code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Union[str, Any]=0.999 , lowercase__ : Any="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) lowerCAmelCase_ : Any = [] for i in range(lowercase__ ): lowerCAmelCase_ : int = i / num_diffusion_timesteps lowerCAmelCase_ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class __a ( __UpperCamelCase ,__UpperCamelCase ): @register_to_config def __init__( self : int , UpperCAmelCase : int = 10_00 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) lowerCAmelCase_ : Optional[Any] = betas_for_alpha_bar(UpperCAmelCase ) lowerCAmelCase_ : int = 1.0 - self.betas lowerCAmelCase_ : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase_ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase_ : Optional[int] = 1.0 # setable values lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) lowerCAmelCase_ : Tuple = variance_type def A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase_ : List[Any] = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: lowerCAmelCase_ : Any = t - 1 lowerCAmelCase_ : int = self.alphas_cumprod[t] lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase_ : Tuple = 1 - alpha_prod_t lowerCAmelCase_ : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase_ : Tuple = self.betas[t] else: lowerCAmelCase_ : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase_ : Any = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase_ : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase_ : Dict = torch.log(torch.clamp(UpperCAmelCase , min=1e-2_0 ) ) lowerCAmelCase_ : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase_ : Optional[int] = variance.log() lowerCAmelCase_ : int = beta.log() lowerCAmelCase_ : Optional[int] = (predicted_variance + 1) / 2 lowerCAmelCase_ : Tuple = frac * max_log + (1 - frac) * min_log return variance def A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str=None , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase_ : Union[str, Any] = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: lowerCAmelCase_ : Tuple = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase_ : Optional[Any] = t - 1 lowerCAmelCase_ : str = self.alphas_cumprod[t] lowerCAmelCase_ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase_ : Optional[Any] = 1 - alpha_prod_t lowerCAmelCase_ : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase_ : Any = self.betas[t] lowerCAmelCase_ : Optional[int] = self.alphas[t] else: lowerCAmelCase_ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase_ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase_ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase_ : Dict = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase_ : Optional[Any] = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase_ : str = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase_ : str = 0 if t > 0: lowerCAmelCase_ : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) lowerCAmelCase_ : Any = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": lowerCAmelCase_ : int = variance elif self.variance_type == "learned_range": lowerCAmelCase_ : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) lowerCAmelCase_ : Optional[int] = variance * variance_noise lowerCAmelCase_ : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Tuple , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase_ : Tuple = timesteps.to(original_samples.device ) lowerCAmelCase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase_ : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase_ : Tuple = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase_ : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase_ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase_ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCAmelCase = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
import torch from torch import nn class __a ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Tuple=False ): super().__init__() lowerCAmelCase_ : Optional[Any] = n_token lowerCAmelCase_ : int = d_embed lowerCAmelCase_ : Any = d_proj lowerCAmelCase_ : str = cutoffs + [n_token] lowerCAmelCase_ : Optional[Any] = [0] + self.cutoffs lowerCAmelCase_ : Union[str, Any] = div_val lowerCAmelCase_ : Optional[Any] = self.cutoffs[0] lowerCAmelCase_ : List[Any] = len(self.cutoffs ) - 1 lowerCAmelCase_ : List[Any] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase_ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase_ : List[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase_ : Tuple = nn.ModuleList() lowerCAmelCase_ : Any = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) else: self.out_projs.append(UpperCAmelCase ) self.out_layers.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase_ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ : List[str] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCAmelCase , UpperCAmelCase ) ) ) self.out_layers.append(nn.Linear(UpperCAmelCase , r_idx - l_idx ) ) lowerCAmelCase_ : Optional[int] = keep_order def A ( self : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Any ): if proj is None: lowerCAmelCase_ : List[Any] = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase_ : int = nn.functional.linear(UpperCAmelCase , proj.t().contiguous() ) lowerCAmelCase_ : Tuple = nn.functional.linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=False ): if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase_ : int = hidden[..., :-1, :].contiguous() lowerCAmelCase_ : int = labels[..., 1:].contiguous() lowerCAmelCase_ : Optional[int] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase_ : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: lowerCAmelCase_ : int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase_ : Union[str, Any] = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase_ : Union[str, Any] = labels != -1_00 lowerCAmelCase_ : Optional[Any] = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase_ : Dict = ( -nn.functional.log_softmax(UpperCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase_ : int = nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowerCAmelCase_ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase_ : Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase_ : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase_ : List[str] = self.out_layers[i].weight lowerCAmelCase_ : Tuple = self.out_layers[i].bias if i == 0: lowerCAmelCase_ : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase_ : str = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowerCAmelCase_ : Any = weights[0], biases[0], self.out_projs[0] lowerCAmelCase_ : Optional[Any] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Dict = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) if labels is None: lowerCAmelCase_ : Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase_ : Dict = torch.zeros_like(UpperCAmelCase , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Tuple = [0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowerCAmelCase_ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase_ : Union[str, Any] = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase_ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase_ : List[str] = labels.index_select(0 , UpperCAmelCase ) - l_idx lowerCAmelCase_ : Optional[Any] = head_logprob.index_select(0 , UpperCAmelCase ) lowerCAmelCase_ : Dict = hidden.index_select(0 , UpperCAmelCase ) else: lowerCAmelCase_ : Optional[Any] = hidden if i == 0: if labels is not None: lowerCAmelCase_ : List[str] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase_ : str = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase_ : Optional[Any] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase_ : int = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowerCAmelCase_ : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase_ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase_ : Optional[Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase_ : Optional[Any] = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A ( self : Optional[int] , UpperCAmelCase : List[Any] ): if self.n_clusters == 0: lowerCAmelCase_ : Optional[int] = self._compute_logit(UpperCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) else: # construct weights and biases lowerCAmelCase_ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase_ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase_ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase_ : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase_ : Union[str, Any] = self.out_layers[i].weight lowerCAmelCase_ : Dict = self.out_layers[i].bias if i == 0: lowerCAmelCase_ : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase_ : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCAmelCase ) biases.append(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase_ : Optional[Any] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Any = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase_ : Dict = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowerCAmelCase_ : Dict = [0] + self.cutoffs for i in range(len(UpperCAmelCase ) - 1 ): lowerCAmelCase_ : Tuple = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase_ : str = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase_ : Dict = weights[i], biases[i], self.out_projs[i] lowerCAmelCase_ : Optional[int] = self._compute_logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = nn.functional.log_softmax(UpperCAmelCase , dim=1 ) lowerCAmelCase_ : Optional[int] = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase_ : List[str] = logprob_i return out
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , """decord""" ) self.check_model_type(UpperCAmelCase ) def A ( self : Tuple , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=None ): lowerCAmelCase_ : List[str] = {} if frame_sampling_rate is not None: lowerCAmelCase_ : str = frame_sampling_rate if num_frames is not None: lowerCAmelCase_ : Tuple = num_frames lowerCAmelCase_ : Dict = {} if top_k is not None: lowerCAmelCase_ : int = top_k return preprocess_params, {}, postprocess_params def __call__( self : Dict , UpperCAmelCase : Union[str, List[str]] , **UpperCAmelCase : Dict ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=1 ): if num_frames is None: lowerCAmelCase_ : Optional[int] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowerCAmelCase_ : Union[str, Any] = BytesIO(requests.get(UpperCAmelCase ).content ) lowerCAmelCase_ : Any = VideoReader(UpperCAmelCase ) videoreader.seek(0 ) lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Union[str, Any] = num_frames * frame_sampling_rate - 1 lowerCAmelCase_ : Optional[int] = np.linspace(UpperCAmelCase , UpperCAmelCase , num=UpperCAmelCase , dtype=np.intaa ) lowerCAmelCase_ : Optional[Any] = videoreader.get_batch(UpperCAmelCase ).asnumpy() lowerCAmelCase_ : List[str] = list(UpperCAmelCase ) lowerCAmelCase_ : Any = self.image_processor(UpperCAmelCase , return_tensors=self.framework ) return model_inputs def A ( self : Dict , UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : Tuple = self.model(**UpperCAmelCase ) return model_outputs def A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : int=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase_ : Optional[int] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ : Any = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase_ : Union[str, Any] = probs.topk(UpperCAmelCase ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowerCAmelCase_ : List[Any] = scores.tolist() lowerCAmelCase_ : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
import math class __a : def __init__( self : Optional[int] , UpperCAmelCase : Any=0 ): # a graph with Node 0,1,...,N-1 lowerCAmelCase_ : List[str] = n lowerCAmelCase_ : Any = [ [math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase ) ] # adjacency matrix for weight lowerCAmelCase_ : int = [ [math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : Union[str, Any] = w def A ( self : Optional[Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): return self.dp[u][v] if __name__ == "__main__": __UpperCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase = 5_00_00 __UpperCAmelCase = 50_00 __UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__) __UpperCAmelCase = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : str ) -> Dict: '''simple docstring''' for i in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = dataset[i] @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : List[Any] , lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' for i in range(0 , len(lowercase__ ) , lowercase__ ): lowerCAmelCase_ : List[str] = dataset[i : i + batch_size] @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) -> str: '''simple docstring''' with dataset.formatted_as(type=lowercase__ ): for i in range(lowercase__ ): lowerCAmelCase_ : Optional[int] = dataset[i] @get_duration def __UpperCamelCase ( lowercase__ : datasets.Dataset , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' with dataset.formatted_as(type=lowercase__ ): for i in range(0 , lowercase__ , lowercase__ ): lowerCAmelCase_ : Union[str, Any] = dataset[i : i + batch_size] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = {"""num examples""": SPEED_TEST_N_EXAMPLES} lowerCAmelCase_ : Tuple = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] lowerCAmelCase_ : Union[str, Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) lowerCAmelCase_ : Any = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) lowerCAmelCase_ : str = generate_example_dataset( os.path.join(lowercase__ , """dataset.arrow""" ) , lowercase__ , num_examples=lowercase__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = func(lowercase__ , **lowercase__ ) print("""shuffling dataset""" ) lowerCAmelCase_ : Tuple = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(lowercase__ ) ) lowerCAmelCase_ : Optional[int] = func( lowercase__ , **lowercase__ ) with open(lowercase__ , """wb""" ) as f: f.write(json.dumps(lowercase__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
from __future__ import annotations from collections.abc import Callable __UpperCAmelCase = list[list[float | int]] def __UpperCamelCase ( lowercase__ : Matrix , lowercase__ : Matrix ) -> Matrix: '''simple docstring''' lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(lowercase__ )] lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float for row in range(lowercase__ ): for col in range(lowercase__ ): lowerCAmelCase_ : Tuple = matrix[row][col] lowerCAmelCase_ : Union[str, Any] = vector[row][0] lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : str = 0 while row < size and col < size: # pivoting lowerCAmelCase_ : Optional[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(lowercase__ , lowercase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase_ : Optional[int] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , lowercase__ ): lowerCAmelCase_ : str = augmented[rowa][col] / augmented[row][col] lowerCAmelCase_ : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , lowercase__ ): for row in range(lowercase__ ): lowerCAmelCase_ : List[Any] = augmented[row][col] / augmented[col][col] for cola in range(lowercase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(lowercase__ ) ] def __UpperCamelCase ( lowercase__ : list[int] ) -> Callable[[int], int]: '''simple docstring''' lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : Matrix = [[0 for _ in range(lowercase__ )] for _ in range(lowercase__ )] lowerCAmelCase_ : Matrix = [[0] for _ in range(lowercase__ )] lowerCAmelCase_ : Matrix lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : int for x_val, y_val in enumerate(lowercase__ ): for col in range(lowercase__ ): lowerCAmelCase_ : Tuple = (x_val + 1) ** (size - col - 1) lowerCAmelCase_ : Any = y_val lowerCAmelCase_ : Optional[Any] = solve(lowercase__ , lowercase__ ) def interpolated_func(lowercase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(lowercase__ ) ) return interpolated_func def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __UpperCamelCase ( lowercase__ : Callable[[int], int] = question_function , lowercase__ : int = 10 ) -> int: '''simple docstring''' lowerCAmelCase_ : list[int] = [func(lowercase__ ) for x_val in range(1 , order + 1 )] lowerCAmelCase_ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Callable[[int], int] lowerCAmelCase_ : int for poly in polynomials: lowerCAmelCase_ : int = 1 while func(lowercase__ ) == poly(lowercase__ ): x_val += 1 ret += poly(lowercase__ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" from math import factorial def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : float ) -> float: '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCAmelCase_ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCAmelCase_ : List[Any] = float(factorial(lowercase__ ) ) coefficient /= factorial(lowercase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello world! cécé herlolip' def __UpperCamelCase ( lowercase__ : str , lowercase__ : str , lowercase__ : bool ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowercase__ ) roberta.eval() # disable dropout lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.sentence_encoder lowerCAmelCase_ : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCAmelCase_ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowercase__ ) lowerCAmelCase_ : Any = XLMRobertaXLForSequenceClassification(lowercase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowercase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ : List[str] = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ : Dict = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ : Optional[int] = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ : BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase_ : RobertaAttention = layer.attention lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ : Tuple = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ : Dict = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ : List[str] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ : int = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ : List[str] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ : Tuple = roberta_layer.final_layer_norm.weight lowerCAmelCase_ : Dict = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : List[str] = roberta_layer.fca.weight lowerCAmelCase_ : Optional[int] = roberta_layer.fca.bias # output lowerCAmelCase_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : Dict = roberta_layer.fca.weight lowerCAmelCase_ : Any = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase_ : Any = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase_ : List[str] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.weight lowerCAmelCase_ : int = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ : torch.Tensor = roberta.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ : str = model(lowercase__ )[0] if classification_head: lowerCAmelCase_ : str = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowercase__ ) ) else: lowerCAmelCase_ : Any = roberta.model(lowercase__ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowerCAmelCase_ : Optional[int] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ : Optional[int] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase_ : Any = 4 lowerCAmelCase_ : Tuple = 48 lowerCAmelCase_ : Any = """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ : Any = [6, 6, 6, 6] lowerCAmelCase_ : Tuple = 60 lowerCAmelCase_ : int = [6, 6, 6, 6] lowerCAmelCase_ : List[Any] = """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ : Optional[Any] = 4 lowerCAmelCase_ : Optional[Any] = """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : List[Any] = 126 lowerCAmelCase_ : Optional[Any] = 7 lowerCAmelCase_ : List[Any] = 255.0 lowerCAmelCase_ : Any = """""" return config def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Dict ) -> List[Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase_ : Tuple = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase_ : List[str] = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCAmelCase_ : Tuple = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCAmelCase_ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase_ : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase_ : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase_ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCAmelCase_ : List[str] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCAmelCase_ : Tuple = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCAmelCase_ : Tuple = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCAmelCase_ : Optional[Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCAmelCase_ : Any = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCAmelCase_ : Optional[Any] = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase_ : str = """layernorm.bias""" if "conv_first" in name: lowerCAmelCase_ : str = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase_ : Optional[int] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase_ : int = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCAmelCase_ : Dict = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCAmelCase_ : Any = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCAmelCase_ : Optional[Any] = """upsample.""" + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase_ : Optional[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCAmelCase_ : Any = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCAmelCase_ : Dict = """swin2sr.""" + name return name def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : str ) -> int: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : Tuple = orig_state_dict.pop(lowercase__ ) if "qkv" in key: lowerCAmelCase_ : Tuple = key.split(""".""" ) lowerCAmelCase_ : str = int(key_split[1] ) lowerCAmelCase_ : Tuple = int(key_split[4] ) lowerCAmelCase_ : str = config.embed_dim if "weight" in key: lowerCAmelCase_ : Union[str, Any] = val[:dim, :] lowerCAmelCase_ : List[Any] = val[dim : dim * 2, :] lowerCAmelCase_ : int = val[-dim:, :] else: lowerCAmelCase_ : List[Any] = val[:dim] lowerCAmelCase_ : Optional[int] = val[dim : dim * 2] lowerCAmelCase_ : List[Any] = val[-dim:] pass else: lowerCAmelCase_ : Tuple = val return orig_state_dict def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] ) -> str: '''simple docstring''' lowerCAmelCase_ : List[str] = get_config(lowercase__ ) lowerCAmelCase_ : Any = SwinaSRForImageSuperResolution(lowercase__ ) model.eval() lowerCAmelCase_ : List[str] = torch.hub.load_state_dict_from_url(lowercase__ , map_location="""cpu""" ) lowerCAmelCase_ : List[Any] = convert_state_dict(lowercase__ , lowercase__ ) lowerCAmelCase_ : str = model.load_state_dict(lowercase__ , strict=lowercase__ ) if len(lowercase__ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowercase__ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase_ : Tuple = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" lowerCAmelCase_ : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("""RGB""" ) lowerCAmelCase_ : Dict = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase_ : Any = 126 if """Jpeg""" in checkpoint_url else 256 lowerCAmelCase_ : Optional[Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase_ : int = transforms(lowercase__ ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase_ : int = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase_ : int = model(lowercase__ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase_ : Optional[int] = torch.Size([1, 3, 512, 512] ) lowerCAmelCase_ : Optional[Any] = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ : List[Any] = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase_ : List[str] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ : str = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ : Tuple = torch.Size([1, 3, 512, 512] ) lowerCAmelCase_ : List[Any] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ : List[str] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , lowercase__ , atol=1E-3 ) print("""Looks ok!""" ) lowerCAmelCase_ : Tuple = { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } lowerCAmelCase_ : Dict = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase__ ) if push_to_hub: model.push_to_hub(f'caidas/{model_name}' ) processor.push_to_hub(f'caidas/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') __UpperCAmelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
