code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = 10 __lowerCamelCase = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) __lowerCamelCase = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(A__ ) ), } , features=A__ , ) return dataset @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int , A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=A__ ) return filename # FILE_CONTENT + files UpperCAmelCase_ = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt""" __lowerCamelCase = FILE_CONTENT with open(A__ , """w""" ) as f: f.write(A__ ) return filename @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' import bza __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" __lowerCamelCase = bytes(A__ , """utf-8""" ) with bza.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' import gzip __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) __lowerCamelCase = bytes(A__ , """utf-8""" ) with gzip.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" __lowerCamelCase = bytes(A__ , """utf-8""" ) with lza.frame.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Dict , A__ : Tuple ): '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(A__ , """w""" ) as archive: archive.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] , A__ : int ): '''simple docstring''' import tarfile __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(A__ , """w""" ) as f: f.add(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' import lzma __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" __lowerCamelCase = bytes(A__ , """utf-8""" ) with lzma.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' import zipfile __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" __lowerCamelCase = bytes(A__ , """utf-8""" ) with zstd.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """file.xml""" __lowerCamelCase = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(A__ , """w""" ) as f: f.write(A__ ) return filename UpperCAmelCase_ = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] UpperCAmelCase_ = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] UpperCAmelCase_ = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } UpperCAmelCase_ = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] UpperCAmelCase_ = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( ): '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = datasets.Dataset.from_dict(A__ ) __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(A__ ) ) as con: __lowerCamelCase = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(A__ , """w""" , newline="""""" ) as f: __lowerCamelCase = csv.DictWriter(A__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(A__ , """w""" , newline="""""" ) as f: __lowerCamelCase = csv.DictWriter(A__ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] , A__ : Optional[int] ): '''simple docstring''' import bza __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(A__ , """rb""" ) as f: __lowerCamelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(A__ , """wb""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int , A__ : Union[str, Any] , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int , A__ : List[Any] , A__ : Tuple ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(A__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) __lowerCamelCase = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(A__ , """wb""" ) as f: __lowerCamelCase = pq.ParquetWriter(A__ , schema=A__ ) __lowerCamelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(A__ ) )] for k in DATA[0]} , schema=A__ ) writer.write_table(A__ ) writer.close() return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __lowerCamelCase = {"""data""": DATA} with open(A__ , """w""" ) as f: json.dump(A__ , A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) __lowerCamelCase = {"""data""": DATA_DICT_OF_LISTS} with open(A__ , """w""" ) as f: json.dump(A__ , A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(A__ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(A__ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Dict , A__ : Any ): '''simple docstring''' import gzip __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(A__ , """rb""" ) as orig_file: with gzip.open(A__ , """wb""" ) as zipped_file: zipped_file.writelines(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' import gzip __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(A__ , """rb""" ) as orig_file: with gzip.open(A__ , """wb""" ) as zipped_file: zipped_file.writelines(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] , A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : str , A__ : Tuple , A__ : List[Any] , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""nested""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Tuple , A__ : Any , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Dict , A__ : str , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(A__ , """w""" ) as f: f.add(A__ , arcname=os.path.basename(A__ ) ) f.add(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[str] , A__ : Optional[Any] , A__ : Optional[Any] , A__ : Tuple ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(A__ , """w""" ) as f: f.add(A__ , arcname=os.path.join("""nested""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = ["""0""", """1""", """2""", """3"""] __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(A__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = ["""0""", """1""", """2""", """3"""] __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(A__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = ["""0""", """1""", """2""", """3"""] __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(A__ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : List[str] , A__ : Any , A__ : Any ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Any , A__ : Optional[int] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) f.write(A__ , arcname=os.path.join("""main_dir""" , os.path.basename(A__ ) ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int , A__ : List[Any] , A__ : Any ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(A__ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) __lowerCamelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(A__ , """w""" , encoding="""utf-8""" ) as f: f.write(A__ ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( ): '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(A__ , """w""" ) as f: f.write(A__ , arcname=os.path.basename(A__ ) ) f.write(A__ , arcname=os.path.basename(A__ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
29
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = 'vivit' def __init__( self: List[str] , UpperCamelCase_: Union[str, Any]=2_24 , UpperCamelCase_: Any=32 , UpperCamelCase_: List[Any]=[2, 16, 16] , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: int=7_68 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: Any=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: Any="gelu_fast" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: List[str]=1E-06 , UpperCamelCase_: Optional[int]=True , **UpperCamelCase_: Any , ): __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = num_frames __lowerCamelCase = tubelet_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias super().__init__(**UpperCamelCase_ )
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1
from itertools import count def lowerCamelCase__ ( A__ : int = 50 ): '''simple docstring''' __lowerCamelCase = [1] * min_block_length for n in count(A__ ): fill_count_functions.append(1 ) for block_length in range(A__ , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f"""{solution() = }""")
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
# Lint as: python3 import itertools import os import re UpperCAmelCase_ = re.compile(r'([A-Z]+)([A-Z][a-z])') UpperCAmelCase_ = re.compile(r'([a-z\d])([A-Z])') UpperCAmelCase_ = re.compile(r'(?<!_)_(?!_)') UpperCAmelCase_ = re.compile(r'(_{2,})') UpperCAmelCase_ = r'^\w+(\.\w+)*$' UpperCAmelCase_ = r'<>:/\|?*' def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , A__ ) __lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , A__ ) return name.lower() def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = _single_underscore_re.split(A__ ) __lowerCamelCase = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != """""" ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(A__ ) def lowerCamelCase__ ( A__ : int , A__ : Tuple ): '''simple docstring''' if os.path.basename(A__ ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , A__ ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(A__ )}-{split}' def lowerCamelCase__ ( A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] , A__ : Union[str, Any]=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) if filetype_suffix: prefix += f'.{filetype_suffix}' __lowerCamelCase = os.path.join(A__ , A__ ) return f'{filepath}*' def lowerCamelCase__ ( A__ : List[str] , A__ : Dict , A__ : List[Any] , A__ : Union[str, Any]=None , A__ : str=None ): '''simple docstring''' __lowerCamelCase = filename_prefix_for_split(A__ , A__ ) __lowerCamelCase = os.path.join(A__ , A__ ) if shard_lengths: __lowerCamelCase = len(A__ ) __lowerCamelCase = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(A__ )] if filetype_suffix: __lowerCamelCase = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __lowerCamelCase = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = RobertaTokenizer UpperCAmelCase__ : List[Any] = RobertaTokenizerFast UpperCAmelCase__ : str = True UpperCAmelCase__ : List[str] = {'cls_token': '<s>'} def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[int] , **UpperCamelCase_: Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: List[Any] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = """lower newer""" __lowerCamelCase = """lower newer""" return input_text, output_text def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = """lower newer""" __lowerCamelCase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=UpperCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=UpperCamelCase_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.tokenizer_class.from_pretrained("""roberta-base""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = """Encode this sequence.""" __lowerCamelCase = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing spaces after special tokens __lowerCamelCase = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ )} ) # mask token has a left space __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) __lowerCamelCase = """Encode <mask> sequence""" __lowerCamelCase = """Encode <mask>sequence""" __lowerCamelCase = tokenizer.encode(UpperCamelCase_ ) __lowerCamelCase = encoded.index(UpperCamelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ ) __lowerCamelCase = encoded.index(UpperCamelCase_ ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): pass def lowerCAmelCase__ ( self: Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = """A, <mask> AllenNLP sentence.""" __lowerCamelCase = tokenizer_r.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) __lowerCamelCase = tokenizer_p.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowerCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCamelCase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def lowerCAmelCase__ ( self: int ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , UpperCamelCase_ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , UpperCamelCase_ ) self.assertEqual(post_processor_state["""trim_offsets"""] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase = F'{text_of_1_token} {text_of_1_token}' __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , )
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: float ): return 0.0 def lowerCamelCase__ ( A__ : np.ndarray , A__ : int ): '''simple docstring''' __lowerCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __lowerCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def lowerCamelCase__ ( A__ : FilterType , A__ : int ): '''simple docstring''' __lowerCamelCase = 512 __lowerCamelCase = [1] + [0] * (size - 1) __lowerCamelCase = [filter_type.process(A__ ) for item in inputs] __lowerCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCamelCase = np.abs(np.fft.fft(A__ ) ) __lowerCamelCase = 20 * np.logaa(A__ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds __lowerCamelCase = get_bounds(A__ , A__ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(A__ ) plt.show() def lowerCamelCase__ ( A__ : FilterType , A__ : int ): '''simple docstring''' __lowerCamelCase = 512 __lowerCamelCase = [1] + [0] * (size - 1) __lowerCamelCase = [filter_type.process(A__ ) for item in inputs] __lowerCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCamelCase = np.angle(np.fft.fft(A__ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(A__ , -2 * pi ) ) plt.show()
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['ViTFeatureExtractor'] UpperCAmelCase_ = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ConsistencyModelPipeline UpperCAmelCase__ : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCAmelCase__ : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCAmelCase__ : Tuple = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ]) @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet""" , ) return unet @property def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = UNetaDModel.from_pretrained( """diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , ) return unet def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Dict=False ): if class_cond: __lowerCamelCase = self.dummy_cond_unet else: __lowerCamelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Optional[int]=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """batch_size""": 1, """num_inference_steps""": None, """timesteps""": [22, 0], """generator""": generator, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = ConsistencyModelPipeline(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components(class_cond=UpperCamelCase_ ) __lowerCamelCase = ConsistencyModelPipeline(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 0 __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = ConsistencyModelPipeline(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase__ ( self: int ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components(class_cond=UpperCamelCase_ ) __lowerCamelCase = ConsistencyModelPipeline(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = 0 __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int=0 , UpperCamelCase_: str=False , UpperCamelCase_: Tuple="cpu" , UpperCamelCase_: Optional[Any]=torch.floataa , UpperCamelCase_: List[str]=(1, 3, 64, 64) ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """num_inference_steps""": None, """timesteps""": [22, 0], """class_labels""": 0, """generator""": generator, """output_type""": """np""", } if get_fixed_latents: __lowerCamelCase = self.get_fixed_latents(seed=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ , shape=UpperCamelCase_ ) __lowerCamelCase = latents return inputs def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: int="cpu" , UpperCamelCase_: Dict=torch.floataa , UpperCamelCase_: Optional[int]=(1, 3, 64, 64) ): if type(UpperCamelCase_ ) == str: __lowerCamelCase = torch.device(UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) return latents def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) pipe.to(torch_device=UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) pipe.to(torch_device=UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_inputs() __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) pipe.to(torch_device=UpperCamelCase_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_inputs(get_fixed_latents=UpperCamelCase_ , device=UpperCamelCase_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase_ , enable_math=UpperCamelCase_ , enable_mem_efficient=UpperCamelCase_ ): __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) pipe.to(torch_device=UpperCamelCase_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_inputs(get_fixed_latents=UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCamelCase_ , enable_math=UpperCamelCase_ , enable_mem_efficient=UpperCamelCase_ ): __lowerCamelCase = pipe(**UpperCamelCase_ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowerCamelCase__ ( A__ : str , A__ : str , A__ : str , A__ : PreTrainedTokenizer , A__ : int , A__ : Optional[int] = None , ): '''simple docstring''' __lowerCamelCase = {} if train_file is not None: __lowerCamelCase = [train_file] if eval_file is not None: __lowerCamelCase = [eval_file] if test_file is not None: __lowerCamelCase = [test_file] __lowerCamelCase = datasets.load_dataset("""csv""" , data_files=A__ ) __lowerCamelCase = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase = features_name.pop(A__ ) __lowerCamelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase = {label: i for i, label in enumerate(A__ )} __lowerCamelCase = tokenizer.model_input_names __lowerCamelCase = {} if len(A__ ) == 1: for k in files.keys(): __lowerCamelCase = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding="""max_length""" ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): __lowerCamelCase = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding="""max_length""" , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowerCamelCase__: UpperCAmelCase__ : int = field(metadata={'help': 'Which column contains the label'}) UpperCAmelCase__ : str = field(default=__lowerCamelCase , metadata={'help': 'The path of the training file'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'The path of the development file'}) UpperCAmelCase__ : Optional[str] = field(default=__lowerCamelCase , metadata={'help': 'The path of the test file'}) UpperCAmelCase__ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'}) @dataclass class lowerCamelCase__: UpperCAmelCase__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) UpperCAmelCase__ : bool = field(default=__lowerCamelCase , metadata={'help': 'Set this flag to use fast tokenization.'}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' f'16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ : EvalPrediction ) -> Dict: __lowerCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCamelCase = trainer.evaluate() __lowerCamelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(A__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) results.update(A__ ) return results if __name__ == "__main__": main()
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCamelCase) , 'Tatoeba directory does not exist.') class lowerCamelCase__( unittest.TestCase): @cached_property def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: int ): self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=UpperCamelCase_ ) assert mmeta["long_pair"] == "heb-eng"
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = set(range(3 , A__ , 2 ) ) primes.add(2 ) for p in range(3 , A__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , A__ , A__ ) ) ) __lowerCamelCase = [float(A__ ) for n in range(limit + 1 )] for p in primes: for n in range(A__ , limit + 1 , A__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"""{solution() = }""")
29
