinstance(lowerCAmelCase__ , (list, tuple) ): return np.array(lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase__ ): return np.asarray(lowerCAmelCase__ ) else: return obj class lowerCamelCase_ ( __a ): def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = fields(self ) # Safety and consistency checks if not len(_A ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) UpperCAmelCase__ : Dict = getattr(self , class_fields[0].name ) UpperCAmelCase__ : Any = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_A ): if isinstance(_A , _A ): UpperCAmelCase__ : List[Any] = first_field.items() UpperCAmelCase__ : Optional[int] = True else: try: UpperCAmelCase__ : Optional[int] = iter(_A ) UpperCAmelCase__ : Optional[int] = True except TypeError: UpperCAmelCase__ : Optional[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_A ): if ( not isinstance(_A , (list, tuple) ) or not len(_A ) == 2 or not isinstance(element[0] , _A ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase__ : List[Any] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase__ : List[str] = element[1] elif first_field is not None: UpperCAmelCase__ : Optional[Any] = first_field else: for field in class_fields: UpperCAmelCase__ : Optional[int] = getattr(self , field.name ) if v is not None: UpperCAmelCase__ : str = v def __delitem__( self : Union[str, Any] , *_A : Any , **_A : str ): '''simple docstring''' raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Any , *_A : List[str] , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Any , **_A : Tuple ): '''simple docstring''' raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowercase_ ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ): '''simple docstring''' raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self : List[str] , _A : Any ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : int , _A : Union[str, Any] , _A : str ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_A , _A ) super().__setattr__(_A , _A ) def __setitem__( self : Any , _A : Optional[int] , _A : List[str] ): '''simple docstring''' super().__setitem__(_A , _A ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class lowerCamelCase_ ( __a , __a ): @classmethod def lowercase_ ( cls : Optional[Any] , _A : Optional[Any] ): '''simple docstring''' raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'longest' lowerCAmelCase__ = 'max_length' lowerCAmelCase__ = 'do_not_pad' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'pt' lowerCAmelCase__ = 'tf' lowerCAmelCase__ = 'np' lowerCAmelCase__ = 'jax' class lowerCamelCase_ : def __init__( self : List[Any] , _A : List[ContextManager] ): '''simple docstring''' UpperCAmelCase__ : str = context_managers UpperCAmelCase__ : int = ExitStack() def __enter__( self : str ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_A ) def __exit__( self : Dict , *_A : List[Any] , **_A : str ): '''simple docstring''' self.stack.__exit__(*_A , **_A ) def a__ ( lowerCAmelCase__ ) -> Any: UpperCAmelCase__ : int = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Optional[Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def a__ ( lowerCAmelCase__ ) -> Optional[int]: UpperCAmelCase__ : Dict = model_class.__name__ UpperCAmelCase__ : Union[str, Any] = infer_framework(lowerCAmelCase__ ) if framework == "tf": UpperCAmelCase__ : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase__ : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase__ : int = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = "" , lowerCAmelCase__ = "." ) -> Any: def _flatten_dict(lowerCAmelCase__ , lowerCAmelCase__="" , lowerCAmelCase__="." ): for k, v in d.items(): UpperCAmelCase__ : int = str(lowerCAmelCase__ ) + delimiter + str(lowerCAmelCase__ ) if parent_key else k if v and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): yield from flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , delimiter=lowerCAmelCase__ ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) @contextmanager def a__ ( lowerCAmelCase__ , lowerCAmelCase__ = False ) -> int: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.T if axes is None else array.permute(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.transpose(lowerCAmelCase__ , perm=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.transpose(lowerCAmelCase__ , axes=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: if is_numpy_array(lowerCAmelCase__ ): return np.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.reshape(*lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.reshape(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__=None ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.squeeze(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: if is_numpy_array(lowerCAmelCase__ ): return np.expand_dims(lowerCAmelCase__ , lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.unsqueeze(dim=lowerCAmelCase__ ) elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return jnp.expand_dims(lowerCAmelCase__ , axis=lowerCAmelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ ) -> int: if is_numpy_array(lowerCAmelCase__ ): return np.size(lowerCAmelCase__ ) elif is_torch_tensor(lowerCAmelCase__ ): return array.numel() elif is_tf_tensor(lowerCAmelCase__ ): import tensorflow as tf return tf.size(lowerCAmelCase__ ) elif is_jax_tensor(lowerCAmelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(lowerCAmelCase__ )}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase__ , (tuple, list) ): UpperCAmelCase__ : int = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase__ : str = F"""{repo_id}--{value}""" return auto_map def a__ ( lowerCAmelCase__ ) -> Tuple: for base_class in inspect.getmro(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = base_class.__module__ UpperCAmelCase__ : Optional[int] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
299
0
'''simple docstring''' import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' UpperCAmelCase__ : List[str] = n UpperCAmelCase__ : Any = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # adjacency matrix for weight UpperCAmelCase__ : Tuple = [ [math.inf for j in range(0 , _a )] for i in range(0 , _a ) ] # dp[i][j] stores minimum distance from i to j def lowercase_ ( self : Any , _A : int , _A : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : int = w def lowercase_ ( self : str ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase__ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowercase_ ( self : List[Any] , _A : Dict , _A : Union[str, Any] ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": UpperCamelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
365