import argparse import json import subprocess def __UpperCamelCase ( lowercase__ : int , lowercase__ : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : List[str] = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' """ https://api.github.com/repos/huggingface/transformers/actions/runners""" ) lowerCAmelCase_ : Tuple = subprocess.run(lowercase__ , shell=lowercase__ , stdout=subprocess.PIPE ) lowerCAmelCase_ : List[Any] = output.stdout.decode("""utf-8""" ) lowerCAmelCase_ : Optional[Any] = json.loads(lowercase__ ) lowerCAmelCase_ : Tuple = status["""runners"""] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase__ ) # save the result so we can report them on Slack with open("""offline_runners.txt""" , """w""" ) as fp: fp.write(json.dumps(lowercase__ ) ) if len(lowercase__ ) > 0: lowerCAmelCase_ : Optional[Any] = """\n""".join([x["""name"""] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def __UpperCamelCase ( lowercase__ : Tuple ) -> Any: '''simple docstring''' return values.split(""",""" ) __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--target_runners', default=None, type=list_str, required=True, help='Comma-separated list of runners to check status.', ) parser.add_argument( '--token', default=None, type=str, required=True, help='A token that has actions:read permission.' ) __UpperCAmelCase = parser.parse_args() get_runner_status(args.target_runners, args.token)
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCAmelCase = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Any = """albert""" def __init__( self : List[str] , UpperCAmelCase : List[str]=3_00_00 , UpperCAmelCase : Optional[int]=1_28 , UpperCAmelCase : Optional[int]=40_96 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : int=1 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : Dict=1_63_84 , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Optional[int]="gelu_new" , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Union[str, Any]=5_12 , UpperCAmelCase : Any=2 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Dict=1e-1_2 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int="absolute" , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Tuple=3 , **UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Optional[int] = embedding_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : List[str] = num_hidden_groups lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : str = inner_group_num lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : List[Any] = layer_norm_eps lowerCAmelCase_ : Any = classifier_dropout_prob lowerCAmelCase_ : Any = position_embedding_type class __a ( __UpperCamelCase ): @property def A ( self : List[Any] ): if self.task == "multiple-choice": lowerCAmelCase_ : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] , lowercase__ : int ) -> bool: '''simple docstring''' if len(lowercase__ ) == 0: return False lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() __UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')] __UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip()) __UpperCAmelCase = '' if binary_search(sequence, target) else 'not ' print(f"""{target} was {not_str}found in {sequence}""")
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
def __UpperCamelCase ( lowercase__ : float , lowercase__ : float ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(lowercase__ ) * abs(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __a ( __UpperCamelCase ): @staticmethod @abstractmethod def A ( UpperCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def A ( self : str ): raise NotImplementedError()
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class __a ( __UpperCamelCase ): __snake_case : Tuple = """distilbert""" __snake_case : Dict = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self : List[str] , UpperCAmelCase : Union[str, Any]=3_05_22 , UpperCAmelCase : Any=5_12 , UpperCAmelCase : int=False , UpperCAmelCase : str=6 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : str=7_68 , UpperCAmelCase : Optional[int]=4 * 7_68 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.2 , UpperCAmelCase : Optional[Any]=0 , **UpperCAmelCase : Tuple , ): lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : str = sinusoidal_pos_embds lowerCAmelCase_ : str = n_layers lowerCAmelCase_ : Optional[Any] = n_heads lowerCAmelCase_ : str = dim lowerCAmelCase_ : int = hidden_dim lowerCAmelCase_ : Any = dropout lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Dict = activation lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : Any = qa_dropout lowerCAmelCase_ : Optional[int] = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __a ( __UpperCamelCase ): @property def A ( self : Tuple ): if self.task == "multiple-choice": lowerCAmelCase_ : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } __UpperCAmelCase = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } __UpperCAmelCase = { 'ernie-m-base': 5_14, 'ernie-m-large': 5_14, } __UpperCAmelCase = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class __a ( __UpperCamelCase ): __snake_case : List[str] = ["input_ids"] __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : str = PRETRAINED_INIT_CONFIGURATION __snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = RESOURCE_FILES_NAMES def __init__( self : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=False , UpperCAmelCase : str="utf8" , UpperCAmelCase : str="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : int="[PAD]" , UpperCAmelCase : Optional[Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : str , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , vocab_file=UpperCAmelCase , encoding=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Union[str, Any] = sentencepiece_model_ckpt lowerCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase_ : Tuple = self.load_vocab(filepath=UpperCAmelCase ) else: lowerCAmelCase_ : int = {self.sp_model.id_to_piece(UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase_ : Dict = {v: k for k, v in self.vocab.items()} def A ( self : Dict , UpperCAmelCase : Optional[int] ): if text is None: return None lowerCAmelCase_ : List[str] = self.tokenize(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = """""", [] for i, ch in enumerate(UpperCAmelCase ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase_ : Union[str, Any] = self.SP_CHAR_MAPPING.get(UpperCAmelCase ) else: lowerCAmelCase_ : Optional[int] = unicodedata.normalize("""NFKC""" , UpperCAmelCase ) if self.is_whitespace(UpperCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCAmelCase ) ) lowerCAmelCase_ : str = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase_ : str = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase_ : str = token[1:] lowerCAmelCase_ : Dict = text[offset:].index(UpperCAmelCase ) + offset lowerCAmelCase_ : List[str] = start + len(UpperCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase_ : Optional[Any] = end return token_mapping @property def A ( self : Union[str, Any] ): return len(self.vocab ) def A ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : List[str] ): lowerCAmelCase_ : Tuple = self.__dict__.copy() lowerCAmelCase_ : Optional[int] = None return state def __setstate__( self : Optional[Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : int = {} lowerCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A ( self : Tuple , UpperCAmelCase : str ): return "".join((self.SP_CHAR_MAPPING.get(UpperCAmelCase , UpperCAmelCase ) for c in text) ) def A ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=64 , UpperCAmelCase : Dict=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: lowerCAmelCase_ : Optional[Any] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: lowerCAmelCase_ : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: lowerCAmelCase_ : int = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: lowerCAmelCase_ : Optional[int] = self.sp_model.EncodeAsPieces(UpperCAmelCase ) else: lowerCAmelCase_ : List[Any] = self.sp_model.SampleEncodeAsPieces(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [] for pi, piece in enumerate(UpperCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCAmelCase ) and pi != 0: new_pieces.append(UpperCAmelCase ) continue else: continue lowerCAmelCase_ : str = 0 for i, chunk in enumerate(UpperCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCAmelCase ) or self.is_punct(UpperCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCAmelCase ) lowerCAmelCase_ : List[str] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase_ : Union[str, Any] = i if len(UpperCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A ( self : str , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : Any = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip() return out_string def A ( self : Any , UpperCAmelCase : int ): lowerCAmelCase_ : str = self.convert_ids_to_tokens(UpperCAmelCase ) lowerCAmelCase_ : Any = """""".join(UpperCAmelCase ).replace(UpperCAmelCase , """ """ ).strip() return out_string def A ( self : List[str] , UpperCAmelCase : int ): return self.vocab.get(UpperCAmelCase , self.vocab.get(self.unk_token ) ) def A ( self : List[Any] , UpperCAmelCase : Tuple ): return self.reverse_vocab.get(UpperCAmelCase , self.unk_token ) def A ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] lowerCAmelCase_ : Tuple = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[int]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1] def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCAmelCase ) + 1) + [1] * (len(UpperCAmelCase ) + 3) def A ( self : Union[str, Any] , UpperCAmelCase : str ): if "\u4e00" <= char <= "\u9fff": return True return False def A ( self : Union[str, Any] , UpperCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A ( self : Any , UpperCAmelCase : List[str] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def A ( self : str , UpperCAmelCase : List[str] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCAmelCase ) == 1: lowerCAmelCase_ : Union[str, Any] = unicodedata.category(UpperCAmelCase ) if cat == "Zs": return True return False def A ( self : Dict , UpperCAmelCase : Dict ): lowerCAmelCase_ : List[Any] = {} with io.open(UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Union[str, Any] = line.rstrip("""\n""" ) lowerCAmelCase_ : str = int(UpperCAmelCase ) return token_to_idx def A ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Dict = 0 if os.path.isdir(UpperCAmelCase ): lowerCAmelCase_ : List[Any] = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCAmelCase_ : List[str] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' """ Please check that the vocabulary is not corrupted!""" ) lowerCAmelCase_ : List[str] = token_index writer.write(token + """\n""" ) index += 1 lowerCAmelCase_ : Optional[Any] = os.path.join(UpperCAmelCase , """sentencepiece.bpe.model""" ) with open(UpperCAmelCase , """wb""" ) as fi: lowerCAmelCase_ : int = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (vocab_file,)
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = SwinConfig() lowerCAmelCase_ : List[str] = swin_name.split("""_""" ) lowerCAmelCase_ : List[Any] = name_split[1] lowerCAmelCase_ : int = int(name_split[4] ) lowerCAmelCase_ : Any = int(name_split[3][-1] ) if model_size == "tiny": lowerCAmelCase_ : List[str] = 96 lowerCAmelCase_ : Optional[int] = (2, 2, 6, 2) lowerCAmelCase_ : Any = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase_ : Union[str, Any] = 96 lowerCAmelCase_ : Dict = (2, 2, 18, 2) lowerCAmelCase_ : str = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase_ : Dict = 128 lowerCAmelCase_ : Any = (2, 2, 18, 2) lowerCAmelCase_ : Optional[int] = (4, 8, 16, 32) else: lowerCAmelCase_ : Dict = 192 lowerCAmelCase_ : Dict = (2, 2, 18, 2) lowerCAmelCase_ : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: lowerCAmelCase_ : List[Any] = 21841 else: lowerCAmelCase_ : Dict = 1000 lowerCAmelCase_ : Any = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Tuple = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[Any] = idalabel lowerCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = img_size lowerCAmelCase_ : Any = num_classes lowerCAmelCase_ : Tuple = embed_dim lowerCAmelCase_ : str = depths lowerCAmelCase_ : Any = num_heads lowerCAmelCase_ : Tuple = window_size return config def __UpperCamelCase ( lowercase__ : List[str] ) -> List[str]: '''simple docstring''' if "patch_embed.proj" in name: lowerCAmelCase_ : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: lowerCAmelCase_ : Union[str, Any] = """encoder.""" + name if "attn.proj" in name: lowerCAmelCase_ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase_ : int = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase_ : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase_ : int = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase_ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": lowerCAmelCase_ : Optional[int] = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase_ : Optional[Any] = """layernorm.bias""" if "head" in name: lowerCAmelCase_ : Any = name.replace("""head""" , """classifier""" ) else: lowerCAmelCase_ : Union[str, Any] = """swin.""" + name return name def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any ) -> Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : Any = orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase_ : int = key.split(""".""" ) lowerCAmelCase_ : int = int(key_split[1] ) lowerCAmelCase_ : Union[str, Any] = int(key_split[3] ) lowerCAmelCase_ : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase_ : Optional[int] = val[:dim, :] lowerCAmelCase_ : str = val[ dim : dim * 2, : ] lowerCAmelCase_ : Optional[Any] = val[-dim:, :] else: lowerCAmelCase_ : Optional[Any] = val[ :dim ] lowerCAmelCase_ : Tuple = val[ dim : dim * 2 ] lowerCAmelCase_ : Optional[Any] = val[ -dim: ] else: lowerCAmelCase_ : Tuple = val return orig_state_dict def __UpperCamelCase ( lowercase__ : str , lowercase__ : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() lowerCAmelCase_ : Optional[int] = get_swin_config(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = SwinForImageClassification(lowercase__ ) model.eval() lowerCAmelCase_ : Dict = convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) lowerCAmelCase_ : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) lowerCAmelCase_ : Union[str, Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ) lowerCAmelCase_ : int = timm_model(inputs["""pixel_values"""] ) lowerCAmelCase_ : Union[str, Any] = model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __UpperCAmelCase = 25_60_47 __UpperCAmelCase = 25_61_45 @require_sentencepiece @require_tokenizers class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Tuple = NllbTokenizer __snake_case : List[Any] = NllbTokenizerFast __snake_case : int = True __snake_case : int = True __snake_case : int = {} def A ( self : str ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Tuple = NllbTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : int ): lowerCAmelCase_ : Any = NllbTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCAmelCase_ : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase_ : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase_ : Dict = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ : int = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def A ( self : int ): lowerCAmelCase_ : int = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Any = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Any = tempfile.mkdtemp() lowerCAmelCase_ : Dict = tokenizer_r.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Tuple = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCAmelCase_ : str = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCAmelCase_ : str = tokenizer_r.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) lowerCAmelCase_ : Any = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase , UpperCAmelCase ) # Checks everything loads correctly in the same way lowerCAmelCase_ : Tuple = tokenizer_r.