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( A__ : Accelerator , A__ : int = 16 ): '''simple docstring''' __lowerCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowerCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A__ : int ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( A__ , batched=A__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A__ : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( A__ , padding="""longest""" , max_length=A__ , pad_to_multiple_of=A__ , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) __lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( A__ : List[Any] , A__ : Tuple ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , A__ ) == "1": __lowerCamelCase = 2 # New Code # __lowerCamelCase = int(args.gradient_accumulation_steps ) __lowerCamelCase = int(args.local_sgd_steps ) # Initialize accelerator __lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=A__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config["""lr"""] __lowerCamelCase = int(config["""num_epochs"""] ) __lowerCamelCase = int(config["""seed"""] ) __lowerCamelCase = int(config["""batch_size"""] ) __lowerCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(A__ ) __lowerCamelCase, __lowerCamelCase = get_dataloaders(A__ , A__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() with LocalSGD( accelerator=A__ , model=A__ , local_sgd_steps=A__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(A__ ): __lowerCamelCase = model(**A__ ) __lowerCamelCase = output.loss accelerator.backward(A__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**A__ ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase, __lowerCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=A__ , references=A__ , ) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=A__ , default=A__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=A__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=A__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
import os import pytest from attr import dataclass UpperCAmelCase_ = 'us-east-1' # defaults region @dataclass class lowerCamelCase__: UpperCAmelCase__ : str UpperCAmelCase__ : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' UpperCAmelCase__ : List[str] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } UpperCAmelCase__ : List[Any] = {**hyperparameters, 'max_steps': 1000} @property def lowerCAmelCase__ ( self: int ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase__ ( self: Tuple ): return F'{self.framework}-transfromers-test' @property def lowerCAmelCase__ ( self: Tuple ): return F'./tests/sagemaker/scripts/{self.framework}' @property def lowerCAmelCase__ ( self: Optional[int] ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = SageMakerTestEnvironment(framework=request.cls.framework )
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCAmelCase_ = object() # For specifying empty leaf dict `{}` UpperCAmelCase_ = object() def lowerCamelCase__ ( A__ : List[Any] , A__ : str ): '''simple docstring''' __lowerCamelCase = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(A__ ) - len(A__ ) + 1 ): __lowerCamelCase = [x.match(A__ ) for x, y in zip(A__ , ks[i:] )] if matches and all(A__ ): return True return False def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' def replace(A__ : List[str] , A__ : int ): for rule, replacement in rules: if _match(A__ , A__ ): return replacement return val return replace def lowerCamelCase__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""" , A__ )), (("transformer", "wte", "embedding"), P("""mp""" , A__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(A__ , """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""" , A__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(A__ , """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""" , A__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' __lowerCamelCase = _get_partition_rules() __lowerCamelCase = _replacement_rules(A__ ) __lowerCamelCase = {k: _unmatched for k in flatten_dict(A__ )} __lowerCamelCase = {k: replace(A__ , A__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(A__ ) )
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
1
def lowerCamelCase__ ( A__ : str , A__ : int ): '''simple docstring''' __lowerCamelCase = word.split() def justify(A__ : list , A__ : int , A__ : int ) -> str: __lowerCamelCase = max_width - width __lowerCamelCase = len(A__ ) if len(A__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __lowerCamelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __lowerCamelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __lowerCamelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(A__ ): num_spaces_between_words_list[i] += 1 __lowerCamelCase = [] for i in range(A__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(A__ ) __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = 0 for word in words: if width + len(A__ ) + len(A__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(A__ ) width += len(A__ ) else: # justify the line and add it to result answer.append(justify(A__ , A__ , A__ ) ) # reset new line and new width __lowerCamelCase, __lowerCamelCase = [word], len(A__ ) __lowerCamelCase = max_width - width - len(A__ ) answer.append(""" """.join(A__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
# Imports import numpy as np class lowerCamelCase__: def __init__( self: List[str] , UpperCamelCase_: str=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[int]=None ): self.set_matricies(red=UpperCamelCase_ , green=UpperCamelCase_ , blue=UpperCamelCase_ , red_edge=UpperCamelCase_ , nir=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Any=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]=None ): if red is not None: __lowerCamelCase = red if green is not None: __lowerCamelCase = green if blue is not None: __lowerCamelCase = blue if red_edge is not None: __lowerCamelCase = red_edge if nir is not None: __lowerCamelCase = nir return True def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[int]="" , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: int=None ): self.set_matricies(red=UpperCamelCase_ , green=UpperCamelCase_ , blue=UpperCamelCase_ , red_edge=UpperCamelCase_ , nir=UpperCamelCase_ ) __lowerCamelCase = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def lowerCAmelCase__ ( self: Optional[Any] ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowerCAmelCase__ ( self: Any ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowerCAmelCase__ ( self: Optional[Any] ): return self.nir * (self.red / (self.green**2)) def lowerCAmelCase__ ( self: Union[str, Any] ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowerCAmelCase__ ( self: Optional[Any] ): return (self.nir - self.red) / (self.nir + self.red) def lowerCAmelCase__ ( self: Optional[Any] ): return (self.nir - self.blue) / (self.nir + self.blue) def lowerCAmelCase__ ( self: Dict ): return (self.redEdge - self.red) / (self.redEdge + self.red) def lowerCAmelCase__ ( self: int ): return (self.nir - self.green) / (self.nir + self.green) def lowerCAmelCase__ ( self: Optional[Any] ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowerCAmelCase__ ( self: Any ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowerCAmelCase__ ( self: Optional[int] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowerCAmelCase__ ( self: List[Any] ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str]=0.08 , UpperCamelCase_: List[Any]=1.22 , UpperCamelCase_: List[str]=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowerCAmelCase__ ( self: Union[str, Any] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowerCAmelCase__ ( self: int ): return (self.nir / self.green) - 1 def lowerCAmelCase__ ( self: Any ): return (self.nir / self.redEdge) - 1 def lowerCAmelCase__ ( self: int ): return (self.red - self.blue) / self.red def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowerCAmelCase__ ( self: Tuple ): return self.nir - self.green def lowerCAmelCase__ ( self: Any ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[Any]=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowerCAmelCase__ ( self: Tuple ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Any=None , UpperCamelCase_: str=None ): return (self.nir - b) / (a * self.red) def lowerCAmelCase__ ( self: List[Any] ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowerCAmelCase__ ( self: List[str] ): return (self.red + self.green + self.blue) / 30.5 def lowerCAmelCase__ ( self: Tuple ): return self.nir / self.red def lowerCAmelCase__ ( self: int ): return (self.rvi() - 1) / (self.rvi() + 1) def lowerCAmelCase__ ( self: Dict ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowerCAmelCase__ ( self: Dict ): return self.green / (self.nir + self.red + self.green) def lowerCAmelCase__ ( self: int ): return self.nir / (self.nir + self.red + self.green) def lowerCAmelCase__ ( self: Any ): return self.red / (self.nir + self.red + self.green) def lowerCAmelCase__ ( self: Optional[int] ): return (self.green - self.red) / (self.green + self.red) def lowerCAmelCase__ ( self: str ): return (self.red - self.green) / (self.red + self.green) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCamelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowerCAmelCase__ ( self: Union[str, Any] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowerCAmelCase__ ( self: Dict ): return self.nir / self.red def lowerCAmelCase__ ( self: Optional[Any] ): return (self.ndvi() + 0.5) ** (1 / 2) def lowerCAmelCase__ ( self: int ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( A__ : str , A__ : Dict , A__ : int , A__ : int , A__ : Optional[Any]=True , A__ : Union[str, Any]="pt" ): '''simple docstring''' __lowerCamelCase = {"""add_prefix_space""": True} if isinstance(A__ , A__ ) and not line.startswith(""" """ ) else {} __lowerCamelCase = padding_side return tokenizer( [line] , max_length=A__ , padding="""max_length""" if pad_to_max_length else None , truncation=A__ , return_tensors=A__ , add_special_tokens=A__ , **A__ , ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : int , A__ : Union[str, Any]=None , ): '''simple docstring''' __lowerCamelCase = input_ids.ne(A__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase__( __lowerCamelCase): def __init__( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Any="train" , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: Dict=None , UpperCamelCase_: Any=None , UpperCamelCase_: Optional[int]="" , ): super().__init__() __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(type_path + """.source""" ) __lowerCamelCase = Path(UpperCamelCase_ ).joinpath(type_path + """.target""" ) __lowerCamelCase = self.get_char_lens(self.src_file ) __lowerCamelCase = max_source_length __lowerCamelCase = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' __lowerCamelCase = tokenizer __lowerCamelCase = prefix if n_obs is not None: __lowerCamelCase = self.src_lens[:n_obs] __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang def __len__( self: Optional[Any] ): return len(self.src_lens ) def __getitem__( self: int , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = index + 1 # linecache starts at 1 __lowerCamelCase = self.prefix + linecache.getline(str(self.src_file ) , UpperCamelCase_ ).rstrip("""\n""" ) __lowerCamelCase = linecache.getline(str(self.tgt_file ) , UpperCamelCase_ ).rstrip("""\n""" ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowerCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer ) __lowerCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer __lowerCamelCase = encode_line(UpperCamelCase_ , UpperCamelCase_ , self.max_source_length , """right""" ) __lowerCamelCase = encode_line(UpperCamelCase_ , UpperCamelCase_ , self.max_target_length , """right""" ) __lowerCamelCase = source_inputs["""input_ids"""].squeeze() __lowerCamelCase = target_inputs["""input_ids"""].squeeze() __lowerCamelCase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Union[str, Any] ): return [len(UpperCamelCase_ ) for x in Path(UpperCamelCase_ ).open().readlines()] def lowerCAmelCase__ ( self: int , UpperCamelCase_: int ): __lowerCamelCase = torch.stack([x["""input_ids"""] for x in batch] ) __lowerCamelCase = torch.stack([x["""attention_mask"""] for x in batch] ) __lowerCamelCase = torch.stack([x["""decoder_input_ids"""] for x in batch] ) __lowerCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer.pad_token_id ) __lowerCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCamelCase_ ) else self.tokenizer.pad_token_id ) __lowerCamelCase = trim_batch(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = trim_batch(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __lowerCamelCase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch UpperCAmelCase_ = getLogger(__name__) def lowerCamelCase__ ( A__ : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(A__ ) ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_git_info() save_json(A__ , os.path.join(A__ , """git_log.json""" ) ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int] , A__ : List[Any]=4 , **A__ : Any ): '''simple docstring''' with open(A__ , """w""" ) as f: json.dump(A__ , A__ , indent=A__ , **A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' with open(A__ ) as f: return json.load(A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = git.Repo(search_parent_directories=A__ ) __lowerCamelCase = { """repo_id""": str(A__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( A__ : Callable , A__ : Iterable ): '''simple docstring''' return list(map(A__ , A__ ) ) def lowerCamelCase__ ( A__ : int , A__ : List[Any] ): '''simple docstring''' with open(A__ , """wb""" ) as f: return pickle.dump(A__ , A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' def remove_articles(A__ : List[Any] ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , A__ ) def white_space_fix(A__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(A__ : str ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def lowerCamelCase__ ( A__ : int , A__ : Tuple ): '''simple docstring''' __lowerCamelCase = normalize_answer(A__ ).split() __lowerCamelCase = normalize_answer(A__ ).split() __lowerCamelCase = Counter(A__ ) & Counter(A__ ) __lowerCamelCase = sum(common.values() ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(A__ ) __lowerCamelCase = 1.0 * num_same / len(A__ ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( A__ : Dict , A__ : Optional[Any] ): '''simple docstring''' return normalize_answer(A__ ) == normalize_answer(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] ): '''simple docstring''' assert len(A__ ) == len(A__ ) __lowerCamelCase = 0 for hypo, pred in zip(A__ , A__ ): em += exact_match_score(A__ , A__ ) if len(A__ ) > 0: em /= len(A__ ) return {"em": em} def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return model_prefix.startswith("""rag""" ) def lowerCamelCase__ ( A__ : List[str] , A__ : Optional[int] , A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowerCamelCase = """dropout_rate""" for p in extra_params: if getattr(A__ , A__ , A__ ): if not hasattr(A__ , A__ ) and not hasattr(A__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(A__ ) ) delattr(A__ , A__ ) continue __lowerCamelCase = p if hasattr(A__ , A__ ) else equivalent_param[p] setattr(A__ , A__ , getattr(A__ , A__ ) ) delattr(A__ , A__ ) return hparams, config
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
def lowerCamelCase__ ( A__ : str , A__ : str = " " ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = 0 for index, char in enumerate(A__ ): if char == separator: split_words.append(string[last_index:index] ) __lowerCamelCase = index + 1 elif index + 1 == len(A__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
29
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[str] , UpperCamelCase_: NestedDataStructureLike[PathLike] , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Any , ): super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = field __lowerCamelCase = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} __lowerCamelCase = Json( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): # Build iterable dataset if self.streaming: __lowerCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) __lowerCamelCase = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dataset , UpperCamelCase_: Union[PathLike, BinaryIO] , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Union[str, Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) __lowerCamelCase = dataset __lowerCamelCase = path_or_buf __lowerCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase = num_proc __lowerCamelCase = """utf-8""" __lowerCamelCase = to_json_kwargs def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.to_json_kwargs.pop("""path_or_buf""" , UpperCamelCase_ ) __lowerCamelCase = self.to_json_kwargs.pop("""orient""" , """records""" ) __lowerCamelCase = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) __lowerCamelCase = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) __lowerCamelCase = self.to_json_kwargs.pop("""compression""" , UpperCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=UpperCamelCase_ ) as buffer: __lowerCamelCase = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' """ was passed. Please provide a local path instead.""" ) __lowerCamelCase = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = args __lowerCamelCase = query_table( table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase = batch.to_pandas().to_json( path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: BinaryIO , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: List[Any] , **UpperCamelCase_: Dict , ): __lowerCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): __lowerCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase_ ) else: __lowerCamelCase, __lowerCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(UpperCamelCase_ ) return written
29
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = DistilBertTokenizer UpperCAmelCase__ : Union[str, Any] = DistilBertTokenizerFast UpperCAmelCase__ : Optional[Any] = True @slow def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1
def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' while b: __lowerCamelCase, __lowerCamelCase = b, a % b return a def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(A__ , a % b ) def lowerCamelCase__ ( ): '''simple docstring''' print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def lowerCamelCase__ ( A__ : np.ndarray ): '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray , A__ : int ): '''simple docstring''' __lowerCamelCase = np.nan for i in range(A__ ): __lowerCamelCase = features[:, labels == i] __lowerCamelCase = data.mean(1 ) # Centralize the data of class i __lowerCamelCase = data - column_reshape(A__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(A__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCamelCase = np.dot(A__ , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray , A__ : int ): '''simple docstring''' __lowerCamelCase = features.mean(1 ) __lowerCamelCase = np.nan for i in range(A__ ): __lowerCamelCase = features[:, labels == i] __lowerCamelCase = data.shape[1] __lowerCamelCase = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __lowerCamelCase = device_data * np.dot( column_reshape(A__ ) - column_reshape(A__ ) , (column_reshape(A__ ) - column_reshape(A__ )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( A__ : np.ndarray , A__ : int ): '''simple docstring''' if features.any(): __lowerCamelCase = features.mean(1 ) # Center the dataset __lowerCamelCase = features - np.reshape(A__ , (data_mean.size, 1) ) __lowerCamelCase = np.dot(A__ , centered_data.T ) / features.shape[1] __lowerCamelCase, __lowerCamelCase = np.linalg.eigh(A__ ) # Take all the columns in the reverse order (-1), and then takes only the first __lowerCamelCase = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __lowerCamelCase = np.dot(filtered_eigenvectors.T , A__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=A__ ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray , A__ : int , A__ : int ): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: __lowerCamelCase, __lowerCamelCase = eigh( covariance_between_classes(A__ , A__ , A__ ) , covariance_within_classes(A__ , A__ , A__ ) , ) __lowerCamelCase = eigenvectors[:, ::-1][:, :dimensions] __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = np.linalg.svd(A__ ) __lowerCamelCase = svd_matrix[:, 0:dimensions] __lowerCamelCase = np.dot(filtered_svd_matrix.T , A__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=A__ ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __lowerCamelCase = np.array([0, 0, 0, 1, 1] ) __lowerCamelCase = 2 __lowerCamelCase = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(A__ ) as error_info: __lowerCamelCase = linear_discriminant_analysis( A__ , A__ , A__ , A__ ) if isinstance(A__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __lowerCamelCase = 2 __lowerCamelCase = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(A__ ) as error_info: __lowerCamelCase = principal_component_analysis(A__ , A__ ) if not np.allclose(A__ , A__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any=7 , UpperCamelCase_: str=3 , UpperCamelCase_: Optional[Any]=18 , UpperCamelCase_: Any=30 , UpperCamelCase_: Optional[int]=4_00 , UpperCamelCase_: str=True , UpperCamelCase_: int=None , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=None , UpperCamelCase_: Dict=True , ): __lowerCamelCase = size if size is not None else {"""shortest_edge""": 20} __lowerCamelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = image_size __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_flip_channel_order def lowerCAmelCase__ ( self: Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self: str ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """center_crop""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_flip_channel_order""" ) ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase__ ( self: List[str] ): pass def lowerCAmelCase__ ( self: str ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCamelCase = image_processing(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase__ ( self: Dict ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCamelCase = image_processing(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase__ ( self: Optional[int] ): # Initialize image_processing __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCamelCase = image_processing(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , UpperCamelCase_: Optional[NestedDataStructureLike[PathLike]] = None , UpperCamelCase_: Optional[NamedSplit] = None , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: Tuple , ): __lowerCamelCase = path_or_paths __lowerCamelCase = split if split or isinstance(UpperCamelCase_ , UpperCamelCase_ ) else """train""" __lowerCamelCase = features __lowerCamelCase = cache_dir __lowerCamelCase = keep_in_memory __lowerCamelCase = streaming __lowerCamelCase = num_proc __lowerCamelCase = kwargs @abstractmethod def lowerCAmelCase__ ( self: List[Any] ): pass class lowerCamelCase__( __lowerCamelCase): def __init__( self: Any , UpperCamelCase_: Optional[Features] = None , UpperCamelCase_: str = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[int] = None , **UpperCamelCase_: int , ): __lowerCamelCase = features __lowerCamelCase = cache_dir __lowerCamelCase = keep_in_memory __lowerCamelCase = streaming __lowerCamelCase = num_proc __lowerCamelCase = kwargs @abstractmethod def lowerCAmelCase__ ( self: Tuple ): pass