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 ) -> Dict: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase__ : str = DatasetDict( { '''train''': dataset['''train'''].select(lowerCAmelCase__ ), '''validation''': dataset['''train'''].select(lowerCAmelCase__ ), '''test''': dataset['''validation'''], } ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ : Dict = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ : Optional[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ : Any = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ : Dict = 8 else: UpperCAmelCase__ : List[Any] = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = DataLoader( tokenized_datasets['''test'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: # New Code # UpperCAmelCase__ : List[str] = [] # Download the dataset UpperCAmelCase__ : Union[str, Any] = load_dataset('''glue''' , '''mrpc''' ) # Create our splits UpperCAmelCase__ : str = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCAmelCase__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Any = config['''lr'''] UpperCAmelCase__ : Any = int(config['''num_epochs'''] ) UpperCAmelCase__ : Any = int(config['''seed'''] ) UpperCAmelCase__ : Dict = int(config['''batch_size'''] ) UpperCAmelCase__ : Any = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ : Any = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) # New Code # # Create our folds: UpperCAmelCase__ : Union[str, Any] = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) UpperCAmelCase__ : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase__ ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = get_fold_dataloaders( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler UpperCAmelCase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ : Union[str, Any] = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Dict = outputs.loss UpperCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) UpperCAmelCase__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCAmelCase__ ) # New Code # # We also run predictions on the test set at the very end UpperCAmelCase__ : int = [] for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : str = model(**lowerCAmelCase__ ) UpperCAmelCase__ : Union[str, Any] = outputs.logits UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCAmelCase__ : Union[str, Any] = torch.cat(lowerCAmelCase__ , dim=0 ) UpperCAmelCase__ : Tuple = torch.stack(lowerCAmelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCAmelCase__ : Optional[Any] = metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) accelerator.print('''Average test metrics from all folds:''' , lowerCAmelCase__ ) def a__ ( ) -> Any: UpperCAmelCase__ : Tuple = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=lowerCAmelCase__ , default=3 , help='''The number of splits to perform across the dataset''' ) UpperCAmelCase__ : Tuple = parser.parse_args() UpperCAmelCase__ : Any = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
299
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( lowerCAmelCase__ ) -> List[str]: UpperCAmelCase__ : Any = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Any = emb.weight.shape UpperCAmelCase__ : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = emb.weight.data return lin_layer def a__ ( lowerCAmelCase__ , lowerCAmelCase__="facebook/mbart-large-en-ro" , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Tuple: UpperCAmelCase__ : Dict = torch.load(lowerCAmelCase__ , map_location='''cpu''' )["""model"""] remove_ignore_keys_(lowerCAmelCase__ ) UpperCAmelCase__ : str = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCAmelCase__ : int = MBartConfig.from_pretrained(lowerCAmelCase__ , vocab_size=lowerCAmelCase__ ) if mbart_aa and finetuned: UpperCAmelCase__ : List[str] = """relu""" UpperCAmelCase__ : List[str] = state_dict["""decoder.embed_tokens.weight"""] UpperCAmelCase__ : Optional[int] = MBartForConditionalGeneration(lowerCAmelCase__ ) model.model.load_state_dict(lowerCAmelCase__ ) if finetuned: UpperCAmelCase__ : str = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
366
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Any = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Tuple = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase__ : Optional[int] = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16_000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , _A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) # load decoder from hub UpperCAmelCase__ : Any = '''hf-internal-testing/ngram-beam-search-decoder''' def lowercase_ ( self : int , **_A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(_A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : str , **_A : Any ): '''simple docstring''' return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_A ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(_A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=_A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Any = self.get_decoder() UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : List[Any] = floats_list((3, 1_000) ) UpperCAmelCase__ : Dict = feature_extractor(_A , return_tensors='''np''' ) UpperCAmelCase__ : str = processor(_A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : str = self.get_tokenizer() UpperCAmelCase__ : str = self.get_decoder() UpperCAmelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Union[str, Any] = '''This is a test string''' UpperCAmelCase__ : Optional[int] = processor(text=_A ) UpperCAmelCase__ : List[str] = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : Dict , _A : Optional[int]=(2, 10, 16) , _A : List[str]=77 ): '''simple docstring''' np.random.seed(_A ) return np.random.rand(*_A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.get_feature_extractor() UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : int = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase__ : List[Any] = processor.decode(_A ) UpperCAmelCase__ : List[Any] = decoder.decode_beams(_A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def lowercase_ ( self : Any , _A : str ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_feature_extractor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : Tuple = self.get_decoder() UpperCAmelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A ) else: with get_context(_A ).Pool() as pool: UpperCAmelCase__ : Union[str, Any] = processor.batch_decode(_A , _A ) UpperCAmelCase__ : str = list(_A ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase__ : Dict = decoder.decode_beams_batch(_A , _A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(_A , decoded_processor.logit_score ) self.assertListEqual(_A , decoded_processor.lm_score ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.get_feature_extractor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : int = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : str = self._get_dummy_logits() UpperCAmelCase__ : Optional[int] = 15 UpperCAmelCase__ : Dict = -2_0.0 UpperCAmelCase__ : Optional[Any] = -4.0 UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : List[Any] = decoded_processor_out.text UpperCAmelCase__ : List[str] = list(_A ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Tuple = decoder.decode_beams_batch( _A , _A , beam_width=_A , beam_prune_logp=_A , token_min_logp=_A , ) UpperCAmelCase__ : Optional[int] = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[Any] = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase__ : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , _A ) self.assertTrue(np.array_equal(_A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , _A , atol=1e-3 ) ) self.assertTrue(np.array_equal(_A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , _A , atol=1e-3 ) ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_feature_extractor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_decoder() UpperCAmelCase__ : int = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) UpperCAmelCase__ : Optional[int] = self._get_dummy_logits() UpperCAmelCase__ : List[str] = 2.0 UpperCAmelCase__ : Union[str, Any] = 5.0 UpperCAmelCase__ : str = -2_0.0 UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = processor.batch_decode( _A , alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) UpperCAmelCase__ : Union[str, Any] = decoded_processor_out.text UpperCAmelCase__ : Tuple = list(_A ) decoder.reset_params( alpha=_A , beta=_A , unk_score_offset=_A , lm_score_boundary=_A , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase__ : Optional[Any] = decoder.decode_beams_batch( _A , _A , ) UpperCAmelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_A , _A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , _A ) UpperCAmelCase__ : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , _A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : Dict = os.listdir(_A ) UpperCAmelCase__ : Optional[Any] = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained(_A ) UpperCAmelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase__ : str = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase__ : List[str] = os.listdir(_A ) UpperCAmelCase__ : Any = os.listdir(_A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Tuple = floats_list((3, 1_000) ) UpperCAmelCase__ : int = processor_wavaveca(_A , return_tensors='''np''' ) UpperCAmelCase__ : List[str] = processor_auto(_A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase__ : Tuple = self._get_dummy_logits() UpperCAmelCase__ : List[str] = processor_wavaveca.batch_decode(_A ) UpperCAmelCase__ : int = processor_auto.batch_decode(_A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = self.get_feature_extractor() UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = self.get_decoder() UpperCAmelCase__ : Optional[int] = WavaVecaProcessorWithLM(tokenizer=_A , feature_extractor=_A , decoder=_A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def lowercase_ ( _A : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : str = self._get_dummy_logits()[0] UpperCAmelCase__ : List[str] = processor.decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase__ : Dict = self._get_dummy_logits() UpperCAmelCase__ : Dict = processor.batch_decode(_A , output_word_offsets=_A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(_A , _A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(_A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self : Optional[Any] ): '''simple docstring''' import torch UpperCAmelCase__ : Any = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=_A ) UpperCAmelCase__ : Dict = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16_000 ) ) UpperCAmelCase__ : List[Any] = iter(_A ) UpperCAmelCase__ : Optional[Any] = next(_A ) UpperCAmelCase__ : Any = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase__ : int = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase__ : int = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase__ : Dict = model(_A ).logits.cpu().numpy() UpperCAmelCase__ : int = processor.decode(logits[0] , output_word_offsets=_A ) UpperCAmelCase__ : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase__ : Any = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase__ : int = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , _A ) self.assertEqual(''' '''.join(self.get_from_offsets(_A , '''word''' ) ) , output.text ) # output times UpperCAmelCase__ : List[Any] = torch.tensor(self.get_from_offsets(_A , '''start_time''' ) ) UpperCAmelCase__ : List[str] = torch.tensor(self.get_from_offsets(_A , '''end_time''' ) ) # fmt: off UpperCAmelCase__ : int = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) UpperCAmelCase__ : List[str] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) ) self.assertTrue(torch.allclose(_A , _A , atol=0.0_1 ) )
299
0
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): def get_matched_characters(lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : List[str] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCAmelCase__ : Optional[Any] = int(max(0 , i - limit ) ) UpperCAmelCase__ : List[Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(a_ ) UpperCAmelCase__ : str = F"""{_stra[0:_stra.index(a_ )]} {_stra[_stra.index(a_ ) + 1:]}""" return "".join(a_ ) # matching characters UpperCAmelCase__ : Optional[int] = get_matched_characters(a_ , a_ ) UpperCAmelCase__ : Dict = get_matched_characters(a_ , a_ ) UpperCAmelCase__ : List[str] = len(a_ ) # transposition UpperCAmelCase__ : List[Any] = ( len([(ca, ca) for ca, ca in zip(a_ , a_ ) if ca != ca] ) // 2 ) if not match_count: UpperCAmelCase__ : List[Any] = 0.0 else: UpperCAmelCase__ : Optional[Any] = ( 1 / 3 * ( match_count / len(a_ ) + match_count / len(a_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCAmelCase__ : List[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('''hello''', '''world'''))
367
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowerCAmelCase__ ) -> List[Any]: return 1 / (1 + np.exp(-z )) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: return (-y * np.log(lowerCAmelCase__ ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(lowerCAmelCase__ ) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=7_00_00 ) -> List[Any]: UpperCAmelCase__ : Tuple = np.zeros(x.shape[1] ) for iterations in range(lowerCAmelCase__ ): UpperCAmelCase__ : List[Any] = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : int = np.dot(x.T , h - y ) / y.size UpperCAmelCase__ : Optional[int] = theta - alpha * gradient # updating the weights UpperCAmelCase__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : int = sigmoid_function(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = cost_function(lowerCAmelCase__ , lowerCAmelCase__ ) if iterations % 1_00 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase__ = datasets.load_iris() UpperCamelCase__ = iris.data[:, :2] UpperCamelCase__ = (iris.target != 0) * 1 UpperCamelCase__ = 0.1 UpperCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def a__ ( lowerCAmelCase__ ) -> Dict: return sigmoid_function( np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase__) , (UpperCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
299
0
'''simple docstring''' import os def a__ ( lowerCAmelCase__ = "matrix.txt" ) -> int: with open(os.path.join(os.path.dirname(_UpperCamelCase ) , _UpperCamelCase ) ) as in_file: UpperCAmelCase__ : Dict = in_file.read() UpperCAmelCase__ : List[str] = [[int(_UpperCamelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] UpperCAmelCase__ : Dict = [[0 for cell in row] for row in grid] UpperCAmelCase__ : Optional[int] = len(grid[0] ) UpperCAmelCase__ : str = [[0 for i in range(_UpperCamelCase )] for j in range(_UpperCamelCase )] UpperCAmelCase__ : Tuple = grid[0][0] for i in range(1 , _UpperCamelCase ): UpperCAmelCase__ : Any = grid[0][i] + dp[0][i - 1] for i in range(1 , _UpperCamelCase ): UpperCAmelCase__ : Tuple = grid[i][0] + dp[i - 1][0] for i in range(1 , _UpperCamelCase ): for j in range(1 , _UpperCamelCase ): UpperCAmelCase__ : Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"""{solution() = }""")