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ : Dict = tempfile.mkdtemp() lowerCAmelCase_ : int = tokenizer_r.save_pretrained(UpperCAmelCase , legacy_format=UpperCAmelCase ) lowerCAmelCase_ : Any = tokenizer_p.save_pretrained(UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Any = tokenizer_p.from_pretrained(UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase , UpperCAmelCase ) ) shutil.rmtree(UpperCAmelCase ) @require_torch def A ( self : List[Any] ): if not self.test_seqaseq: return lowerCAmelCase_ : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. lowerCAmelCase_ : Tuple = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase_ : Union[str, Any] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: lowerCAmelCase_ : Union[str, Any] = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase , tgt_texts=UpperCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCAmelCase_ : Optional[int] = tokenizer.prepare_seqaseq_batch( UpperCAmelCase , tgt_texts=UpperCAmelCase , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCAmelCase_ : Any = tokenizer.prepare_seqaseq_batch( src_texts=UpperCAmelCase , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , UpperCAmelCase ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def A ( self : Any ): pass def A ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : Optional[int] = [AddedToken("""<special>""" , lstrip=UpperCAmelCase )] lowerCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : int = tokenizer_r.encode("""Hey this is a <special> token""" ) lowerCAmelCase_ : int = tokenizer_r.encode("""<special>""" , add_special_tokens=UpperCAmelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = tokenizer_p.encode("""Hey this is a <special> token""" ) lowerCAmelCase_ : List[Any] = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): __snake_case : List[str] = """facebook/nllb-200-distilled-600M""" __snake_case : Dict = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] __snake_case : Dict = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] __snake_case : Optional[Any] = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def A ( cls : Union[str, Any] ): lowerCAmelCase_ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) lowerCAmelCase_ : int = 1 return cls def A ( self : Any ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 25_60_57 ) def A ( self : Optional[int] ): lowerCAmelCase_ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) def A ( self : List[str] ): self.assertIn(UpperCAmelCase , self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase_ : Tuple = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on lowerCAmelCase_ : Optional[Any] = self.tokenizer.decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Any = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCAmelCase ) lowerCAmelCase_ : str = 10 lowerCAmelCase_ : str = self.tokenizer(UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , UpperCAmelCase ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) def A ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_62_03, 3] ) def A ( self : List[Any] ): lowerCAmelCase_ : int = tempfile.mkdtemp() lowerCAmelCase_ : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[str] = NllbTokenizer.from_pretrained(UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCAmelCase ) @require_torch def A ( self : Optional[Any] ): lowerCAmelCase_ : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCAmelCase_ : int = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCAmelCase_ : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def A ( self : List[str] ): lowerCAmelCase_ : Optional[Any] = self.tokenizer(self.src_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=3 , return_tensors="""pt""" ) lowerCAmelCase_ : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=10 , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = targets["""input_ids"""] lowerCAmelCase_ : List[Any] = shift_tokens_right( UpperCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def A ( self : Tuple ): lowerCAmelCase_ : int = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { # A, test, EOS, en_XX """input_ids""": [[25_60_47, 70, 73_56, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_60_57, } , ) @require_torch def A ( self : Any ): lowerCAmelCase_ : str = True lowerCAmelCase_ : Any = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : str = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] ) -> int: '''simple docstring''' if not nums: return 0 lowerCAmelCase_ : Optional[Any] = nums[0] lowerCAmelCase_ : List[Any] = 0 for num in nums[1:]: lowerCAmelCase_ : Tuple = ( max_excluding + num, max(lowercase__ , lowercase__ ), ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( lowercase__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = torch.exp(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = torch.sum(lowercase__ , dim=1 ) # sum of exp(x_i) lowerCAmelCase_ : Any = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowercase__ ) - B / A class __a ( nn.Module ): def __init__( self : str , UpperCAmelCase : Union[str, Any] ): super().__init__() lowerCAmelCase_ : Union[str, Any] = config.output_attentions lowerCAmelCase_ : Dict = config.output_hidden_states lowerCAmelCase_ : Tuple = nn.ModuleList([BertLayer(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase_ : List[Any] = nn.ModuleList([BertHighway(UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase_ : Any = [-1 for _ in range(config.num_hidden_layers )] def A ( self : Any , UpperCAmelCase : str ): if (type(UpperCAmelCase ) is float) or (type(UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase_ : Tuple = x else: lowerCAmelCase_ : List[str] = x def A ( self : Any , UpperCAmelCase : Dict ): lowerCAmelCase_ : List[Any] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=None , ): lowerCAmelCase_ : Optional[Any] = () lowerCAmelCase_ : Dict = () lowerCAmelCase_ : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase_ : str = all_hidden_states + (hidden_states,) lowerCAmelCase_ : Optional[int] = layer_module( UpperCAmelCase , UpperCAmelCase , head_mask[i] , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = layer_outputs[0] if self.output_attentions: lowerCAmelCase_ : List[Any] = all_attentions + (layer_outputs[1],) lowerCAmelCase_ : Optional[int] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase_ : Any = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase_ : int = current_outputs + (all_attentions,) lowerCAmelCase_ : Any = self.highway[i](UpperCAmelCase ) # logits, pooled_output if not self.training: lowerCAmelCase_ : str = highway_exit[0] lowerCAmelCase_ : Tuple = entropy(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase_ : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase_ : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase , i + 1 ) else: lowerCAmelCase_ : str = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase_ : Any = all_hidden_states + (hidden_states,) lowerCAmelCase_ : List[Any] = (hidden_states,) if self.output_hidden_states: lowerCAmelCase_ : str = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase_ : List[str] = outputs + (all_attentions,) lowerCAmelCase_ : Optional[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ ,__UpperCamelCase ,) class __a ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : Dict ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Dict = config lowerCAmelCase_ : Dict = BertEmbeddings(UpperCAmelCase ) lowerCAmelCase_ : List[str] = DeeBertEncoder(UpperCAmelCase ) lowerCAmelCase_ : Tuple = BertPooler(UpperCAmelCase ) self.init_weights() def A ( self : str ): self.encoder.init_highway_pooler(self.pooler ) def A ( self : List[Any] ): return self.embeddings.word_embeddings def A ( self : List[Any] , UpperCAmelCase : Dict ): lowerCAmelCase_ : Optional[Any] = value def A ( self : int , UpperCAmelCase : str ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase ) @add_start_docstrings_to_model_forward(UpperCAmelCase ) def A ( self : Any , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : Dict=None , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: lowerCAmelCase_ : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase_ : Any = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) lowerCAmelCase_ : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase_ : List[Any] = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if encoder_attention_mask is None: lowerCAmelCase_ : Any = torch.ones(UpperCAmelCase , device=UpperCAmelCase ) if token_type_ids is None: lowerCAmelCase_ : List[str] = torch.zeros(UpperCAmelCase , dtype=torch.long , device=UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase_ : torch.Tensor = self.get_extended_attention_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase_ : Optional[int] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase_ : Tuple = encoder_attention_mask[:, None, None, :] lowerCAmelCase_ : List[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase_ : str = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase_ : Optional[Any] = self.get_head_mask(UpperCAmelCase , self.config.num_hidden_layers ) lowerCAmelCase_ : List[str] = self.embeddings( input_ids=UpperCAmelCase , position_ids=UpperCAmelCase , token_type_ids=UpperCAmelCase , inputs_embeds=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = self.encoder( UpperCAmelCase , attention_mask=UpperCAmelCase , head_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = encoder_outputs[0] lowerCAmelCase_ : Any = self.pooler(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __a ( __UpperCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any ): lowerCAmelCase_ : str = message lowerCAmelCase_ : int = exit_layer # start from 1! class __a ( nn.Module ): def __init__( self : Any , UpperCAmelCase : Optional[Any] ): super().