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import functools def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = len(A__ ) __lowerCamelCase = len(A__ ) @functools.cache def min_distance(A__ : int , A__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowerCamelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A__ ) , 1 + min_distance(A__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = StableDiffusionSAGPipeline UpperCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ : Any = False def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase__ ( self: Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: int ): __lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) __lowerCamelCase = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """.""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase__ ( self: str ): __lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __lowerCamelCase = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """.""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase__ ( self: str ): __lowerCamelCase = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) __lowerCamelCase = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """.""" __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) __lowerCamelCase = output.images assert image.shape == (1, 5_12, 7_68, 3)
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[Any] = VideoToVideoSDPipeline UpperCAmelCase__ : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'}) - {'image', 'width', 'height'} UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'}) - {'image'} UpperCAmelCase__ : Dict = PipelineTesterMixin.required_optional_params - {'latents'} UpperCAmelCase__ : Optional[int] = False # No `output_type`. UpperCAmelCase__ : Union[str, Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ]) def lowerCAmelCase__ ( self: str ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) __lowerCamelCase = CLIPTextModel(UpperCamelCase_ ) __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any]=0 ): # 3 frames __lowerCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = VideoToVideoSDPipeline(**UpperCamelCase_ ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = """np""" __lowerCamelCase = sd_pipe(**UpperCamelCase_ ).frames __lowerCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __lowerCamelCase = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: str ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ , expected_max_diff=5E-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase__ ( self: Tuple ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase__ ( self: Tuple ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCAmelCase__ ( self: Tuple ): pass def lowerCAmelCase__ ( self: str ): return super().test_progress_bar() @slow @skip_mps class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __lowerCamelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCamelCase = torch.randn((1, 10, 3, 10_24, 5_76) , generator=UpperCamelCase_ ) __lowerCamelCase = video.to("""cuda""" ) __lowerCamelCase = """Spiderman is surfing""" __lowerCamelCase = pipe(UpperCamelCase_ , video=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=3 , output_type="""pt""" ).frames __lowerCamelCase = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'AutoTokenizer' UpperCAmelCase__ : List[Any] = ['tokenizer'] UpperCAmelCase__ : str = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int]=None ): super().__init__(UpperCamelCase_ ) __lowerCamelCase = speaker_embeddings @classmethod def lowerCAmelCase__ ( cls: str , UpperCamelCase_: str , UpperCamelCase_: List[str]="speaker_embeddings_path.json" , **UpperCamelCase_: int ): if speaker_embeddings_dict_path is not None: __lowerCamelCase = get_file_from_repo( UpperCamelCase_ , UpperCamelCase_ , subfolder=kwargs.pop("""subfolder""" , UpperCamelCase_ ) , cache_dir=kwargs.pop("""cache_dir""" , UpperCamelCase_ ) , force_download=kwargs.pop("""force_download""" , UpperCamelCase_ ) , proxies=kwargs.pop("""proxies""" , UpperCamelCase_ ) , resume_download=kwargs.pop("""resume_download""" , UpperCamelCase_ ) , local_files_only=kwargs.pop("""local_files_only""" , UpperCamelCase_ ) , use_auth_token=kwargs.pop("""use_auth_token""" , UpperCamelCase_ ) , revision=kwargs.pop("""revision""" , UpperCamelCase_ ) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(UpperCamelCase_ , UpperCamelCase_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) __lowerCamelCase = None else: with open(UpperCamelCase_ ) as speaker_embeddings_json: __lowerCamelCase = json.load(UpperCamelCase_ ) else: __lowerCamelCase = None __lowerCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) return cls(tokenizer=UpperCamelCase_ , speaker_embeddings=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str]="speaker_embeddings_path.json" , UpperCamelCase_: Optional[int]="speaker_embeddings" , UpperCamelCase_: bool = False , **UpperCamelCase_: List[Any] , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCamelCase_ , UpperCamelCase_ , """v2""" ) , exist_ok=UpperCamelCase_ ) __lowerCamelCase = {} __lowerCamelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __lowerCamelCase = self._load_voice_preset(UpperCamelCase_ ) __lowerCamelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , UpperCamelCase_ , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=UpperCamelCase_ , ) __lowerCamelCase = os.path.join(UpperCamelCase_ , F'{prompt_key}_{key}.npy' ) __lowerCamelCase = tmp_dict with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , """w""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) super().save_pretrained(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: str = None , **UpperCamelCase_: Tuple ): __lowerCamelCase = self.speaker_embeddings[voice_preset] __lowerCamelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) __lowerCamelCase = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , UpperCamelCase_ ) , cache_dir=kwargs.pop("""cache_dir""" , UpperCamelCase_ ) , force_download=kwargs.pop("""force_download""" , UpperCamelCase_ ) , proxies=kwargs.pop("""proxies""" , UpperCamelCase_ ) , resume_download=kwargs.pop("""resume_download""" , UpperCamelCase_ ) , local_files_only=kwargs.pop("""local_files_only""" , UpperCamelCase_ ) , use_auth_token=kwargs.pop("""use_auth_token""" , UpperCamelCase_ ) , revision=kwargs.pop("""revision""" , UpperCamelCase_ ) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) __lowerCamelCase = np.load(UpperCamelCase_ ) return voice_preset_dict def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self: Tuple , UpperCamelCase_: Tuple=None , UpperCamelCase_: int=None , UpperCamelCase_: Optional[int]="pt" , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Dict=False , UpperCamelCase_: str=True , UpperCamelCase_: str=False , **UpperCamelCase_: List[Any] , ): if voice_preset is not None and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): if ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __lowerCamelCase = self._load_voice_preset(UpperCamelCase_ ) else: if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not voice_preset.endswith(""".npz""" ): __lowerCamelCase = voice_preset + """.npz""" __lowerCamelCase = np.load(UpperCamelCase_ ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) __lowerCamelCase = self.tokenizer( UpperCamelCase_ , return_tensors=UpperCamelCase_ , padding="""max_length""" , max_length=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) if voice_preset is not None: __lowerCamelCase = voice_preset return encoded_text
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowerCamelCase = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) # load decoder from hub __lowerCamelCase = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase__ ( self: str , **UpperCamelCase_: Optional[Any] ): __lowerCamelCase = self.add_kwargs_tokens_map.copy() kwargs.update(UpperCamelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Union[str, Any] ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: List[str] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCamelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(UpperCamelCase_ , """include""" ): WavaVecaProcessorWithLM( tokenizer=UpperCamelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) __lowerCamelCase = floats_list((3, 10_00) ) __lowerCamelCase = feature_extractor(UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = processor(UpperCamelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) __lowerCamelCase = """This is a test string""" __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Union[str, Any]=(2, 10, 16) , UpperCamelCase_: Optional[Any]=77 ): np.random.seed(UpperCamelCase_ ) return np.random.rand(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) __lowerCamelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowerCamelCase = processor.decode(UpperCamelCase_ ) __lowerCamelCase = decoder.decode_beams(UpperCamelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) __lowerCamelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowerCamelCase = processor.batch_decode(UpperCamelCase_ ) else: with get_context(UpperCamelCase_ ).Pool() as pool: __lowerCamelCase = processor.batch_decode(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = list(UpperCamelCase_ ) with get_context("""fork""" ).Pool() as p: __lowerCamelCase = decoder.decode_beams_batch(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(UpperCamelCase_ , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(UpperCamelCase_ , decoded_processor.logit_score ) self.assertListEqual(UpperCamelCase_ , decoded_processor.lm_score ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) __lowerCamelCase = self._get_dummy_logits() __lowerCamelCase = 15 __lowerCamelCase = -20.0 __lowerCamelCase = -4.0 __lowerCamelCase = processor.batch_decode( UpperCamelCase_ , beam_width=UpperCamelCase_ , beam_prune_logp=UpperCamelCase_ , token_min_logp=UpperCamelCase_ , ) __lowerCamelCase = decoded_processor_out.text __lowerCamelCase = list(UpperCamelCase_ ) with get_context("""fork""" ).Pool() as pool: __lowerCamelCase = decoder.decode_beams_batch( UpperCamelCase_ , UpperCamelCase_ , beam_width=UpperCamelCase_ , beam_prune_logp=UpperCamelCase_ , token_min_logp=UpperCamelCase_ , ) __lowerCamelCase = [d[0][0] for d in decoded_decoder_out] __lowerCamelCase = [d[0][2] for d in decoded_decoder_out] __lowerCamelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , UpperCamelCase_ ) self.assertTrue(np.array_equal(UpperCamelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , UpperCamelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(UpperCamelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , UpperCamelCase_ , atol=1E-3 ) ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) __lowerCamelCase = self._get_dummy_logits() __lowerCamelCase = 2.0 __lowerCamelCase = 5.0 __lowerCamelCase = -20.0 __lowerCamelCase = True __lowerCamelCase = processor.batch_decode( UpperCamelCase_ , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , unk_score_offset=UpperCamelCase_ , lm_score_boundary=UpperCamelCase_ , ) __lowerCamelCase = decoded_processor_out.text __lowerCamelCase = list(UpperCamelCase_ ) decoder.reset_params( alpha=UpperCamelCase_ , beta=UpperCamelCase_ , unk_score_offset=UpperCamelCase_ , lm_score_boundary=UpperCamelCase_ , ) with get_context("""fork""" ).Pool() as pool: __lowerCamelCase = decoder.decode_beams_batch( UpperCamelCase_ , UpperCamelCase_ , ) __lowerCamelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , UpperCamelCase_ ) __lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] __lowerCamelCase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowerCamelCase = os.listdir(UpperCamelCase_ ) __lowerCamelCase = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained(UpperCamelCase_ ) __lowerCamelCase = processor.decoder.model_container[processor.decoder._model_key] __lowerCamelCase = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowerCamelCase = os.listdir(UpperCamelCase_ ) __lowerCamelCase = os.listdir(UpperCamelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowerCamelCase = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowerCamelCase = floats_list((3, 10_00) ) __lowerCamelCase = processor_wavaveca(UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = processor_auto(UpperCamelCase_ , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowerCamelCase = self._get_dummy_logits() __lowerCamelCase = processor_wavaveca.batch_decode(UpperCamelCase_ ) __lowerCamelCase = processor_auto.batch_decode(UpperCamelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_feature_extractor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_decoder() __lowerCamelCase = WavaVecaProcessorWithLM(tokenizer=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , decoder=UpperCamelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase__ ( self: str ): __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowerCamelCase = self._get_dummy_logits()[0] __lowerCamelCase = processor.decode(UpperCamelCase_ , output_word_offsets=UpperCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowerCamelCase = self._get_dummy_logits() __lowerCamelCase = processor.batch_decode(UpperCamelCase_ , output_word_offsets=UpperCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(UpperCamelCase_ , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase__ ( self: Dict ): import torch __lowerCamelCase = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=UpperCamelCase_ ) __lowerCamelCase = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) __lowerCamelCase = iter(UpperCamelCase_ ) __lowerCamelCase = next(UpperCamelCase_ ) __lowerCamelCase = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowerCamelCase = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowerCamelCase = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ ).logits.cpu().numpy() __lowerCamelCase = processor.decode(logits[0] , output_word_offsets=UpperCamelCase_ ) __lowerCamelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowerCamelCase = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowerCamelCase = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(UpperCamelCase_ , """word""" ) ) , UpperCamelCase_ ) self.assertEqual(""" """.join(self.get_from_offsets(UpperCamelCase_ , """word""" ) ) , output.text ) # output times __lowerCamelCase = torch.tensor(self.get_from_offsets(UpperCamelCase_ , """start_time""" ) ) __lowerCamelCase = torch.tensor(self.get_from_offsets(UpperCamelCase_ , """end_time""" ) ) # fmt: off __lowerCamelCase = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowerCamelCase = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=0.01 ) )
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__( datasets.Metric): def lowerCAmelCase__ ( self: Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any=4 , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = compute_bleu( reference_corpus=UpperCamelCase_ , translation_corpus=UpperCamelCase_ , max_order=UpperCamelCase_ , smooth=UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase), (__lowerCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = 'gpt_neox_japanese' def __init__( self: Optional[Any] , UpperCamelCase_: Tuple=3_20_00 , UpperCamelCase_: Any=25_60 , UpperCamelCase_: int=32 , UpperCamelCase_: List[str]=32 , UpperCamelCase_: Dict=4 , UpperCamelCase_: List[Any]="gelu" , UpperCamelCase_: List[str]=1.00 , UpperCamelCase_: str=1_00_00 , UpperCamelCase_: Union[str, Any]=20_48 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: int=True , UpperCamelCase_: List[Any]=3_19_96 , UpperCamelCase_: int=3_19_99 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.0 , **UpperCamelCase_: Union[str, Any] , ): super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_multiple_size __lowerCamelCase = hidden_act __lowerCamelCase = rotary_pct __lowerCamelCase = rotary_emb_base __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = use_cache __lowerCamelCase = attention_dropout __lowerCamelCase = hidden_dropout