368
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class lowerCamelCase_ ( a__ ): lowerCAmelCase__ = 42 class lowerCamelCase_ ( a__ ): def __init__( self : Dict , _A : Union[str, Any] , _A : List[str] , _A : int , _A : int , _A : List[str] , ): '''simple docstring''' super().__init__() self.register_modules( prior=_lowerCamelCase , image_encoder=_lowerCamelCase , image_processor=_lowerCamelCase , scheduler=_lowerCamelCase , renderer=_lowerCamelCase , ) def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Union[str, Any] , _A : str ): '''simple docstring''' if latents is None: UpperCAmelCase__ : Union[str, Any] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase__ : Any = latents.to(_lowerCamelCase ) UpperCAmelCase__ : Dict = latents * scheduler.init_noise_sigma return latents def lowercase_ ( self : Tuple , _A : int=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase__ : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) UpperCAmelCase__ : Optional[int] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : Any , _A : Dict , _A : Any , ): '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase__ : str = torch.cat(_lowerCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCamelCase , axis=0 ) if not isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : int = self.image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase__ : str = image.to(dtype=self.image_encoder.dtype , device=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = self.image_encoder(_lowerCamelCase )['''last_hidden_state'''] UpperCAmelCase__ : str = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase__ : List[Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase__ : List[str] = torch.zeros_like(_lowerCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self : Optional[int] , _A : Optional[Any] , _A : int = 1 , _A : Optional[int] = 25 , _A : Union[str, Any] = None , _A : int = None , _A : Optional[Any] = 4.0 , _A : Optional[int] = 64 , _A : Any = "pil" , _A : List[Any] = True , ): '''simple docstring''' if isinstance(_lowerCamelCase , PIL.Image.Image ): UpperCAmelCase__ : List[Any] = 1 elif isinstance(_lowerCamelCase , torch.Tensor ): UpperCAmelCase__ : List[Any] = image.shape[0] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase__ : List[str] = len(_lowerCamelCase ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCamelCase )}""" ) UpperCAmelCase__ : Tuple = self._execution_device UpperCAmelCase__ : Optional[Any] = batch_size * num_images_per_prompt UpperCAmelCase__ : Union[str, Any] = guidance_scale > 1.0 UpperCAmelCase__ : List[Any] = self._encode_image(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # prior self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) UpperCAmelCase__ : Any = self.scheduler.timesteps UpperCAmelCase__ : str = self.prior.config.num_embeddings UpperCAmelCase__ : List[str] = self.prior.config.embedding_dim UpperCAmelCase__ : Union[str, Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase__ : List[Any] = latents.reshape(latents.shape[0] , _lowerCamelCase , _lowerCamelCase ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : Dict = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = self.prior( _lowerCamelCase , timestep=_lowerCamelCase , proj_embedding=_lowerCamelCase , ).predicted_image_embedding # remove the variance UpperCAmelCase__ : str = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase__ : List[Any] = noise_pred.chunk(2 ) UpperCAmelCase__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase__ : List[str] = self.scheduler.step( _lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCamelCase ) UpperCAmelCase__ : List[str] = [] for i, latent in enumerate(_lowerCamelCase ): print() UpperCAmelCase__ : Union[str, Any] = self.renderer.decode( latent[None, :] , _lowerCamelCase , size=_lowerCamelCase , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCamelCase ) UpperCAmelCase__ : Tuple = torch.stack(_lowerCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) UpperCAmelCase__ : Any = images.cpu().numpy() if output_type == "pil": UpperCAmelCase__ : Dict = [self.numpy_to_pil(_lowerCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCamelCase )
369
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : List[Any] , _A : Union[str, Any]=7 , _A : List[str]=3 , _A : str=30 , _A : Tuple=400 , _A : Optional[int]=True , _A : List[str]=None , _A : int=True , _A : int=[0.5, 0.5, 0.5] , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=True , _A : str=1 / 255 , _A : Tuple=True , ): '''simple docstring''' UpperCAmelCase__ : str = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : Optional[Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : List[str] = max_resolution UpperCAmelCase__ : Tuple = do_resize UpperCAmelCase__ : Union[str, Any] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : Union[str, Any] = image_mean UpperCAmelCase__ : Optional[int] = image_std UpperCAmelCase__ : Dict = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : int = do_pad def lowercase_ ( self : Any ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase_ ( self : Any , _A : Union[str, Any] , _A : Union[str, Any]=False ): '''simple docstring''' if not batched: UpperCAmelCase__ : Optional[int] = image_inputs[0] if isinstance(_A , Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : int = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) UpperCAmelCase__ : List[Any] = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase__ : int = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = int(self.size['''shortest_edge'''] * w / h ) else: UpperCAmelCase__ : List[str] = self.size['''shortest_edge'''] UpperCAmelCase__ : Dict = self.size['''shortest_edge'''] else: UpperCAmelCase__ : int = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[0] )[0] UpperCAmelCase__ : Union[str, Any] = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = DetaImageProcessor if is_vision_available() else None def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = DetaImageProcessingTester(self ) @property def lowercase_ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' pass def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input UpperCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : str = self.image_processor_tester.get_expected_values(_A , batched=_A ) UpperCAmelCase__ : Union[str, Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input UpperCAmelCase__ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input UpperCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : List[Any] = image_processing(_A , return_tensors='''pt''' ).pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : str = json.loads(f.read() ) UpperCAmelCase__ : Tuple = {'''image_id''': 39_769, '''annotations''': target} # encode them UpperCAmelCase__ : Optional[int] = DetaImageProcessor() UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : int = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCAmelCase__ : int = json.loads(f.read() ) UpperCAmelCase__ : str = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} UpperCAmelCase__ : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCAmelCase__ : Any = DetaImageProcessor(format='''coco_panoptic''' ) UpperCAmelCase__ : str = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area UpperCAmelCase__ : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes UpperCAmelCase__ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) UpperCAmelCase__ : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd UpperCAmelCase__ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels UpperCAmelCase__ : Tuple = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks UpperCAmelCase__ : Dict = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size UpperCAmelCase__ : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size UpperCAmelCase__ : Optional[Any] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