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = ViTImageProcessor if is_vision_available() else None @property def lowerCAmelCase__ ( self: int ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: str ): __lowerCamelCase = (3, 32, 1_28) __lowerCamelCase = tempfile.mkdtemp() # fmt: off __lowerCamelCase = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) __lowerCamelCase = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } __lowerCamelCase = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , **UpperCamelCase_: int ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , **UpperCamelCase_: Dict ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) __lowerCamelCase = Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) return image_input def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_image_processor() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowerCamelCase = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) __lowerCamelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = image_processor(UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = processor(images=UpperCamelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = """test""" __lowerCamelCase = processor(text=UpperCamelCase_ ) __lowerCamelCase = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = """test""" __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase = processor.char_decode(UpperCamelCase_ ) __lowerCamelCase = tokenizer.batch_decode(UpperCamelCase_ ) __lowerCamelCase = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = None __lowerCamelCase = self.prepare_image_inputs() __lowerCamelCase = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_image_processor() __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = MgpstrProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) __lowerCamelCase = torch.randn(1 , 27 , 38 ) __lowerCamelCase = torch.randn(1 , 27 , 5_02_57 ) __lowerCamelCase = torch.randn(1 , 27 , 3_05_22 ) __lowerCamelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCamelCase = n - k # Calculate C(n,k) for i in range(A__ ): result *= n - i result //= i + 1 return result def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , A__ ) // (node_count + 1) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __lowerCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return catalan_number(A__ ) * factorial(A__ ) if __name__ == "__main__": UpperCAmelCase_ = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[Any] = AudioLDMPipeline UpperCAmelCase__ : List[Any] = TEXT_TO_AUDIO_PARAMS UpperCAmelCase__ : int = TEXT_TO_AUDIO_BATCH_PARAMS UpperCAmelCase__ : Optional[Any] = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ]) def lowerCAmelCase__ ( self: Dict ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=UpperCamelCase_ , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , projection_dim=32 , ) __lowerCamelCase = ClapTextModelWithProjection(UpperCamelCase_ ) __lowerCamelCase = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __lowerCamelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_60_00 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCamelCase_ , ) __lowerCamelCase = SpeechTaHifiGan(UpperCamelCase_ ) __lowerCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ) __lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 2_56 __lowerCamelCase = audio[:10] __lowerCamelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 3 * [inputs["""prompt"""]] # forward __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ) __lowerCamelCase = output.audios[0] __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 3 * [inputs.pop("""prompt""" )] __lowerCamelCase = audioldm_pipe.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs["""input_ids"""].to(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.text_encoder( UpperCamelCase_ , ) __lowerCamelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __lowerCamelCase = F.normalize(UpperCamelCase_ , dim=-1 ) __lowerCamelCase = prompt_embeds # forward __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ) __lowerCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 3 * ["""this is a negative prompt"""] __lowerCamelCase = negative_prompt __lowerCamelCase = 3 * [inputs["""prompt"""]] # forward __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ) __lowerCamelCase = output.audios[0] __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = 3 * [inputs.pop("""prompt""" )] __lowerCamelCase = [] for p in [prompt, negative_prompt]: __lowerCamelCase = audioldm_pipe.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = text_inputs["""input_ids"""].to(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.text_encoder( UpperCamelCase_ , ) __lowerCamelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __lowerCamelCase = F.normalize(UpperCamelCase_ , dim=-1 ) embeds.append(UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = embeds # forward __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ) __lowerCamelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = """egg cracking""" __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) __lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 2_56 __lowerCamelCase = audio[:10] __lowerCamelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __lowerCamelCase = audioldm_pipe(UpperCamelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_56) # test num_waveforms_per_prompt=1 (default) for batch of prompts __lowerCamelCase = 2 __lowerCamelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_56) # test num_waveforms_per_prompt for single prompt __lowerCamelCase = 2 __lowerCamelCase = audioldm_pipe(UpperCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=UpperCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_56) # test num_waveforms_per_prompt for batch of prompts __lowerCamelCase = 2 __lowerCamelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.vocoder.config.sampling_rate __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe(audio_length_in_s=0.016 , **UpperCamelCase_ ) __lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) / vocoder_sampling_rate == 0.016 __lowerCamelCase = audioldm_pipe(audio_length_in_s=0.032 , **UpperCamelCase_ ) __lowerCamelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) / vocoder_sampling_rate == 0.032 def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = AudioLDMPipeline(**UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = ["""hey"""] __lowerCamelCase = audioldm_pipe(UpperCamelCase_ , num_inference_steps=1 ) __lowerCamelCase = output.audios.shape assert audio_shape == (1, 2_56) __lowerCamelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __lowerCamelCase = SpeechTaHifiGan(UpperCamelCase_ ).to(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe(UpperCamelCase_ , num_inference_steps=1 ) __lowerCamelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_56) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCamelCase_ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ ) @slow class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any]="cpu" , UpperCamelCase_: int=torch.floataa , UpperCamelCase_: Optional[Any]=0 ): __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 8, 1_28, 16) ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_inputs(UpperCamelCase_ ) __lowerCamelCase = 25 __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 8_19_20 __lowerCamelCase = audio[7_72_30:7_72_40] __lowerCamelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __lowerCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __lowerCamelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __lowerCamelCase = audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = self.get_inputs(UpperCamelCase_ ) __lowerCamelCase = audioldm_pipe(**UpperCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 8_19_20 __lowerCamelCase = audio[2_77_80:2_77_90] __lowerCamelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __lowerCamelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency UpperCAmelCase_ = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } UpperCAmelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' UpperCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase__ ( A__ : tuple ): '''simple docstring''' return x[0] def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_letter_count(A__ ) __lowerCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(A__ ) __lowerCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=A__ ) __lowerCamelCase = """""".join(freq_to_letter[freq] ) __lowerCamelCase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=A__ , reverse=A__ ) __lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = get_frequency_order(A__ ) __lowerCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
29
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[Any] = 'efficientformer' def __init__( self: str , UpperCamelCase_: List[int] = [3, 2, 6, 4] , UpperCamelCase_: List[int] = [48, 96, 2_24, 4_48] , UpperCamelCase_: List[bool] = [True, True, True, True] , UpperCamelCase_: int = 4_48 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 4 , UpperCamelCase_: int = 7 , UpperCamelCase_: int = 5 , UpperCamelCase_: int = 8 , UpperCamelCase_: int = 4 , UpperCamelCase_: float = 0.0 , UpperCamelCase_: int = 16 , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 2 , UpperCamelCase_: int = 1 , UpperCamelCase_: float = 0.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: bool = True , UpperCamelCase_: bool = True , UpperCamelCase_: float = 1E-5 , UpperCamelCase_: str = "gelu" , UpperCamelCase_: float = 0.02 , UpperCamelCase_: float = 1E-12 , UpperCamelCase_: int = 2_24 , UpperCamelCase_: float = 1E-05 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = hidden_sizes __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = depths __lowerCamelCase = mlp_expansion_ratio __lowerCamelCase = downsamples __lowerCamelCase = dim __lowerCamelCase = key_dim __lowerCamelCase = attention_ratio __lowerCamelCase = resolution __lowerCamelCase = pool_size __lowerCamelCase = downsample_patch_size __lowerCamelCase = downsample_stride __lowerCamelCase = downsample_pad __lowerCamelCase = drop_path_rate __lowerCamelCase = num_metaad_blocks __lowerCamelCase = distillation __lowerCamelCase = use_layer_scale __lowerCamelCase = layer_scale_init_value __lowerCamelCase = image_size __lowerCamelCase = batch_norm_eps
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): UpperCAmelCase_ = True from torch.cuda.amp import autocast UpperCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase__ ( A__ : str=None , A__ : Tuple=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=A__ ) @dataclass class lowerCamelCase__: UpperCAmelCase__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCAmelCase__ : Optional[bool] = field( default=__lowerCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'}) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'}) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) UpperCAmelCase__ : Optional[float] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) UpperCAmelCase__ : Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'}) @dataclass class lowerCamelCase__: UpperCAmelCase__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) UpperCAmelCase__ : Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) UpperCAmelCase__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=__lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) UpperCAmelCase__ : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class lowerCamelCase__: UpperCAmelCase__ : WavaVecaProcessor UpperCAmelCase__ : Union[bool, str] = True UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None def __call__( self: Optional[int] , UpperCamelCase_: List[Dict[str, Union[List[int], torch.Tensor]]] ): # split inputs and labels since they have to be of different lenghts and need # different padding methods __lowerCamelCase = [{"""input_values""": feature["""input_values"""]} for feature in features] __lowerCamelCase = [{"""input_ids""": feature["""labels"""]} for feature in features] __lowerCamelCase = self.processor.pad( UpperCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __lowerCamelCase = self.processor.pad( labels=UpperCamelCase_ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly __lowerCamelCase = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) __lowerCamelCase = labels return batch class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: int , UpperCamelCase_: nn.Module , UpperCamelCase_: Dict[str, Union[torch.Tensor, Any]] ): model.train() __lowerCamelCase = self._prepare_inputs(UpperCamelCase_ ) if self.use_amp: with autocast(): __lowerCamelCase = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) else: __lowerCamelCase = self.compute_loss(UpperCamelCase_ , UpperCamelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __lowerCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCamelCase = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: __lowerCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCamelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCamelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCamelCase_ ) else: loss.backward() return loss.detach() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __lowerCamelCase = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) __lowerCamelCase = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer __lowerCamelCase = f'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(A__ : Any ): __lowerCamelCase = re.sub(A__ , """""" , batch["""sentence"""] ).lower() + """ """ return batch __lowerCamelCase = train_dataset.map(A__ , remove_columns=["""sentence"""] ) __lowerCamelCase = eval_dataset.map(A__ , remove_columns=["""sentence"""] ) def extract_all_chars(A__ : Dict ): __lowerCamelCase = """ """.join(batch["""text"""] ) __lowerCamelCase = list(set(A__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __lowerCamelCase = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=train_dataset.column_names , ) __lowerCamelCase = train_dataset.map( A__ , batched=A__ , batch_size=-1 , keep_in_memory=A__ , remove_columns=eval_dataset.column_names , ) __lowerCamelCase = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) __lowerCamelCase = {v: k for k, v in enumerate(A__ )} __lowerCamelCase = vocab_dict[""" """] del vocab_dict[" "] __lowerCamelCase = len(A__ ) __lowerCamelCase = len(A__ ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(A__ , A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) __lowerCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=A__ , return_attention_mask=A__ ) __lowerCamelCase = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__ ) __lowerCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __lowerCamelCase = min(len(A__ ) , data_args.max_train_samples ) __lowerCamelCase = train_dataset.select(range(A__ ) ) if data_args.max_val_samples is not None: __lowerCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) __lowerCamelCase = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(A__ : Any ): __lowerCamelCase, __lowerCamelCase = torchaudio.load(batch["""path"""] ) __lowerCamelCase = resampler(A__ ).squeeze().numpy() __lowerCamelCase = 16000 __lowerCamelCase = batch["""text"""] return batch __lowerCamelCase = train_dataset.map( A__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(A__ : Dict ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), f'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' __lowerCamelCase = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(A__ ) return batch __lowerCamelCase = train_dataset.map( A__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) __lowerCamelCase = eval_dataset.map( A__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=A__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __lowerCamelCase = datasets.load_metric("""wer""" ) def compute_metrics(A__ : Optional[int] ): __lowerCamelCase = pred.predictions __lowerCamelCase = np.argmax(A__ , axis=-1 ) __lowerCamelCase = processor.tokenizer.pad_token_id __lowerCamelCase = processor.batch_decode(A__ ) # we do not want to group tokens when computing the metrics __lowerCamelCase = processor.batch_decode(pred.label_ids , group_tokens=A__ ) __lowerCamelCase = wer_metric.compute(predictions=A__ , references=A__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __lowerCamelCase = DataCollatorCTCWithPadding(processor=A__ , padding=A__ ) # Initialize our Trainer __lowerCamelCase = CTCTrainer( model=A__ , data_collator=A__ , args=A__ , compute_metrics=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __lowerCamelCase = model_args.model_name_or_path else: __lowerCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __lowerCamelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() __lowerCamelCase = train_result.metrics __lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) __lowerCamelCase = min(A__ , len(A__ ) ) trainer.log_metrics("""train""" , A__ ) trainer.save_metrics("""train""" , A__ ) trainer.save_state() # Evaluation __lowerCamelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCamelCase = trainer.evaluate() __lowerCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(A__ ) __lowerCamelCase = min(A__ , len(A__ ) ) trainer.log_metrics("""eval""" , A__ ) trainer.save_metrics("""eval""" , A__ ) return results if __name__ == "__main__": main()
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[Any] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] UpperCAmelCase__ : Optional[Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] UpperCAmelCase__ : int = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCAmelCase__ : Optional[Any] = False @property def lowerCAmelCase__ ( self: Dict ): return 32 @property def lowerCAmelCase__ ( self: Optional[int] ): return 32 @property def lowerCAmelCase__ ( self: str ): return self.time_input_dim @property def lowerCAmelCase__ ( self: List[str] ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: List[str] ): return 1_00 @property def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __lowerCamelCase = MultilingualCLIP(UpperCamelCase_ ) __lowerCamelCase = text_encoder.eval() return text_encoder @property def lowerCAmelCase__ ( self: Optional[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCamelCase = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = self.dummy_tokenizer __lowerCamelCase = self.dummy_unet __lowerCamelCase = self.dummy_movq __lowerCamelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCamelCase_ , ) __lowerCamelCase = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any]=0 ): __lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase_ ) # create init_image __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCamelCase = np.ones((64, 64) , dtype=np.floataa ) __lowerCamelCase = 0 if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images __lowerCamelCase = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCAmelCase__ ( self: Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCamelCase = np.ones((7_68, 7_68) , dtype=np.floataa ) __lowerCamelCase = 0 __lowerCamelCase = """a hat""" __lowerCamelCase = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) __lowerCamelCase = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) __lowerCamelCase = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCamelCase, __lowerCamelCase = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __lowerCamelCase = pipeline( UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) __lowerCamelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
29
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
1
import math def lowerCamelCase__ ( A__ : list , A__ : int ): '''simple docstring''' __lowerCamelCase = len(A__ ) __lowerCamelCase = int(math.floor(math.sqrt(A__ ) ) ) __lowerCamelCase = 0 while arr[min(A__ , A__ ) - 1] < x: __lowerCamelCase = step step += int(math.floor(math.sqrt(A__ ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowerCamelCase = prev + 1 if prev == min(A__ , A__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] UpperCAmelCase_ = int(input('Enter the number to be searched:\n')) UpperCAmelCase_ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f"""Number {x} is at index {res}""")
29
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = 9, 14 # noqa: F841 __lowerCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCamelCase = defaultdict(A__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __lowerCamelCase = mst(A__ ) __lowerCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __lowerCamelCase = tuple(answer[:2] ) __lowerCamelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: int , UpperCamelCase_: str ): with open(UpperCamelCase_ , encoding="""utf-8""" ) as input_file: __lowerCamelCase = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) __lowerCamelCase = input_file.read() __lowerCamelCase = regexp.search(UpperCamelCase_ ) return match def lowerCAmelCase__ ( self: int , UpperCamelCase_: str ): with open(UpperCamelCase_ , encoding="""utf-8""" ) as input_file: __lowerCamelCase = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) __lowerCamelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowerCamelCase = regexp.finditer(UpperCamelCase_ ) __lowerCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Path("""./datasets""" ) __lowerCamelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase_ ) ): raise AssertionError(F'open(...) must use utf-8 encoding in {dataset}' ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Path("""./datasets""" ) __lowerCamelCase = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase_ ) ): raise AssertionError(F'print statement found in {dataset}. Use datasets.logger/logging instead.' )
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowerCamelCase__ ( A__ : Optional[int] , A__ : Optional[int]="shi-labs/oneformer_demo" ): '''simple docstring''' with open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) as f: __lowerCamelCase = json.load(A__ ) __lowerCamelCase = {} __lowerCamelCase = [] __lowerCamelCase = [] for key, info in class_info.items(): __lowerCamelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(A__ ) ) __lowerCamelCase = thing_ids __lowerCamelCase = class_names return metadata class lowerCamelCase__( unittest.TestCase): def __init__( self: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=7 , UpperCamelCase_: str=3 , UpperCamelCase_: Optional[Any]=30 , UpperCamelCase_: Tuple=4_00 , UpperCamelCase_: int=None , UpperCamelCase_: Tuple=True , UpperCamelCase_: Any=True , UpperCamelCase_: int=[0.5, 0.5, 0.5] , UpperCamelCase_: Any=[0.5, 0.5, 0.5] , UpperCamelCase_: int=10 , UpperCamelCase_: List[Any]=False , UpperCamelCase_: int=2_55 , UpperCamelCase_: List[Any]="shi-labs/oneformer_demo" , UpperCamelCase_: str="ade20k_panoptic.json" , UpperCamelCase_: Any=10 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = num_channels __lowerCamelCase = min_resolution __lowerCamelCase = max_resolution __lowerCamelCase = do_resize __lowerCamelCase = {"""shortest_edge""": 32, """longest_edge""": 13_33} if size is None else size __lowerCamelCase = do_normalize __lowerCamelCase = image_mean __lowerCamelCase = image_std __lowerCamelCase = class_info_file __lowerCamelCase = prepare_metadata(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = num_text __lowerCamelCase = repo_path # for the post_process_functions __lowerCamelCase = 2 __lowerCamelCase = 10 __lowerCamelCase = 10 __lowerCamelCase = 3 __lowerCamelCase = 4 __lowerCamelCase = num_labels __lowerCamelCase = do_reduce_labels __lowerCamelCase = ignore_index def lowerCAmelCase__ ( self: Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: List[str]=False ): if not batched: __lowerCamelCase = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): __lowerCamelCase, __lowerCamelCase = image.size else: __lowerCamelCase, __lowerCamelCase = image.shape[1], image.shape[2] if w < h: __lowerCamelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCamelCase = self.size["""shortest_edge"""] elif w > h: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCamelCase = self.size["""shortest_edge"""] __lowerCamelCase = self.size["""shortest_edge"""] else: __lowerCamelCase = [] for image in image_inputs: __lowerCamelCase, __lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCamelCase = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] __lowerCamelCase = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width def lowerCAmelCase__ ( self: int ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCAmelCase__ : Any = image_processing_class def lowerCAmelCase__ ( self: str ): __lowerCamelCase = OneFormerImageProcessorTester(self ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return self.image_processing_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """ignore_index""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """class_info_file""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """num_text""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """repo_path""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """metadata""" ) ) self.assertTrue(hasattr(UpperCamelCase_ , """do_reduce_labels""" ) ) def lowerCAmelCase__ ( self: int ): pass def lowerCAmelCase__ ( self: Any ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input __lowerCamelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase, __lowerCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __lowerCamelCase = image_processor( UpperCamelCase_ , ["""semantic"""] * len(UpperCamelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self: Tuple ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input __lowerCamelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase, __lowerCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __lowerCamelCase = image_processor( UpperCamelCase_ , ["""semantic"""] * len(UpperCamelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self: Union[str, Any] ): # Initialize image_processor __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input __lowerCamelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCamelCase, __lowerCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCamelCase, __lowerCamelCase = self.image_processing_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) __lowerCamelCase = image_processor( UpperCamelCase_ , ["""semantic"""] * len(UpperCamelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: str=False , UpperCamelCase_: str=False , UpperCamelCase_: Dict="np" ): __lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCamelCase = self.image_processing_tester.num_labels __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase_ ) if with_segmentation_maps: __lowerCamelCase = num_labels if is_instance_map: __lowerCamelCase = list(range(UpperCamelCase_ ) ) * 2 __lowerCamelCase = dict(enumerate(UpperCamelCase_ ) ) __lowerCamelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCamelCase = [Image.fromarray(UpperCamelCase_ ) for annotation in annotations] __lowerCamelCase = image_processor( UpperCamelCase_ , ["""semantic"""] * len(UpperCamelCase_ ) , UpperCamelCase_ , return_tensors="""pt""" , instance_id_to_semantic_id=UpperCamelCase_ , pad_and_return_pixel_mask=UpperCamelCase_ , ) return inputs def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: Tuple ): def common(UpperCamelCase_: Any=False , UpperCamelCase_: Tuple=None ): __lowerCamelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase_ , is_instance_map=UpperCamelCase_ , segmentation_type=UpperCamelCase_ ) __lowerCamelCase = inputs["""mask_labels"""] __lowerCamelCase = inputs["""class_labels"""] __lowerCamelCase = inputs["""pixel_values"""] __lowerCamelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase_ ) common(is_instance_map=UpperCamelCase_ , segmentation_type="""pil""" ) common(is_instance_map=UpperCamelCase_ , segmentation_type="""pil""" ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = np.zeros((20, 50) ) __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = 1 __lowerCamelCase = binary_mask_to_rle(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCamelCase = fature_extractor.post_process_semantic_segmentation(UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCamelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCamelCase = fature_extractor.post_process_semantic_segmentation(UpperCamelCase_ , target_sizes=UpperCamelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCamelCase = image_processor.post_process_instance_segmentation(UpperCamelCase_ , threshold=0 ) self.assertTrue(len(UpperCamelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCamelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCamelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCamelCase = image_processor.post_process_panoptic_segmentation(UpperCamelCase_ , threshold=0 ) self.assertTrue(len(UpperCamelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCamelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCAmelCase_ = logging.getLogger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = 'summarization' UpperCAmelCase__ : List[str] = ['loss'] UpperCAmelCase__ : Union[str, Any] = ROUGE_KEYS UpperCAmelCase__ : List[str] = 'rouge2' def __init__( self: Optional[Any] , UpperCamelCase_: Optional[int] , **UpperCamelCase_: Any ): if hparams.sortish_sampler and hparams.gpus > 1: __lowerCamelCase = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(UpperCamelCase_ , num_labels=UpperCamelCase_ , mode=self.mode , **UpperCamelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __lowerCamelCase = Path(self.output_dir ) / """metrics.json""" __lowerCamelCase = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __lowerCamelCase = 0 __lowerCamelCase = defaultdict(UpperCamelCase_ ) __lowerCamelCase = self.config.model_type __lowerCamelCase = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __lowerCamelCase = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __lowerCamelCase = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __lowerCamelCase = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __lowerCamelCase = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __lowerCamelCase = get_git_info()["""repo_sha"""] __lowerCamelCase = hparams.num_workers __lowerCamelCase = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase_ ): __lowerCamelCase = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __lowerCamelCase = self.decoder_start_token_id __lowerCamelCase = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __lowerCamelCase = False __lowerCamelCase = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __lowerCamelCase = self.hparams.eval_max_gen_length else: __lowerCamelCase = self.model.config.max_length __lowerCamelCase = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Dict[str, torch.Tensor] ): __lowerCamelCase = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __lowerCamelCase = True return readable_batch def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , **UpperCamelCase_: List[str] ): return self.model(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[int] ): __lowerCamelCase = self.tokenizer.batch_decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return lmap(str.strip , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: dict ): __lowerCamelCase = self.tokenizer.pad_token_id __lowerCamelCase, __lowerCamelCase = batch["""input_ids"""], batch["""attention_mask"""] __lowerCamelCase = batch["""labels"""] if isinstance(self.model , UpperCamelCase_ ): __lowerCamelCase = self.model._shift_right(UpperCamelCase_ ) else: __lowerCamelCase = shift_tokens_right(UpperCamelCase_ , UpperCamelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __lowerCamelCase = decoder_input_ids self.save_readable_batch(UpperCamelCase_ ) __lowerCamelCase = self(UpperCamelCase_ , attention_mask=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowerCamelCase = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __lowerCamelCase = nn.CrossEntropyLoss(ignore_index=UpperCamelCase_ ) assert lm_logits.shape[-1] == self.vocab_size __lowerCamelCase = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __lowerCamelCase = nn.functional.log_softmax(UpperCamelCase_ , dim=-1 ) __lowerCamelCase, __lowerCamelCase = label_smoothed_nll_loss( UpperCamelCase_ , UpperCamelCase_ , self.hparams.label_smoothing , ignore_index=UpperCamelCase_ ) return (loss,) @property def lowerCAmelCase__ ( self: Any ): return self.tokenizer.pad_token_id def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = self._step(UpperCamelCase_ ) __lowerCamelCase = dict(zip(self.loss_names , UpperCamelCase_ ) ) # tokens per batch __lowerCamelCase = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __lowerCamelCase = batch["""input_ids"""].shape[0] __lowerCamelCase = batch["""input_ids"""].eq(self.pad ).sum() __lowerCamelCase = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: str ): return self._generative_step(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any]="val" ): self.step_count += 1 __lowerCamelCase = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __lowerCamelCase = losses["""loss"""] __lowerCamelCase = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __lowerCamelCase = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __lowerCamelCase = torch.tensor(UpperCamelCase_ ).type_as(UpperCamelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(UpperCamelCase_ ) __lowerCamelCase = {F'{prefix}_avg_{k}': x for k, x in losses.items()} __lowerCamelCase = self.step_count self.metrics[prefix].append(UpperCamelCase_ ) # callback writes this to self.metrics_save_path __lowerCamelCase = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] ): return calculate_rouge(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: dict ): __lowerCamelCase = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __lowerCamelCase = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=UpperCamelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __lowerCamelCase = (time.time() - ta) / batch["""input_ids"""].shape[0] __lowerCamelCase = self.ids_to_clean_text(UpperCamelCase_ ) __lowerCamelCase = self.ids_to_clean_text(batch["""labels"""] ) __lowerCamelCase = self._step(UpperCamelCase_ ) __lowerCamelCase = dict(zip(self.loss_names , UpperCamelCase_ ) ) __lowerCamelCase = self.calc_generative_metrics(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = np.mean(lmap(UpperCamelCase_ , UpperCamelCase_ ) ) base_metrics.update(gen_time=UpperCamelCase_ , gen_len=UpperCamelCase_ , preds=UpperCamelCase_ , target=UpperCamelCase_ , **UpperCamelCase_ ) return base_metrics def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any , UpperCamelCase_: Dict ): return self._generative_step(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Tuple ): return self.validation_epoch_end(UpperCamelCase_ , prefix="""test""" ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str ): __lowerCamelCase = self.n_obs[type_path] __lowerCamelCase = self.target_lens[type_path] __lowerCamelCase = self.dataset_class( self.tokenizer , type_path=UpperCamelCase_ , n_obs=UpperCamelCase_ , max_target_length=UpperCamelCase_ , **self.dataset_kwargs , ) return dataset def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: int , UpperCamelCase_: bool = False ): __lowerCamelCase = self.get_dataset(UpperCamelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __lowerCamelCase = dataset.make_sortish_sampler(UpperCamelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase_ , batch_size=UpperCamelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase_ , num_workers=self.num_workers , sampler=UpperCamelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __lowerCamelCase = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( UpperCamelCase_ , batch_sampler=UpperCamelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase_ , batch_size=UpperCamelCase_ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase_ , num_workers=self.num_workers , sampler=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase_ ) return dataloader def lowerCAmelCase__ ( self: Union[str, Any] ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def lowerCAmelCase__ ( self: Any ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: Any , UpperCamelCase_: int ): BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) add_generic_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( """--max_source_length""" , default=10_24 , type=UpperCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=UpperCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_42 , type=UpperCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_42 , type=UpperCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=UpperCamelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=UpperCamelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=UpperCamelCase_ , default=UpperCamelCase_ ) parser.add_argument("""--logger_name""" , type=UpperCamelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=UpperCamelCase_ , default=-1 , required=UpperCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=UpperCamelCase_ , default=5_00 , required=UpperCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=UpperCamelCase_ , default=-1 , required=UpperCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=UpperCamelCase_ , default="""summarization""" , required=UpperCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=UpperCamelCase_ , default=0.0 , required=UpperCamelCase_ ) parser.add_argument("""--src_lang""" , type=UpperCamelCase_ , default="""""" , required=UpperCamelCase_ ) parser.add_argument("""--tgt_lang""" , type=UpperCamelCase_ , default="""""" , required=UpperCamelCase_ ) parser.add_argument("""--eval_beams""" , type=UpperCamelCase_ , default=UpperCamelCase_ , required=UpperCamelCase_ ) parser.add_argument( """--val_metric""" , type=UpperCamelCase_ , default=UpperCamelCase_ , required=UpperCamelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=UpperCamelCase_ , default=1 , required=UpperCamelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=UpperCamelCase_ , default=-1 , required=UpperCamelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = 'translation' UpperCAmelCase__ : Any = ['loss'] UpperCAmelCase__ : List[str] = ['bleu'] UpperCAmelCase__ : List[str] = 'bleu' def __init__( self: Tuple , UpperCamelCase_: Union[str, Any] , **UpperCamelCase_: Dict ): super().__init__(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = hparams.src_lang __lowerCamelCase = hparams.tgt_lang def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Any ): return calculate_bleu(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( A__ : Tuple , A__ : Union[str, Any]=None ): '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=A__ ) check_output_dir(A__ , expected_items=3 ) if model is None: if "summarization" in args.task: __lowerCamelCase = SummarizationModule(A__ ) else: __lowerCamelCase = TranslationModule(A__ ) __lowerCamelCase = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __lowerCamelCase = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __lowerCamelCase = os.environ.get("""WANDB_PROJECT""" , A__ ) __lowerCamelCase = WandbLogger(name=model.output_dir.name , project=A__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __lowerCamelCase = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: __lowerCamelCase = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __lowerCamelCase = False __lowerCamelCase = args.val_metric == """loss""" __lowerCamelCase = generic_train( A__ , A__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , A__ ) , early_stopping_callback=A__ , logger=A__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __lowerCamelCase = """""" __lowerCamelCase = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=A__ ) ) if checkpoints: __lowerCamelCase = checkpoints[-1] __lowerCamelCase = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() UpperCAmelCase_ = pl.Trainer.add_argparse_args(parser) UpperCAmelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase_ = parser.parse_args() main(args)
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