299
0
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Any: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection UpperCAmelCase__ : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = max(__SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Dict = min(__SCREAMING_SNAKE_CASE ) # create the counting array UpperCAmelCase__ : str = coll_max + 1 - coll_min UpperCAmelCase__ : Any = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __SCREAMING_SNAKE_CASE ): UpperCAmelCase__ : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection UpperCAmelCase__ : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a__ ( lowerCAmelCase__ ) -> Tuple: return "".join([chr(__SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(__SCREAMING_SNAKE_CASE ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
370
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def a__ ( lowerCAmelCase__ ) -> None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = analyze_text(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. UpperCAmelCase__ : str = sum(single_char_strings.values() ) # one length string UpperCAmelCase__ : int = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: UpperCAmelCase__ : Optional[int] = single_char_strings[ch] UpperCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(lowerCAmelCase__ ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string UpperCAmelCase__ : str = sum(two_char_strings.values() ) UpperCAmelCase__ : Optional[Any] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: UpperCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: UpperCAmelCase__ : Dict = two_char_strings[sequence] UpperCAmelCase__ : Optional[int] = int(lowerCAmelCase__ ) / all_sum my_sec_sum += prob * math.loga(lowerCAmelCase__ ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def a__ ( lowerCAmelCase__ ) -> tuple[dict, dict]: UpperCAmelCase__ : Union[str, Any] = Counter() # type: ignore UpperCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(lowerCAmelCase__ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def a__ ( ) -> Tuple: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
299
0
'''simple docstring''' from __future__ import annotations class lowerCamelCase_ : def __init__( self : Optional[int] , _A : int=None ): '''simple docstring''' UpperCAmelCase__ : Any = data UpperCAmelCase__ : str = None def __repr__( self : str ): '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[int] = self while temp: string_rep.append(f"""{temp.data}""" ) UpperCAmelCase__ : Optional[int] = temp.next return "->".join(lowercase_ ) def a__ ( lowerCAmelCase__ ) -> Tuple: if not elements_list: raise Exception('''The Elements List is empty''' ) UpperCAmelCase__ : str = Node(elements_list[0] ) for i in range(1 , len(UpperCAmelCase__ ) ): UpperCAmelCase__ : List[str] = Node(elements_list[i] ) UpperCAmelCase__ : int = current.next return head def a__ ( lowerCAmelCase__ ) -> None: if head_node is not None and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def a__ ( ) -> Union[str, Any]: from doctest import testmod testmod() UpperCAmelCase__ : Any = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(UpperCAmelCase__ ) print('''Elements in Reverse:''' ) print_reverse(UpperCAmelCase__ ) if __name__ == "__main__": main()
371
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } UpperCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } UpperCamelCase__ = { '''facebook/blenderbot_small-90M''': 5_1_2, } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BlenderbotSmallTokenizer def __init__( self : List[Any] , _A : List[Any]=None , _A : Optional[Any]=None , _A : Optional[int]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : List[str]="<|endoftext|>" , _A : Any=False , _A : Union[str, Any]=True , **_A : Optional[int] , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCAmelCase__ : List[Any] = add_prefix_space def lowercase_ ( self : str , _A : Any , _A : Any=None ): '''simple docstring''' UpperCAmelCase__ : Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
299
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset UpperCamelCase__ = '''bert-base-cased''' UpperCamelCase__ = '''google/pegasus-xsum''' UpperCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] UpperCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] UpperCamelCase__ = '''patrickvonplaten/t5-tiny-random''' UpperCamelCase__ = '''sshleifer/bart-tiny-random''' UpperCamelCase__ = '''sshleifer/tiny-mbart''' UpperCamelCase__ = '''sshleifer/tiny-marian-en-de''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[Any] = '''\n'''.join(__a ) Path(__a ).open('''w''' ).writelines(__a ) def a__ ( lowerCAmelCase__ ) -> List[str]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"""{split}.source""" ) , __a ) _dump_articles(os.path.join(__a , F"""{split}.target""" ) , __a ) return tmp_dir class lowerCamelCase_ ( __lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowercase_ ( self : Tuple , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_a ) UpperCAmelCase__ : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase__ : Tuple = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) UpperCAmelCase__ : List[str] = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) UpperCAmelCase__ : str = 4 UpperCAmelCase__ : str = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. UpperCAmelCase__ : Dict = SeqaSeqDataset( _a , data_dir=_a , type_path='''train''' , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) UpperCAmelCase__ : Union[str, Any] = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place UpperCAmelCase__ : str = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowercase_ ( self : Any , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_a ) UpperCAmelCase__ : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) UpperCAmelCase__ : Dict = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) UpperCAmelCase__ : Optional[int] = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) UpperCAmelCase__ : List[Any] = 4 UpperCAmelCase__ : Optional[Any] = LegacySeqaSeqDataset( _a , data_dir=_a , type_path='''train''' , max_source_length=20 , max_target_length=_a , ) UpperCAmelCase__ : Optional[int] = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''' ) UpperCAmelCase__ : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) UpperCAmelCase__ : List[Any] = tmp_dir.joinpath('''train.source''' ).open().readlines() UpperCAmelCase__ : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) UpperCAmelCase__ : List[Any] = {x.name for x in tmp_dir.iterdir()} UpperCAmelCase__ : int = {x.name for x in save_dir.iterdir()} UpperCAmelCase__ : Any = save_dir.joinpath('''train.source''' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''' ) def lowercase_ ( self : str ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self._get_dataset(max_len=64 ) UpperCAmelCase__ : Union[str, Any] = 64 UpperCAmelCase__ : Optional[int] = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) UpperCAmelCase__ : Union[str, Any] = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples UpperCAmelCase__ : str = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Tuple = [] for batch in data_loader: UpperCAmelCase__ : Dict = batch['''input_ids'''].shape UpperCAmelCase__ : str = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple UpperCAmelCase__ : str = np.product(batch['''input_ids'''].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"""too many tokens in {len(_a )} batches""" ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self._get_dataset(max_len=512 ) UpperCAmelCase__ : List[str] = 2 UpperCAmelCase__ : Any = ds.make_sortish_sampler(_a , shuffle=_a ) UpperCAmelCase__ : Any = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) UpperCAmelCase__ : List[Any] = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) UpperCAmelCase__ : str = tokenizer.pad_token_id def count_pad_tokens(_A : Any , _A : Any="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k='''labels''' ) ) < sum(count_pad_tokens(_a , k='''labels''' ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def lowercase_ ( self : List[Any] , _A : List[str]=1_000 , _A : Dict=128 ): '''simple docstring''' if os.getenv('''USE_REAL_DATA''' , _a ): UpperCAmelCase__ : List[Any] = '''examples/seq2seq/wmt_en_ro''' UpperCAmelCase__ : Tuple = max_len * 2 * 64 if not Path(_a ).joinpath('''train.len''' ).exists(): save_len_file(_a , _a ) else: UpperCAmelCase__ : Tuple = '''examples/seq2seq/test_data/wmt_en_ro''' UpperCAmelCase__ : Union[str, Any] = max_len * 4 save_len_file(_a , _a ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_a ) UpperCAmelCase__ : str = SeqaSeqDataset( _a , data_dir=_a , type_path='''train''' , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = self._get_dataset() UpperCAmelCase__ : Optional[int] = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) UpperCAmelCase__ : int = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: UpperCAmelCase__ : Optional[Any] = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) UpperCAmelCase__ : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: UpperCAmelCase__ : List[str] = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) UpperCAmelCase__ : Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
350
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = XLMRobertaTokenizer lowerCAmelCase__ = XLMRobertaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Dict ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Union[str, Any] = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''<pad>''' UpperCAmelCase__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def lowercase_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : str = XLMRobertaTokenizer(_A , keep_accents=_A ) UpperCAmelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowercase_ ( self : str ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase__ : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : List[str] = tempfile.mkdtemp() UpperCAmelCase__ : Any = tokenizer_r.save_pretrained(_A ) UpperCAmelCase__ : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCAmelCase__ : Optional[int] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Any = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : List[str] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCAmelCase__ : List[str] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase__ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase__ : Dict = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCAmelCase__ : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def lowercase_ ( self : Any ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) UpperCAmelCase__ : int = XLMRobertaTokenizer(f.name , keep_accents=_A ) UpperCAmelCase__ : str = pickle.dumps(_A ) pickle.loads(_A ) def lowercase_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase__ : Dict = '''I was born in 92000, and this is falsé.''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) UpperCAmelCase__ : List[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : int = tokenizer.encode(_A , add_special_tokens=_A ) UpperCAmelCase__ : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) UpperCAmelCase__ : Any = self.get_rust_tokenizer() UpperCAmelCase__ : List[Any] = tokenizer.encode(_A ) UpperCAmelCase__ : Union[str, Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : str = '''Hello World!''' UpperCAmelCase__ : Tuple = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCAmelCase__ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
299
0
'''simple docstring''' from __future__ import annotations def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Tuple: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[Any]: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( __lowerCamelCase , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from __future__ import annotations import math def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def a__ ( ) -> None: UpperCAmelCase__ : Union[str, Any] = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase__ : Optional[Any] = math.log(len(lowerCAmelCase__ ) , 2 ) print(F"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
299
0
def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Any = [0] * len(_snake_case ) UpperCAmelCase__ : Dict = [] UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : Optional[int] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_snake_case ) ): if indegree[i] == 0: queue.append(_snake_case ) while queue: UpperCAmelCase__ : Dict = queue.pop(0 ) cnt += 1 topo.append(_snake_case ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_snake_case ) if cnt != len(_snake_case ): print('''Cycle exists''' ) else: print(_snake_case ) # Adjacency List of Graph UpperCamelCase__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
352
'''simple docstring''' class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : str = n UpperCAmelCase__ : Union[str, Any] = [None] * self.n UpperCAmelCase__ : Tuple = 0 # index of the first element UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 def __len__( self : Optional[Any] ): '''simple docstring''' return self.size def lowercase_ ( self : Dict ): '''simple docstring''' return self.size == 0 def lowercase_ ( self : List[str] ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase__ : str = data UpperCAmelCase__ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self : List[Any] ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase__ : Any = self.array[self.front] UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