UpperCAmelCase_ = 9.8_0665 def lowerCamelCase__ ( A__ : float , A__ : float , A__ : float = g ): '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } UpperCAmelCase_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCAmelCase_ = '▁' class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: str=True , UpperCamelCase_: str=True , UpperCamelCase_: List[Any]=False , UpperCamelCase_: int="[CLS]" , UpperCamelCase_: Dict="[SEP]" , UpperCamelCase_: Any="<unk>" , UpperCamelCase_: Any="[SEP]" , UpperCamelCase_: Any="<pad>" , UpperCamelCase_: Union[str, Any]="[CLS]" , UpperCamelCase_: str="[MASK]" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __lowerCamelCase = ( AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ , normalized=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token ) __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowerCamelCase = do_lower_case __lowerCamelCase = remove_space __lowerCamelCase = keep_accents __lowerCamelCase = vocab_file __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: Optional[int] ): return len(self.sp_model ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Any ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: Dict , UpperCamelCase_: Dict ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Union[str, Any] ): if self.remove_space: __lowerCamelCase = """ """.join(inputs.strip().split() ) else: __lowerCamelCase = inputs __lowerCamelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __lowerCamelCase = unicodedata.normalize("""NFKD""" , UpperCamelCase_ ) __lowerCamelCase = """""".join([c for c in outputs if not unicodedata.combining(UpperCamelCase_ )] ) if self.do_lower_case: __lowerCamelCase = outputs.lower() return outputs def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): __lowerCamelCase = self.preprocess_text(UpperCamelCase_ ) __lowerCamelCase = self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) __lowerCamelCase = [] for piece in pieces: if len(UpperCamelCase_ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase_ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowerCamelCase = cur_pieces[1:] else: __lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase_ ) else: new_pieces.append(UpperCamelCase_ ) return new_pieces def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict ): return self.sp_model.PieceToId(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: int ): return self.sp_model.IdToPiece(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = [] __lowerCamelCase = """""" __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(UpperCamelCase_ ) __lowerCamelCase = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1] def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' if not head: return True # split the list to two parts __lowerCamelCase, __lowerCamelCase = head.next, head while fast and fast.next: __lowerCamelCase = fast.next.next __lowerCamelCase = slow.next __lowerCamelCase = slow.next __lowerCamelCase = None # Don't forget here! But forget still works! # reverse the second part __lowerCamelCase = None while second: __lowerCamelCase = second.next __lowerCamelCase = node __lowerCamelCase = second __lowerCamelCase = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __lowerCamelCase = node.next __lowerCamelCase = head.next return True def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) __lowerCamelCase = __lowerCamelCase = __lowerCamelCase = head while fast and fast.next: __lowerCamelCase, __lowerCamelCase = fast.next.next, slow.next # 2. Push the second half into the stack __lowerCamelCase = [slow.val] while slow.next: __lowerCamelCase = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __lowerCamelCase = cur.next return True def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if not head or not head.next: return True __lowerCamelCase = {} __lowerCamelCase = 0 while head: if head.val in d: d[head.val].append(A__ ) else: __lowerCamelCase = [pos] __lowerCamelCase = head.next pos += 1 __lowerCamelCase = pos - 1 __lowerCamelCase = 0 for v in d.values(): if len(A__ ) % 2 != 0: middle += 1 else: __lowerCamelCase = 0 for i in range(0 , len(A__ ) ): if v[i] + v[len(A__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[str] = SpeechTaTokenizer UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Dict = True def lowerCAmelCase__ ( self: Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase_ ) __lowerCamelCase = AddedToken("""<mask>""" , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({"""mask_token""": mask_token} ) tokenizer.add_tokens(["""<ctc_blank>"""] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = """this is a test""" __lowerCamelCase = """this is a test""" return input_text, output_text def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str]=False , UpperCamelCase_: Any=20 , UpperCamelCase_: Tuple=5 ): __lowerCamelCase, __lowerCamelCase = self.get_input_output_texts(UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-4] , """œ""" ) self.assertEqual(vocab_keys[-2] , """<mask>""" ) self.assertEqual(vocab_keys[-1] , """<ctc_blank>""" ) self.assertEqual(len(UpperCamelCase_ ) , 81 ) def lowerCAmelCase__ ( self: str ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowerCamelCase = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] __lowerCamelCase = tokenizer.add_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size + len(UpperCamelCase_ ) ) __lowerCamelCase = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __lowerCamelCase = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} __lowerCamelCase = tokenizer.add_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.vocab_size __lowerCamelCase = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size_a + len(UpperCamelCase_ ) ) __lowerCamelCase = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase__ ( self: Union[str, Any] ): pass def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tokenizer.tokenize("""This is a test""" ) # fmt: off self.assertListEqual(UpperCamelCase_ , [SPIECE_UNDERLINE, """T""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """a""", SPIECE_UNDERLINE, """t""", """e""", """s""", """t"""] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """92000""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) # fmt: off self.assertListEqual(UpperCamelCase_ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __lowerCamelCase = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [SPIECE_UNDERLINE, """I""", SPIECE_UNDERLINE, """w""", """a""", """s""", SPIECE_UNDERLINE, """b""", """o""", """r""", """n""", SPIECE_UNDERLINE, """i""", """n""", SPIECE_UNDERLINE, """<unk>""", """,""", SPIECE_UNDERLINE, """a""", """n""", """d""", SPIECE_UNDERLINE, """t""", """h""", """i""", """s""", SPIECE_UNDERLINE, """i""", """s""", SPIECE_UNDERLINE, """f""", """a""", """l""", """s""", """é""", """."""] ) @slow def lowerCAmelCase__ ( self: str ): # Use custom sequence because this tokenizer does not handle numbers. __lowerCamelCase = [ """Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides """ """general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural """ """Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained """ """models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.""", """BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly """ """conditioning on both left and right context in all layers.""", """The quick brown fox jumps over the lazy dog.""", ] # fmt: off __lowerCamelCase = { """input_ids""": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""microsoft/speecht5_asr""" , revision="""c5ef64c71905caeccde0e4462ef3f9077224c524""" , sequences=UpperCamelCase_ , )
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = 'ctrl' UpperCAmelCase__ : Dict = ['past_key_values'] UpperCAmelCase__ : List[Any] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: List[str] , UpperCamelCase_: Union[str, Any]=24_65_34 , UpperCamelCase_: int=2_56 , UpperCamelCase_: List[Any]=12_80 , UpperCamelCase_: List[str]=81_92 , UpperCamelCase_: int=48 , UpperCamelCase_: int=16 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: List[Any]=1E-6 , UpperCamelCase_: int=0.02 , UpperCamelCase_: List[Any]=True , **UpperCamelCase_: Optional[int] , ): __lowerCamelCase = vocab_size __lowerCamelCase = n_positions __lowerCamelCase = n_embd __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = dff __lowerCamelCase = resid_pdrop __lowerCamelCase = embd_pdrop __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_range __lowerCamelCase = use_cache super().__init__(**UpperCamelCase_ )
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'visual_bert' def __init__( self: List[Any] , UpperCamelCase_: Dict=3_05_22 , UpperCamelCase_: str=7_68 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Dict=12 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: List[str]=30_72 , UpperCamelCase_: str="gelu" , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: int=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=0.02 , UpperCamelCase_: List[str]=1E-12 , UpperCamelCase_: str=False , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Any=1 , UpperCamelCase_: List[str]=0 , UpperCamelCase_: Dict=2 , **UpperCamelCase_: Optional[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = hidden_size __lowerCamelCase = visual_embedding_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = type_vocab_size __lowerCamelCase = layer_norm_eps __lowerCamelCase = bypass_transformer __lowerCamelCase = special_visual_initialize
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=A__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=A__ , default=5 ) parser.add_argument("""--batch_size""" , type=A__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=A__ , default=1 ) parser.add_argument("""--freeze""" , type=A__ , default=A__ ) parser.add_argument("""--learning_rate""" , type=A__ , default=5E-4 ) parser.add_argument("""--seed""" , type=A__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=A__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=A__ , default=10 ) parser.add_argument("""--weight_decay""" , type=A__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=A__ , default="""./results""" ) return parser.parse_args() UpperCAmelCase_ = load('accuracy') def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = eval_pred __lowerCamelCase = np.argmax(A__ , axis=1 ) return metric.compute(predictions=A__ , references=A__ ) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , UpperCamelCase_: Optional[Any] ): super().__init__() __lowerCamelCase = trainer def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Tuple , UpperCamelCase_: int , UpperCamelCase_: Any , **UpperCamelCase_: int ): if control.should_evaluate: __lowerCamelCase = deepcopy(UpperCamelCase_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="""train""" ) return control_copy def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = get_args() set_seed(args.seed ) __lowerCamelCase = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) __lowerCamelCase = dataset.train_test_split(test_size=0.2 ) __lowerCamelCase = train_test["""test"""].train_test_split(test_size=0.5 ) __lowerCamelCase = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) __lowerCamelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) __lowerCamelCase = tokenizer.eos_token __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) __lowerCamelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): __lowerCamelCase = False __lowerCamelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(A__ : Tuple ): __lowerCamelCase = tokenizer(example["""src"""] , truncation=A__ , max_length=1024 ) __lowerCamelCase = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } __lowerCamelCase = train_test_validation.map( A__ , batched=A__ , remove_columns=train_test_validation["""train"""].column_names , ) __lowerCamelCase = DataCollatorWithPadding(tokenizer=A__ ) __lowerCamelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) __lowerCamelCase = Trainer( model=A__ , args=A__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=A__ , data_collator=A__ , compute_metrics=A__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(A__ ) ) trainer.train() if __name__ == "__main__": main()
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import math import sys def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = """""" try: with open(A__ , """rb""" ) as binary_file: __lowerCamelCase = binary_file.read() for dat in data: __lowerCamelCase = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {"""0""": """0""", """1""": """1"""} __lowerCamelCase, __lowerCamelCase = """""", """""" __lowerCamelCase = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCamelCase = lexicon[curr_string] result += last_match_id __lowerCamelCase = last_match_id + """0""" if math.loga(A__ ).is_integer(): __lowerCamelCase = {} for curr_key in list(A__ ): __lowerCamelCase = lexicon.pop(A__ ) __lowerCamelCase = new_lex __lowerCamelCase = last_match_id + """1""" index += 1 __lowerCamelCase = """""" return result def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = 8 try: with open(A__ , """wb""" ) as opened_file: __lowerCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCamelCase = data_bits[counter:] __lowerCamelCase = data_bits[counter + 1 :] return data_bits def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = read_file_binary(A__ ) __lowerCamelCase = remove_prefix(A__ ) __lowerCamelCase = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
29
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCAmelCase_ = TypeVar('T') class lowerCamelCase__( Generic[T]): def __init__( self: Dict , UpperCamelCase_: list[T] , UpperCamelCase_: Callable[[T, T], T] ): __lowerCamelCase = None __lowerCamelCase = len(UpperCamelCase_ ) __lowerCamelCase = [any_type for _ in range(self.N )] + arr __lowerCamelCase = fnc self.build() def lowerCAmelCase__ ( self: Union[str, Any] ): for p in range(self.N - 1 , 0 , -1 ): __lowerCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , UpperCamelCase_: T ): p += self.N __lowerCamelCase = v while p > 1: __lowerCamelCase = p // 2 __lowerCamelCase = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: int ): # noqa: E741 __lowerCamelCase, __lowerCamelCase = l + self.N, r + self.N __lowerCamelCase = None while l <= r: if l % 2 == 1: __lowerCamelCase = self.st[l] if res is None else self.fn(UpperCamelCase_ , self.st[l] ) if r % 2 == 0: __lowerCamelCase = self.st[r] if res is None else self.fn(UpperCamelCase_ , self.st[r] ) __lowerCamelCase, __lowerCamelCase = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCAmelCase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCAmelCase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCAmelCase_ = SegmentTree(test_array, min) UpperCAmelCase_ = SegmentTree(test_array, max) UpperCAmelCase_ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase__ ( ): '''simple docstring''' for i in range(len(A__ ) ): for j in range(A__ , len(A__ ) ): __lowerCamelCase = reduce(A__ , test_array[i : j + 1] ) __lowerCamelCase = reduce(A__ , test_array[i : j + 1] ) __lowerCamelCase = reduce(lambda A__ , A__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(A__ , A__ ) assert max_range == max_segment_tree.query(A__ , A__ ) assert sum_range == sum_segment_tree.query(A__ , A__ ) test_all_segments() for index, value in test_updates.items(): UpperCAmelCase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase_ = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def lowerCamelCase__ ( A__ : str , A__ : int=None , A__ : Union[str, Any]=None , A__ : Tuple=None ): '''simple docstring''' __lowerCamelCase = True while ask_again: __lowerCamelCase = input(A__ ) try: if default is not None and len(A__ ) == 0: return default return convert_value(A__ ) if convert_value is not None else result except Exception: if error_message is not None: print(A__ ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=[] , A__ : int=None , A__ : Tuple=0 ): '''simple docstring''' __lowerCamelCase = BulletMenu(A__ , A__ ) __lowerCamelCase = menu.run(default_choice=A__ ) return convert_value(A__ ) if convert_value is not None else result def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = int(A__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class lowerCamelCase__( argparse.RawDescriptionHelpFormatter): def lowerCAmelCase__ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = super()._format_usage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = usage.replace("""<command> [<args>] """ , """""" ) return usage
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCAmelCase_ = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCAmelCase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' if "://" in dataset_path: __lowerCamelCase = dataset_path.split("""://""" )[1] return dataset_path def lowerCamelCase__ ( A__ : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase__ ( A__ : fsspec.AbstractFileSystem , A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = not is_remote_filesystem(A__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(A__ ) , fs._strip_protocol(A__ ) ) else: fs.mv(A__ , A__ , recursive=A__ ) def lowerCamelCase__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = threading.Lock()
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = torch.nn.Linear(2 , 4 ) __lowerCamelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) __lowerCamelCase = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __lowerCamelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __lowerCamelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' __lowerCamelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class lowerCamelCase__( __lowerCamelCase): @require_cuda def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = Accelerator(cpu=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase = GradientState() assert state.num_steps == 1 __lowerCamelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True __lowerCamelCase = False assert state.sync_gradients is False GradientState._reset_state() def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def lowerCAmelCase__ ( self: Optional[Any] ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCamelCase_: List[Any] , **UpperCamelCase_: int ): pass with patch("""torch.cuda.set_device""" , UpperCamelCase_ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ): __lowerCamelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , """cuda:64""" ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = get_signature(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = get_signature(UpperCamelCase_ ) # saving hook def save_config(UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] ): __lowerCamelCase = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(UpperCamelCase_ , """data.json""" ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # loading hook def load_config(UpperCamelCase_: Dict , UpperCamelCase_: List[Any] ): with open(os.path.join(UpperCamelCase_ , """data.json""" ) , """r""" ) as f: __lowerCamelCase = json.load(UpperCamelCase_ ) __lowerCamelCase = config["""class_name"""] __lowerCamelCase = accelerator.register_save_state_pre_hook(UpperCamelCase_ ) __lowerCamelCase = accelerator.register_load_state_pre_hook(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCamelCase = """random""" # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase_ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __lowerCamelCase = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase_ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() __lowerCamelCase = None # This should work __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(dummy_obj is None ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = create_components() __lowerCamelCase = [1, 2, 3] # This should work __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(UpperCamelCase_ , """_is_accelerate_prepared""" , UpperCamelCase_ ) , UpperCamelCase_ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def lowerCAmelCase__ ( self: Optional[int] ): from transformers import AutoModelForCausalLM __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map={"""""": 0} , ) __lowerCamelCase = Accelerator() # This should work __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @slow @require_bnb def lowerCAmelCase__ ( self: Dict ): from transformers import AutoModelForCausalLM __lowerCamelCase = Accelerator() with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = """cpu""" __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase_ ) # This should not work and get value error with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self: Optional[Any] ): from transformers import AutoModelForCausalLM __lowerCamelCase = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map=UpperCamelCase_ , ) __lowerCamelCase = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def lowerCAmelCase__ ( self: Optional[Any] ): from transformers import AutoModelForCausalLM with init_empty_weights(): __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) __lowerCamelCase = infer_auto_device_map(UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=UpperCamelCase_ , device_map=UpperCamelCase_ , ) __lowerCamelCase = Accelerator() # This should work __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) @require_cuda def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = torch.nn.Linear(10 , 10 ) __lowerCamelCase = torch.optim.SGD(model.parameters() , lr=0.01 ) __lowerCamelCase = Accelerator(cpu=UpperCamelCase_ ) __lowerCamelCase = accelerator.prepare(UpperCamelCase_ )
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
1
from functools import lru_cache def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = 2 __lowerCamelCase = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A__ ) if n > 1: factors.add(A__ ) return factors @lru_cache def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return len(unique_prime_factors(A__ ) ) def lowerCamelCase__ ( A__ : list ): '''simple docstring''' return len(set(A__ ) ) in (0, 1) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = 2 while True: # Increment each value of a generated range __lowerCamelCase = [base + i for i in range(A__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase = [upf_len(A__ ) for x in group] checker.append(A__ ) # If all numbers in the list are equal, return the group variable. if equality(A__ ): return group # Increment our base variable by 1 base += 1 def lowerCamelCase__ ( A__ : int = 4 ): '''simple docstring''' __lowerCamelCase = run(A__ ) return results[0] if len(A__ ) else None if __name__ == "__main__": print(solution())
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__: def __init__( self: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int]=13 , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: List[Any]=3 , UpperCamelCase_: Union[str, Any]=4 , UpperCamelCase_: List[str]=[10, 20, 30, 40] , UpperCamelCase_: List[str]=[2, 2, 3, 2] , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[int]=37 , UpperCamelCase_: str="gelu" , UpperCamelCase_: List[str]=10 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: Optional[Any]=["stage2", "stage3", "stage4"] , UpperCamelCase_: Any=3 , UpperCamelCase_: Optional[int]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = num_stages __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = out_features __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = num_stages def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: Union[str, Any] ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowerCAmelCase__ ( self: Any ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCamelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCamelCase_ , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] ): __lowerCamelCase = UperNetForSemanticSegmentation(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCAmelCase__ : int = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : str = False UpperCAmelCase__ : Any = False def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = UperNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self: str ): return def lowerCAmelCase__ ( self: str ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: Dict ): pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowerCAmelCase__ ( self: Dict ): pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCAmelCase__ ( self: int ): pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCAmelCase__ ( self: str ): pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCAmelCase__ ( self: Optional[int] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__ ( self: Any ): pass def lowerCAmelCase__ ( self: Union[str, Any] ): def check_hidden_states_output(UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(UpperCamelCase_ ) __lowerCamelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=UpperCamelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowerCAmelCase__ ( self: List[str] ): pass @slow def lowerCAmelCase__ ( self: Optional[int] ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = UperNetForSemanticSegmentation.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) __lowerCamelCase = Image.open(A__ ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) __lowerCamelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCamelCase_ ) __lowerCamelCase = prepare_img() __lowerCamelCase = processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) with torch.no_grad(): __lowerCamelCase = model(**UpperCamelCase_ ) __lowerCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) __lowerCamelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCamelCase_ ) __lowerCamelCase = prepare_img() __lowerCamelCase = processor(images=UpperCamelCase_ , return_tensors="""pt""" ).to(UpperCamelCase_ ) with torch.no_grad(): __lowerCamelCase = model(**UpperCamelCase_ ) __lowerCamelCase = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
UpperCAmelCase_ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Union[str, Any] , A__ : Dict=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str=512 , A__ : Tuple=512 ): '''simple docstring''' __lowerCamelCase = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) __lowerCamelCase = np.array(pil_image.convert("""RGB""" ) ) __lowerCamelCase = arr.astype(np.floataa ) / 127.5 - 1 __lowerCamelCase = np.transpose(A__ , [2, 0, 1] ) __lowerCamelCase = torch.from_numpy(A__ ).unsqueeze(0 ) return image class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[int] ): # get the original timestep using init_timestep __lowerCamelCase = min(int(num_inference_steps * strength ) , UpperCamelCase_ ) __lowerCamelCase = max(num_inference_steps - init_timestep , 0 ) __lowerCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any=None ): if not isinstance(UpperCamelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = image.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) __lowerCamelCase = batch_size * num_images_per_prompt if image.shape[1] == 4: __lowerCamelCase = image else: if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(UpperCamelCase_ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase_ ) ] __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) else: __lowerCamelCase = self.movq.encode(UpperCamelCase_ ).latent_dist.sample(UpperCamelCase_ ) __lowerCamelCase = self.movq.config.scaling_factor * init_latents __lowerCamelCase = torch.cat([init_latents] , dim=0 ) __lowerCamelCase = init_latents.shape __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) # get latents __lowerCamelCase = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = init_latents return latents def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: List[Any] ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Tuple , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: float = 0.3 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [image] if not all(isinstance(UpperCamelCase_ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'Input is in incorrect format: {[type(UpperCamelCase_ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) __lowerCamelCase = torch.cat([prepare_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for i in image] , dim=0 ) __lowerCamelCase = image.to(dtype=image_embeds.dtype , device=UpperCamelCase_ ) __lowerCamelCase = self.movq.encode(UpperCamelCase_ )["""latents"""] __lowerCamelCase = latents.repeat_interleave(UpperCamelCase_ , dim=0 ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = self.get_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = timesteps[:1].repeat(batch_size * num_images_per_prompt ) __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) __lowerCamelCase = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
29
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
1
from math import sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(A__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
29
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from __future__ import annotations def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = [] create_all_state(1 , A__ , A__ , [] , A__ ) return result def lowerCamelCase__ ( A__ : int , A__ : int , A__ : int , A__ : list[int] , A__ : list[list[int]] , ): '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(A__ , total_number - level + 2 ): current_list.append(A__ ) create_all_state(i + 1 , A__ , level - 1 , A__ , A__ ) current_list.pop() def lowerCamelCase__ ( A__ : list[list[int]] ): '''simple docstring''' for i in total_list: print(*A__ ) if __name__ == "__main__": UpperCAmelCase_ = 4 UpperCAmelCase_ = 2 UpperCAmelCase_ = generate_all_combinations(n, k) print_all_state(total_list)
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
def lowerCamelCase__ ( A__ : str , A__ : bool = False ): '''simple docstring''' if not isinstance(A__ , A__ ): __lowerCamelCase = f'Expected string as input, found {type(A__ )}' raise ValueError(A__ ) if not isinstance(A__ , A__ ): __lowerCamelCase = f'Expected boolean as use_pascal parameter, found {type(A__ )}' raise ValueError(A__ ) __lowerCamelCase = input_str.split("""_""" ) __lowerCamelCase = 0 if use_pascal else 1 __lowerCamelCase = words[start_index:] __lowerCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] __lowerCamelCase = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if n == 1 or not isinstance(A__ , A__ ): return 0 elif n == 2: return 1 else: __lowerCamelCase = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 2 while digits < n: index += 1 __lowerCamelCase = len(str(fibonacci(A__ ) ) ) return index def lowerCamelCase__ ( A__ : int = 1000 ): '''simple docstring''' return fibonacci_digits_index(A__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters UpperCAmelCase_ = (720, 1_280) # Height, Width UpperCAmelCase_ = (0.4, 0.6) # if height or width lower than this scale, drop it. UpperCAmelCase_ = 1 / 100 UpperCAmelCase_ = '' UpperCAmelCase_ = '' UpperCAmelCase_ = '' UpperCAmelCase_ = 250 def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = get_dataset(A__ , A__ ) for index in range(A__ ): __lowerCamelCase = random.sample(range(len(A__ ) ) , 4 ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = update_image_and_anno( A__ , A__ , A__ , A__ , A__ , filter_scale=A__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase = random_chars(32 ) __lowerCamelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] __lowerCamelCase = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , A__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) __lowerCamelCase = [] for anno in new_annos: __lowerCamelCase = anno[3] - anno[1] __lowerCamelCase = anno[4] - anno[2] __lowerCamelCase = anno[1] + width / 2 __lowerCamelCase = anno[2] + height / 2 __lowerCamelCase = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(A__ ) with open(f'{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] for label_file in glob.glob(os.path.join(A__ , """*.txt""" ) ): __lowerCamelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(A__ ) as in_file: __lowerCamelCase = in_file.readlines() __lowerCamelCase = os.path.join(A__ , f'{label_name}.jpg' ) __lowerCamelCase = [] for obj_list in obj_lists: __lowerCamelCase = obj_list.rstrip("""\n""" ).split(""" """ ) __lowerCamelCase = float(obj[1] ) - float(obj[3] ) / 2 __lowerCamelCase = float(obj[2] ) - float(obj[4] ) / 2 __lowerCamelCase = float(obj[1] ) + float(obj[3] ) / 2 __lowerCamelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(A__ ) labels.append(A__ ) return img_paths, labels def lowerCamelCase__ ( A__ : list , A__ : list , A__ : list[int] , A__ : tuple[int, int] , A__ : tuple[float, float] , A__ : float = 0.0 , ): '''simple docstring''' __lowerCamelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowerCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase = int(scale_x * output_size[1] ) __lowerCamelCase = int(scale_y * output_size[0] ) __lowerCamelCase = [] __lowerCamelCase = [] for i, index in enumerate(A__ ): __lowerCamelCase = all_img_list[index] path_list.append(A__ ) __lowerCamelCase = all_annos[index] __lowerCamelCase = cva.imread(A__ ) if i == 0: # top-left __lowerCamelCase = cva.resize(A__ , (divid_point_x, divid_point_y) ) __lowerCamelCase = img for bbox in img_annos: __lowerCamelCase = bbox[1] * scale_x __lowerCamelCase = bbox[2] * scale_y __lowerCamelCase = bbox[3] * scale_x __lowerCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowerCamelCase = cva.resize(A__ , (output_size[1] - divid_point_x, divid_point_y) ) __lowerCamelCase = img for bbox in img_annos: __lowerCamelCase = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase = bbox[2] * scale_y __lowerCamelCase = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowerCamelCase = cva.resize(A__ , (divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase = img for bbox in img_annos: __lowerCamelCase = bbox[1] * scale_x __lowerCamelCase = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase = bbox[3] * scale_x __lowerCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowerCamelCase = cva.resize( A__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase = img for bbox in img_annos: __lowerCamelCase = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowerCamelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCamelCase__ ( A__ : int ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase = ascii_lowercase + digits return "".join(random.choice(A__ ) for _ in range(A__ ) ) if __name__ == "__main__": main() print('DONE ✅')
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import heapq def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' __lowerCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __lowerCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __lowerCamelCase = heapq.heappop(A__ )[1][0] chosen_vertices.add(A__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __lowerCamelCase = elem[1][1].index(A__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'distilbert' UpperCAmelCase__ : List[str] = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self: int , UpperCamelCase_: Any=3_05_22 , UpperCamelCase_: Optional[Any]=5_12 , UpperCamelCase_: List[Any]=False , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Optional[Any]=12 , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Union[str, Any]=4 * 7_68 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: int=0.02 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Tuple=0.2 , UpperCamelCase_: Any=0 , **UpperCamelCase_: List[str] , ): __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = sinusoidal_pos_embds __lowerCamelCase = n_layers __lowerCamelCase = n_heads __lowerCamelCase = dim __lowerCamelCase = hidden_dim __lowerCamelCase = dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation __lowerCamelCase = initializer_range __lowerCamelCase = qa_dropout __lowerCamelCase = seq_classif_dropout super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ ) class lowerCamelCase__( __lowerCamelCase): @property def lowerCAmelCase__ ( self: Tuple ): if self.task == "multiple-choice": __lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
from PIL import Image def lowerCamelCase__ ( A__ : Image , A__ : int ): '''simple docstring''' __lowerCamelCase = (259 * (level + 255)) / (255 * (259 - level)) def contrast(A__ : int ) -> int: return int(128 + factor * (c - 128) ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change contrast to 170 UpperCAmelCase_ = change_contrast(img, 170) cont_img.save('image_data/lena_high_contrast.png', format='png')
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Any , A__ : Optional[int] , A__ : str=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: Any ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Optional[Any] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.unet.config.in_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } UpperCAmelCase_ = { 'gpt-neox-20b': 2_048, } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self: List[str] , UpperCamelCase_: int=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Dict=None , UpperCamelCase_: str="<|endoftext|>" , UpperCamelCase_: Any="<|endoftext|>" , UpperCamelCase_: Optional[Any]="<|endoftext|>" , UpperCamelCase_: int=False , **UpperCamelCase_: Optional[Any] , ): super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase_ ) != add_prefix_space: __lowerCamelCase = getattr(UpperCamelCase_ , pre_tok_state.pop("""type""" ) ) __lowerCamelCase = add_prefix_space __lowerCamelCase = pre_tok_class(**UpperCamelCase_ ) __lowerCamelCase = add_prefix_space def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): __lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: "Conversation" ): __lowerCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: __lowerCamelCase = input_ids[-self.model_max_length :] return input_ids
29
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
1
import math def lowerCamelCase__ ( A__ : int ): '''simple docstring''' assert isinstance(A__ , A__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowerCamelCase = range(3 , int(math.sqrt(A__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowerCamelCase__ ( A__ : Optional[int] , A__ : Union[str, Any]=1 , **A__ : Dict ): '''simple docstring''' __lowerCamelCase = factor * value __lowerCamelCase = value while not is_prime(A__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **A__ ) return value
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCAmelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCamelCase__ ( A__ : List[Any] , A__ : Optional[int] , A__ : str , A__ : Union[str, Any] , A__ : List[Any] ): '''simple docstring''' for attribute in key.split(""".""" ): __lowerCamelCase = getattr(A__ , A__ ) if weight_type is not None: __lowerCamelCase = getattr(A__ , A__ ).shape else: __lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCamelCase__ ( A__ : Dict , A__ : str ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == """group""" , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(A__ )[0].split(""".""" )[-2] __lowerCamelCase = mapped_key.replace("""*""" , A__ ) if "weight_g" in name: __lowerCamelCase = """weight_g""" elif "weight_v" in name: __lowerCamelCase = """weight_v""" elif "bias" in name and "relative_attention_bias" not in name: __lowerCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCamelCase = """weight""" else: __lowerCamelCase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowerCamelCase__ ( A__ : Any , A__ : int , A__ : str , A__ : Optional[int] , A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = full_name.split("""conv_layers.""" )[-1] __lowerCamelCase = name.split(""".""" ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowerCamelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowerCamelCase = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowerCamelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowerCamelCase = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(A__ ) @torch.no_grad() def lowerCamelCase__ ( A__ : Dict , A__ : int , A__ : List[str]=None ): '''simple docstring''' __lowerCamelCase = torch.load(A__ ) __lowerCamelCase = WavLMConfigOrig(checkpoint["""cfg"""] ) __lowerCamelCase = WavLMOrig(A__ ) model.load_state_dict(checkpoint["""model"""] ) model.eval() if config_path is not None: __lowerCamelCase = WavLMConfig.from_pretrained(A__ ) else: __lowerCamelCase = WavLMConfig() __lowerCamelCase = WavLMModel(A__ ) recursively_load_weights(A__ , A__ ) hf_wavlm.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCAmelCase_ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MaskFormerFeatureExtractor'] UpperCAmelCase_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCAmelCase_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return 1.0 / (1.0 + np.exp(-_outputs )) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = np.max(_outputs , axis=-1 , keepdims=A__ ) __lowerCamelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=A__ ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = 'sigmoid' UpperCAmelCase__ : Union[str, Any] = 'softmax' UpperCAmelCase__ : List[str] = 'none' @add_end_docstrings( __lowerCamelCase , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Tuple = ClassificationFunction.NONE def __init__( self: Dict , **UpperCamelCase_: Any ): super().__init__(**UpperCamelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: str=None , UpperCamelCase_: Union[str, Any]="" , **UpperCamelCase_: Union[str, Any] ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __lowerCamelCase = tokenizer_kwargs __lowerCamelCase = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: __lowerCamelCase = self.model.config.return_all_scores if isinstance(UpperCamelCase_ , UpperCamelCase_ ) or top_k is None: __lowerCamelCase = top_k __lowerCamelCase = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , UpperCamelCase_ , ) if return_all_scores: __lowerCamelCase = None else: __lowerCamelCase = 1 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCamelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self: Dict , *UpperCamelCase_: Any , **UpperCamelCase_: int ): __lowerCamelCase = super().__call__(*UpperCamelCase_ , **UpperCamelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCamelCase = """top_k""" not in kwargs if isinstance(args[0] , UpperCamelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int , **UpperCamelCase_: Any ): __lowerCamelCase = self.framework if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.tokenizer(**UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1 and isinstance(inputs[0] , UpperCamelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict ): return self.model(**UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any , UpperCamelCase_: List[str]=None , UpperCamelCase_: Dict=1 , UpperCamelCase_: str=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCamelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCamelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: __lowerCamelCase = self.model.config.function_to_apply else: __lowerCamelCase = ClassificationFunction.NONE __lowerCamelCase = model_outputs["""logits"""][0] __lowerCamelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCamelCase = sigmoid(UpperCamelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCamelCase = softmax(UpperCamelCase_ ) elif function_to_apply == ClassificationFunction.NONE: __lowerCamelCase = outputs else: raise ValueError(F'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCamelCase = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(UpperCamelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k is not None: __lowerCamelCase = dict_scores[:top_k] return dict_scores