299
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ : int = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Dict = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
299
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase_ ( __a ): @slow @require_torch def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) UpperCAmelCase__ : Optional[int] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase__ : Optional[int] = bertabert.config.encoder.vocab_size UpperCAmelCase__ : str = tokenizer.sep_token_id UpperCAmelCase__ : Any = tokenizer.cls_token_id UpperCAmelCase__ : List[Any] = 128 UpperCAmelCase__ : Tuple = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) UpperCAmelCase__ : Any = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) UpperCAmelCase__ : Any = train_dataset.select(range(32 ) ) UpperCAmelCase__ : Any = val_dataset.select(range(16 ) ) UpperCAmelCase__ : Dict = 4 def _map_to_encoder_decoder_inputs(_A : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase__ : List[Any] = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) UpperCAmelCase__ : List[str] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) UpperCAmelCase__ : str = inputs.input_ids UpperCAmelCase__ : List[Any] = inputs.attention_mask UpperCAmelCase__ : List[Any] = outputs.input_ids UpperCAmelCase__ : Union[str, Any] = outputs.input_ids.copy() UpperCAmelCase__ : str = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] UpperCAmelCase__ : Optional[Any] = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_A : int ): UpperCAmelCase__ : Any = pred.label_ids UpperCAmelCase__ : Optional[int] = pred.predictions # all unnecessary tokens are removed UpperCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ : List[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase__ : Optional[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset UpperCAmelCase__ : Optional[int] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) UpperCAmelCase__ : Optional[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase__ : Optional[Any] = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase__ : int = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
354
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase_ : def __init__( self : List[Any] , _A : int | None = None ): '''simple docstring''' UpperCAmelCase__ : List[Any] = value UpperCAmelCase__ : Node | None = None # Added in order to delete a node easier UpperCAmelCase__ : Node | None = None UpperCAmelCase__ : Node | None = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Node | None = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = root def __str__( self : Union[str, Any] ): '''simple docstring''' return str(self.root ) def lowercase_ ( self : str , _A : Node , _A : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids UpperCAmelCase__ : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children UpperCAmelCase__ : str = new_children else: UpperCAmelCase__ : Optional[int] = new_children else: UpperCAmelCase__ : Union[str, Any] = new_children def lowercase_ ( self : Union[str, Any] , _A : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase_ ( self : int ): '''simple docstring''' return self.root is None def lowercase_ ( self : List[str] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty UpperCAmelCase__ : List[Any] = new_node # set its root else: # Tree is not empty UpperCAmelCase__ : str = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: UpperCAmelCase__ : Optional[Any] = new_node # We insert the new node in a leaf break else: UpperCAmelCase__ : Any = parent_node.left else: if parent_node.right is None: UpperCAmelCase__ : str = new_node break else: UpperCAmelCase__ : List[str] = parent_node.right UpperCAmelCase__ : Tuple = parent_node def lowercase_ ( self : Optional[Any] , *_A : Tuple ): '''simple docstring''' for value in values: self.__insert(_A ) def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' if self.empty(): raise IndexError('''Warning: Tree is empty! please use another.''' ) else: UpperCAmelCase__ : List[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: UpperCAmelCase__ : str = node.left if value < node.value else node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None UpperCAmelCase__ : int = self.root if not self.empty(): while node.right is not None: UpperCAmelCase__ : Tuple = node.right return node def lowercase_ ( self : List[Any] , _A : Node | None = None ): '''simple docstring''' if node is None: UpperCAmelCase__ : Optional[int] = self.root if self.root is None: return None if not self.empty(): UpperCAmelCase__ : Optional[int] = self.root while node.left is not None: UpperCAmelCase__ : Tuple = node.left return node def lowercase_ ( self : List[Any] , _A : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: UpperCAmelCase__ : Union[str, Any] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore UpperCAmelCase__ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase_ ( self : List[str] , _A : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase_ ( self : str , _A : Any=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase_ ( self : Dict , _A : list , _A : Node | None ): '''simple docstring''' if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def lowercase_ ( self : Optional[Any] , _A : int , _A : Node ): '''simple docstring''' UpperCAmelCase__ : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( lowerCAmelCase__ ) -> list[Node]: UpperCAmelCase__ : Union[str, Any] = [] if curr_node is not None: UpperCAmelCase__ : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ) -> None: UpperCAmelCase__ : List[Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) UpperCAmelCase__ : str = BinarySearchTree() for i in testlist: t.insert(lowerCAmelCase__ ) # Prints all the elements of the list in order traversal print(lowerCAmelCase__ ) if t.search(6 ) is not None: print('''The value 6 exists''' ) else: print('''The value 6 doesn\'t exist''' ) if t.search(-1 ) is not None: print('''The value -1 exists''' ) else: print('''The value -1 doesn\'t exist''' ) if not t.empty(): print('''Max Value: ''' , t.get_max().value ) # type: ignore print('''Min Value: ''' , t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCAmelCase__ ) print(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
299