29
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowerCamelCase__ ( A__ : int , A__ : int , A__ : int , A__ : int , A__ : int , A__ : int ): '''simple docstring''' if (ksize % 2) == 0: __lowerCamelCase = ksize + 1 __lowerCamelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A__ ): for x in range(A__ ): # distance from center __lowerCamelCase = x - ksize // 2 __lowerCamelCase = y - ksize // 2 # degree to radiant __lowerCamelCase = theta / 180 * np.pi __lowerCamelCase = np.cos(_theta ) __lowerCamelCase = np.sin(_theta ) # get kernel x __lowerCamelCase = cos_theta * px + sin_theta * py # get kernel y __lowerCamelCase = -sin_theta * px + cos_theta * py # fill kernel __lowerCamelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image UpperCAmelCase_ = imread('../image_data/lena.jpg') # turn image in gray scale value UpperCAmelCase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges UpperCAmelCase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: UpperCAmelCase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) UpperCAmelCase_ = out / out.max() * 255 UpperCAmelCase_ = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Dict = ['pixel_values'] def __init__( self: Dict , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: bool = True , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = size if size is not None else {"""shortest_edge""": 2_24} __lowerCamelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __lowerCamelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} __lowerCamelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ , param_name="""crop_size""" ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCamelCase = do_convert_rgb def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Union[str, Any] , ): __lowerCamelCase = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __lowerCamelCase = get_resize_output_image_size(UpperCamelCase_ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple , ): __lowerCamelCase = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(UpperCamelCase_ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[int, float] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Optional[Any] , ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: int , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: int = None , UpperCamelCase_: bool = None , UpperCamelCase_: float = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(UpperCamelCase_ , param_name="""size""" , default_to_square=UpperCamelCase_ ) __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(UpperCamelCase_ , param_name="""crop_size""" , default_to_square=UpperCamelCase_ ) __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCamelCase = [convert_to_rgb(UpperCamelCase_ ) for image in images] # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: Optional[int] ): warnings.warn( """The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ImageGPTImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' for shard in shards: for i in range(A__ ): yield {"i": i, "shard": shard} def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(os.environ["""RANK"""] ) __lowerCamelCase = int(os.environ["""WORLD_SIZE"""] ) __lowerCamelCase = ArgumentParser() parser.add_argument("""--streaming""" , type=A__ ) parser.add_argument("""--local_rank""" , type=A__ ) parser.add_argument("""--num_workers""" , type=A__ , default=0 ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.streaming __lowerCamelCase = args.num_workers __lowerCamelCase = {"""shards""": [f'shard_{shard_idx}' for shard_idx in range(A__ )]} __lowerCamelCase = IterableDataset.from_generator(A__ , gen_kwargs=A__ ) if not streaming: __lowerCamelCase = Dataset.from_list(list(A__ ) ) __lowerCamelCase = split_dataset_by_node(A__ , rank=A__ , world_size=A__ ) __lowerCamelCase = torch.utils.data.DataLoader(A__ , num_workers=A__ ) __lowerCamelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowerCamelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowerCamelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
29
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from math import factorial, radians def lowerCamelCase__ ( A__ : float , A__ : int = 18 , A__ : int = 10 ): '''simple docstring''' __lowerCamelCase = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowerCamelCase = radians(A__ ) __lowerCamelCase = angle_in_radians __lowerCamelCase = 3 __lowerCamelCase = -1 for _ in range(A__ ): result += (b * (angle_in_radians**a)) / factorial(A__ ) __lowerCamelCase = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(A__ , A__ ) if __name__ == "__main__": __import__('doctest').testmod()
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = CLIPTokenizer UpperCAmelCase__ : Optional[int] = CLIPTokenizerFast UpperCAmelCase__ : Dict = True UpperCAmelCase__ : str = {} UpperCAmelCase__ : List[str] = False def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() # fmt: off __lowerCamelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] __lowerCamelCase = {"""unk_token""": """<unk>"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[Any] , **UpperCamelCase_: Dict ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ): __lowerCamelCase = """lower newer""" __lowerCamelCase = """lower newer""" return input_text, output_text def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCamelCase = """lower newer""" __lowerCamelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @require_ftfy def lowerCAmelCase__ ( self: Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowerCamelCase = """xa\u0303y""" + """ """ + """x\xe3y""" __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of space type __lowerCamelCase = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Test that the tokenization is identical on unicode of line break type __lowerCamelCase = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowerCamelCase = tokenizer_s.tokenize(UpperCamelCase_ ) __lowerCamelCase = tokenizer_r.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowerCamelCase = F'{text_of_1_token} {text_of_1_token}' __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) __lowerCamelCase = F' {text}' __lowerCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , ) __lowerCamelCase = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) def lowerCAmelCase__ ( self: str ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(UpperCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowerCAmelCase__ ( self: Union[str, Any] ): super().test_tokenization_python_rust_equals() def lowerCAmelCase__ ( self: Any ): # CLIP always lower cases letters pass
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , *UpperCamelCase_: Optional[int] , **UpperCamelCase_: int ): warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'trajectory_transformer' UpperCAmelCase__ : int = ['past_key_values'] UpperCAmelCase__ : Tuple = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: Optional[Any] , UpperCamelCase_: str=1_00 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=1 , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Union[str, Any]=2_49 , UpperCamelCase_: Union[str, Any]=6 , UpperCamelCase_: Dict=17 , UpperCamelCase_: str=25 , UpperCamelCase_: str=4 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: List[str]=1_28 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=0.0006 , UpperCamelCase_: int=5_12 , UpperCamelCase_: str=0.02 , UpperCamelCase_: str=1E-12 , UpperCamelCase_: int=1 , UpperCamelCase_: int=True , UpperCamelCase_: int=1 , UpperCamelCase_: List[str]=5_02_56 , UpperCamelCase_: List[Any]=5_02_56 , **UpperCamelCase_: str , ): __lowerCamelCase = vocab_size __lowerCamelCase = action_weight __lowerCamelCase = reward_weight __lowerCamelCase = value_weight __lowerCamelCase = max_position_embeddings __lowerCamelCase = block_size __lowerCamelCase = action_dim __lowerCamelCase = observation_dim __lowerCamelCase = transition_dim __lowerCamelCase = learning_rate __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = n_embd __lowerCamelCase = embd_pdrop __lowerCamelCase = attn_pdrop __lowerCamelCase = resid_pdrop __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = kaiming_initializer_range __lowerCamelCase = use_cache super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any]=13 , UpperCamelCase_: Optional[int]=7 , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: List[Any]=99 , UpperCamelCase_: Any=32 , UpperCamelCase_: int=5 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: Union[str, Any]=37 , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Dict=50 , UpperCamelCase_: str=0.02 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: str=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = use_labels __lowerCamelCase = scope def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self: Tuple ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Any ): ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = self.prepare_config_and_inputs() __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Any , UpperCamelCase_: Tuple , **UpperCamelCase_: Tuple , ): __lowerCamelCase = BertGenerationEncoder(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , **UpperCamelCase_: Optional[Any] , ): __lowerCamelCase = True __lowerCamelCase = BertGenerationEncoder(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , **UpperCamelCase_: Optional[Any] , ): __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = BertGenerationDecoder(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval() # first forward pass __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) __lowerCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["""hidden_states"""][0] __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )["""hidden_states"""][0] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: str , UpperCamelCase_: List[Any] , *UpperCamelCase_: str , ): __lowerCamelCase = BertGenerationDecoder(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Any = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase__ : List[Any] = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = BertGenerationEncoderTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = """bert""" self.model_tester.create_and_check_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): # This regression test was failing with PyTorch < 1.3 ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase = None self.model_tester.create_and_check_model_as_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: str ): __lowerCamelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch class lowerCamelCase__( unittest.TestCase): @slow def lowerCAmelCase__ ( self: int ): __lowerCamelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) __lowerCamelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ )[0] __lowerCamelCase = torch.Size([1, 8, 10_24] ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @require_torch class lowerCamelCase__( unittest.TestCase): @slow def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) __lowerCamelCase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] ) with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ )[0] __lowerCamelCase = torch.Size([1, 8, 5_03_58] ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): # A mock response for an HTTP head request to emulate server down __lowerCamelCase = mock.Mock() __lowerCamelCase = 5_00 __lowerCamelCase = {} __lowerCamelCase = HTTPError __lowerCamelCase = {} # Download this model to make sure it's in the cache. __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase_ ) as mock_head: __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self: List[str] ): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[int] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: List[str] ): try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def lowerCAmelCase__ ( self: str ): __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="""test-feature-extractor""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Dict ): CustomFeatureExtractor.register_for_auto_class() __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCamelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__( unittest.TestCase): def __init__( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: str=3 , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Dict=10 , UpperCamelCase_: Union[str, Any]=[10, 20, 30, 40] , UpperCamelCase_: Dict=[1, 1, 2, 1] , UpperCamelCase_: int=True , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Union[str, Any]="relu" , UpperCamelCase_: List[str]=3 , UpperCamelCase_: List[str]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = self.get_config() return config, pixel_values def lowerCAmelCase__ ( self: List[Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Dict ): __lowerCamelCase = FlaxRegNetModel(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = FlaxRegNetForImageClassification(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[str] = False def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = FlaxRegNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase__ ( self: Union[str, Any] ): return def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: Optional[int] ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase__ ( self: str ): pass def lowerCAmelCase__ ( self: int ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): def check_hidden_states_output(UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict ): __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 ) __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , **UpperCamelCase_: str ): return model(pixel_values=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class lowerCamelCase__( unittest.TestCase): @cached_property def lowerCAmelCase__ ( self: Union[str, Any] ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""np""" ) __lowerCamelCase = model(**UpperCamelCase_ ) # verify the logits __lowerCamelCase = (1, 10_00) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) )
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCamelCase__: def __init__( self: Any , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=13 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Tuple=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Dict=99 , UpperCamelCase_: Union[str, Any]=64 , UpperCamelCase_: Dict=32 , UpperCamelCase_: Union[str, Any]=5 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Any=37 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Optional[int]=5_12 , UpperCamelCase_: str=16 , UpperCamelCase_: Dict=2 , UpperCamelCase_: List[str]=0.02 , UpperCamelCase_: List[str]=3 , UpperCamelCase_: str=4 , UpperCamelCase_: str=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = embedding_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self: List[str] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = MegatronBertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = MegatronBertForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = MegatronBertForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: int , UpperCamelCase_: str ): __lowerCamelCase = MegatronBertForNextSentencePrediction(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] ): __lowerCamelCase = MegatronBertForPreTraining(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , next_sentence_label=UpperCamelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] ): __lowerCamelCase = MegatronBertForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = self.num_labels __lowerCamelCase = MegatronBertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = MegatronBertForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ): __lowerCamelCase = self.num_choices __lowerCamelCase = MegatronBertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = config_and_inputs __lowerCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = True # test_resize_embeddings = False UpperCAmelCase__ : List[str] = False def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str=False ): __lowerCamelCase = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class in get_values(UpperCamelCase_ ): __lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ ) __lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MegatronBertModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCamelCase_ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return torch.tensor( A__ , dtype=torch.long , device=A__ , ) UpperCAmelCase_ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__( unittest.TestCase): @slow @unittest.skip("""Model is not available.""" ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: __lowerCamelCase = os.path.join(os.environ["""MYDIR"""] , UpperCamelCase_ ) __lowerCamelCase = MegatronBertModel.from_pretrained(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.half() __lowerCamelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ )[0] __lowerCamelCase = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowerCamelCase = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __lowerCamelCase = output[0, ii, jj] __lowerCamelCase = expected[3 * ii + jj] __lowerCamelCase = """ii={} jj={} a={} b={}""".format(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(math.isclose(UpperCamelCase_ , UpperCamelCase_ , rel_tol=UpperCamelCase_ , abs_tol=UpperCamelCase_ ) , msg=UpperCamelCase_ )
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Optional[int] = ['image_processor', 'tokenizer'] UpperCAmelCase__ : Union[str, Any] = 'ViTImageProcessor' UpperCAmelCase__ : Dict = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self: Union[str, Any] , UpperCamelCase_: str=None , UpperCamelCase_: List[str]=None , **UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , UpperCamelCase_ , ) __lowerCamelCase = kwargs.pop("""feature_extractor""" ) __lowerCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(UpperCamelCase_ , UpperCamelCase_ ) def __call__( self: Dict , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Any=None , UpperCamelCase_: Dict=None , UpperCamelCase_: str=None , **UpperCamelCase_: str ): if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""" ) if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" ) if text is not None: __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if visual_prompt is not None: __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if images is not None: __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) if visual_prompt is not None and images is not None: __lowerCamelCase = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __lowerCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __lowerCamelCase = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_ ) , tensor_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , *UpperCamelCase_: Tuple , **UpperCamelCase_: Optional[int] ): return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Optional[int] ): return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCamelCase_ , ) return self.image_processor_class @property def lowerCAmelCase__ ( self: Optional[int] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCamelCase_ , ) return self.image_processor
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1