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ ( _UpperCAmelCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''num_heads''' ) ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , _A : int , _A : Optional[Any]=13 , _A : int=64 , _A : Optional[int]=3 , _A : Dict=[16, 48, 96] , _A : Optional[int]=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : Optional[int]=[7, 3, 3] , _A : Tuple=[4, 2, 2] , _A : Dict=[2, 1, 1] , _A : Optional[Any]=[2, 2, 2] , _A : List[str]=[False, False, True] , _A : Tuple=[0.0, 0.0, 0.0] , _A : Optional[int]=0.0_2 , _A : Any=1e-12 , _A : Union[str, Any]=True , _A : int=True , _A : Optional[Any]=2 , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : str = patch_sizes UpperCAmelCase__ : int = patch_stride UpperCAmelCase__ : int = patch_padding UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Optional[int] = num_labels UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : str = embed_dim UpperCAmelCase__ : Union[str, Any] = num_heads UpperCAmelCase__ : Dict = stride_kv UpperCAmelCase__ : Optional[Any] = depth UpperCAmelCase__ : List[str] = cls_token UpperCAmelCase__ : List[str] = attention_drop_rate UpperCAmelCase__ : List[Any] = initializer_range UpperCAmelCase__ : Tuple = layer_norm_eps def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[int] = None if self.use_labels: # create a random int32 tensor of given shape UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase_ ( self : Dict , _A : Tuple , _A : Tuple , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFCvtModel(config=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : Optional[int] = (self.image_size, self.image_size) UpperCAmelCase__ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase__ : Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase__ : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase_ ( self : Dict , _A : str , _A : Tuple , _A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.num_labels UpperCAmelCase__ : str = TFCvtForImageClassification(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowerCAmelCase__ = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = TFCvtModelTester(self ) UpperCAmelCase__ : List[str] = TFCvtConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self : Dict ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowercase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def lowercase_ ( self : int ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(SCREAMING_SNAKE_CASE_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : str ): '''simple docstring''' def check_hidden_states_output(_A : int , _A : Dict , _A : int ): UpperCAmelCase__ : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase__ : List[Any] = outputs.hidden_states UpperCAmelCase__ : int = len(self.model_tester.depth ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[int] = TFCvtModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a__ ( ) -> int: UpperCAmelCase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase__ : str = self.default_image_processor UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''tf''' ) # forward pass UpperCAmelCase__ : str = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCAmelCase__ : Optional[int] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase__ : Tuple = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
355
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger('''transformers.models.speecht5''') UpperCamelCase__ = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } UpperCamelCase__ = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } UpperCamelCase__ = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } UpperCamelCase__ = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } UpperCamelCase__ = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } UpperCamelCase__ = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } UpperCamelCase__ = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } UpperCamelCase__ = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } UpperCamelCase__ = [] UpperCamelCase__ = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] UpperCamelCase__ = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: UpperCAmelCase__ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: UpperCAmelCase__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "weight_g": UpperCAmelCase__ : Tuple = value elif weight_type == "weight_v": UpperCAmelCase__ : List[Any] = value elif weight_type == "bias": UpperCAmelCase__ : int = value elif weight_type == "running_mean": UpperCAmelCase__ : int = value elif weight_type == "running_var": UpperCAmelCase__ : Union[str, Any] = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ : List[Any] = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase__ , UpperCAmelCase__ : int = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: UpperCAmelCase__ : int = [] if task == "s2t": UpperCAmelCase__ : Optional[Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : List[Any] = MAPPING_S2T UpperCAmelCase__ : int = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Tuple = MAPPING_T2S UpperCAmelCase__ : Union[str, Any] = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase__ : Tuple = MAPPING_S2S UpperCAmelCase__ : int = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F"""{name} was ignored""" ) continue UpperCAmelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase__ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = key.split('''.*.''' ) if prefix in name and suffix in name: UpperCAmelCase__ : List[str] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase__ : Optional[int] = True if "*" in mapped_key: UpperCAmelCase__ : Any = name.split(lowerCAmelCase__ )[0].split('''.''' )[-2] UpperCAmelCase__ : Union[str, Any] = mapped_key.replace('''*''' , lowerCAmelCase__ ) if "weight_g" in name: UpperCAmelCase__ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: UpperCAmelCase__ : Optional[int] = '''weight''' elif "running_mean" in name: UpperCAmelCase__ : Optional[int] = '''running_mean''' elif "running_var" in name: UpperCAmelCase__ : List[Any] = '''running_var''' elif "num_batches_tracked" in name: UpperCAmelCase__ : Optional[Any] = '''num_batches_tracked''' else: UpperCAmelCase__ : Union[str, Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase__ : Optional[Any] = name.split('''.''' ) UpperCAmelCase__ : Any = int(items[0] ) UpperCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Any: if config_path is not None: UpperCAmelCase__ : Optional[Any] = SpeechTaConfig.from_pretrained(lowerCAmelCase__ ) else: UpperCAmelCase__ : str = SpeechTaConfig() if task == "s2t": UpperCAmelCase__ : str = config.max_text_positions UpperCAmelCase__ : List[str] = SpeechTaForSpeechToText(lowerCAmelCase__ ) elif task == "t2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : int = 6_00 UpperCAmelCase__ : Union[str, Any] = config.max_speech_positions UpperCAmelCase__ : Optional[Any] = SpeechTaForTextToSpeech(lowerCAmelCase__ ) elif task == "s2s": UpperCAmelCase__ : Tuple = 18_76 UpperCAmelCase__ : Optional[Any] = config.max_speech_positions UpperCAmelCase__ : Dict = SpeechTaForSpeechToSpeech(lowerCAmelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: UpperCAmelCase__ : Tuple = SpeechTaTokenizer(lowerCAmelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase__ : Dict = AddedToken('''<mask>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) UpperCAmelCase__ : int = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) UpperCAmelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCAmelCase__ : Any = SpeechTaProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = torch.load(lowerCAmelCase__ ) recursively_load_weights(fairseq_checkpoint['''model'''] , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
299
0