__init__() lowerCAmelCase_ : Optional[int] = BertPooler(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ : Optional[int] = nn.Linear(config.hidden_size , config.num_labels ) def A ( self : Tuple , UpperCAmelCase : List[Any] ): # Pooler lowerCAmelCase_ : List[str] = encoder_outputs[0] lowerCAmelCase_ : Dict = self.pooler(UpperCAmelCase ) # "return" pooler_output # BertModel lowerCAmelCase_ : List[Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase_ : Tuple = bmodel_output[1] lowerCAmelCase_ : List[str] = self.dropout(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = self.classifier(UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ ,__UpperCamelCase ,) class __a ( __UpperCamelCase ): def __init__( self : int , UpperCAmelCase : List[str] ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Tuple = config.num_labels lowerCAmelCase_ : int = config.num_hidden_layers lowerCAmelCase_ : Union[str, Any] = DeeBertModel(UpperCAmelCase ) lowerCAmelCase_ : Any = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase_ : str = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Tuple=-1 , UpperCAmelCase : str=False , ): lowerCAmelCase_ : List[str] = self.num_layers try: lowerCAmelCase_ : Any = self.bert( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , position_ids=UpperCAmelCase , head_mask=UpperCAmelCase , inputs_embeds=UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase_ : Optional[Any] = outputs[1] lowerCAmelCase_ : List[Any] = self.dropout(UpperCAmelCase ) lowerCAmelCase_ : Dict = self.classifier(UpperCAmelCase ) lowerCAmelCase_ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase_ : Optional[int] = e.message lowerCAmelCase_ : Optional[int] = e.exit_layer lowerCAmelCase_ : Any = outputs[0] if not self.training: lowerCAmelCase_ : List[Any] = entropy(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase_ : List[str] = MSELoss() lowerCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ : str = CrossEntropyLoss() lowerCAmelCase_ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits lowerCAmelCase_ : List[str] = [] for highway_exit in outputs[-1]: lowerCAmelCase_ : Union[str, Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase_ : Any = MSELoss() lowerCAmelCase_ : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss() lowerCAmelCase_ : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase ) if train_highway: lowerCAmelCase_ : Union[str, Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase_ : List[str] = (loss,) + outputs if not self.training: lowerCAmelCase_ : int = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase_ : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=99 , UpperCAmelCase : Tuple=24 , UpperCAmelCase : str=2 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Union[str, Any]=5_12 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=10_00 , ): lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Optional[int] = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Optional[Any] = use_input_mask lowerCAmelCase_ : Dict = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : str = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : Dict = type_sequence_label_size lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : int = scope lowerCAmelCase_ : List[str] = range_bbox def A ( self : Tuple ): lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase_ : List[str] = bbox[i, j, 3] lowerCAmelCase_ : Union[str, Any] = bbox[i, j, 1] lowerCAmelCase_ : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase_ : str = bbox[i, j, 2] lowerCAmelCase_ : Union[str, Any] = bbox[i, j, 0] lowerCAmelCase_ : str = t lowerCAmelCase_ : Tuple = None if self.use_input_mask: lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase_ : int = None if self.use_token_type_ids: lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : Any ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def A ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] , ): lowerCAmelCase_ : Union[str, Any] = LiltModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCAmelCase_ : int = model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , bbox=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : Optional[int] = LiltForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : int , ): lowerCAmelCase_ : Dict = LiltForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any ): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) : List[Any] = config_and_inputs lowerCAmelCase_ : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Optional[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __snake_case : Optional[int] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __snake_case : str = False __snake_case : Tuple = False def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ): return True def A ( self : str ): lowerCAmelCase_ : List[str] = LiltModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A ( self : str ): self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : List[Any] = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def A ( self : Any ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[Any] = LiltModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @slow class __a ( unittest.TestCase ): def A ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = torch.tensor([[1, 2]] , device=UpperCAmelCase ) lowerCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.Size([1, 2, 7_68] ) lowerCAmelCase_ : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1e-3 ) )
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = StableDiffusionDiffEditPipeline __snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __snake_case : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case : Tuple = frozenset([] ) def A ( self : str ): torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) lowerCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCAmelCase_ : int = CLIPTextModel(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Dict = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[str]=0 ): lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : List[Any] = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : int = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=0 ): lowerCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : str = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : int = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : Any = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=0 ): lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Tuple = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : Tuple = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def A ( self : Any ): if not hasattr(self.pipeline_class , """_optional_components""" ): return lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase_ : str = self.get_dummy_inputs(UpperCAmelCase ) lowerCAmelCase_ : Any = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[str] = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowerCAmelCase_ : Any = self.get_dummy_inputs(UpperCAmelCase ) lowerCAmelCase_ : Tuple = pipe_loaded(**UpperCAmelCase )[0] lowerCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = """cpu""" lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : Tuple = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_mask_inputs(UpperCAmelCase ) lowerCAmelCase_ : List[str] = pipe.generate_mask(**UpperCAmelCase ) lowerCAmelCase_ : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase_ : Any = np.array([0] * 9 ) lowerCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : int ): lowerCAmelCase_ : Optional[Any] = """cpu""" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : int = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Dict = self.get_dummy_inversion_inputs(UpperCAmelCase ) lowerCAmelCase_ : Tuple = pipe.invert(**UpperCAmelCase ).images lowerCAmelCase_ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def A ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : Tuple ): lowerCAmelCase_ : str = """cpu""" lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler(**UpperCAmelCase ) lowerCAmelCase_ : Any = DPMSolverMultistepInverseScheduler(**UpperCAmelCase ) lowerCAmelCase_ : List[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_inversion_inputs(UpperCAmelCase ) lowerCAmelCase_ : int = pipe.invert(**UpperCAmelCase ).images lowerCAmelCase_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : List[str] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def A ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Optional[Any] ): lowerCAmelCase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowerCAmelCase_ : Any = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) lowerCAmelCase_ : Union[str, Any] = raw_image def A ( self : int ): lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase_ : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = """a bowl of fruit""" lowerCAmelCase_ : Any = """a bowl of pears""" lowerCAmelCase_ : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) lowerCAmelCase_ : int = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents lowerCAmelCase_ : str = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Optional[Any] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : int = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : int = """a bowl of fruit""" lowerCAmelCase_ : Dict = """a bowl of pears""" lowerCAmelCase_ : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents lowerCAmelCase_ : Optional[Any] = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Optional[int] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : str ) -> list[int]: '''simple docstring''' return [ord(lowercase__ ) - 96 for elem in plain] def __UpperCamelCase ( lowercase__ : list[int] ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def __UpperCamelCase ( ) -> None: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , lowercase__ ) print("""Decoded:""" , decode(lowercase__ ) ) if __name__ == "__main__": main()
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __UpperCAmelCase = get_logger(__name__) class __a ( enum.Enum ): __snake_case : Union[str, Any] = """all_checks""" __snake_case : List[Any] = """basic_checks""" __snake_case : Any = """no_checks""" class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass def __UpperCamelCase ( lowercase__ : Optional[dict] , lowercase__ : dict , lowercase__ : str=None ) -> Any: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase__ ) - set(lowercase__ ) ) ) lowerCAmelCase_ : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCAmelCase_ : Dict = """ for """ + verification_name if verification_name is not None else """""" if len(lowercase__ ) > 0: raise NonMatchingChecksumError( f'Checksums didn\'t match{for_verification_name}:\n' f'{bad_urls}\n' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass def __UpperCamelCase ( lowercase__ : Optional[dict] , lowercase__ : dict ) -> List[Any]: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) lowerCAmelCase_ : Any = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase__ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase__ ) ) logger.info("""All the splits matched successfully.""" ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : bool = True ) -> dict: '''simple docstring''' if record_checksum: lowerCAmelCase_ : Optional[int] = shaaaa() with open(lowercase__ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"""""" ): m.update(lowercase__ ) lowerCAmelCase_ : Any = m.hexdigest() else: lowerCAmelCase_ : int = None return {"num_bytes": os.path.getsize(lowercase__ ), "checksum": checksum} def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> int: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" from collections import defaultdict def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = first_str.lower().strip() lowerCAmelCase_ : List[Any] = second_str.lower().strip() # Remove whitespace lowerCAmelCase_ : Any = first_str.replace(""" """ , """""" ) lowerCAmelCase_ : Union[str, Any] = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(lowercase__ ) != len(lowercase__ ): return False # Default values for count should be 0 lowerCAmelCase_ : defaultdict[str, int] = defaultdict(lowercase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(lowercase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = input('Enter the first string ').strip() __UpperCAmelCase = input('Enter the second string ').strip() __UpperCAmelCase = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCAmelCase = random.Random() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Optional[int]=1.0 , lowercase__ : int=None , lowercase__ : Tuple=None ) -> Tuple: '''simple docstring''' if rng is None: lowerCAmelCase_ : int = global_rng lowerCAmelCase_ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __a ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Optional[Any]=4_00 , UpperCAmelCase : Union[str, Any]=20_00 , UpperCAmelCase : str=1 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[str]=1_60_00 , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : List[str] = min_seq_length lowerCAmelCase_ : int = max_seq_length lowerCAmelCase_ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : Optional[int] = feature_size lowerCAmelCase_ : Optional[int] = padding_value lowerCAmelCase_ : List[Any] = sampling_rate lowerCAmelCase_ : Tuple = return_attention_mask lowerCAmelCase_ : List[Any] = do_normalize def A ( self : Optional[Any] ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : str , UpperCAmelCase : List[Any]=False , UpperCAmelCase : List[Any]=False ): def _flatten(UpperCAmelCase : int ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: lowerCAmelCase_ : str = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_ : Union[str, Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_ : Optional[int] = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = WavaVecaFeatureExtractor def A ( self : Dict ): lowerCAmelCase_ : str = WavaVecaFeatureExtractionTester(self ) def A ( self : str , UpperCAmelCase : Dict ): self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def A ( self : Dict ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[Any] = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : List[str] = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values lowerCAmelCase_ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test batched lowerCAmelCase_ : str = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values lowerCAmelCase_ : Any = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Any = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase_ : Union[str, Any] = np.asarray(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values lowerCAmelCase_ : List[Any] = feat_extract(UpperCAmelCase , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A ( self : Any ): lowerCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = ["""longest""", """max_length""", """do_not_pad"""] lowerCAmelCase_ : Optional[Any] = [None, 16_00, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Any = feat_extract(UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_tensors="""np""" ) lowerCAmelCase_ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def A ( self : int ): lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Dict = range(8_00 , 14_00 , 2_00 ) lowerCAmelCase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase_ : Optional[int] = ["""longest""", """max_length""", """do_not_pad"""] lowerCAmelCase_ : Tuple = [None, 16_00, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : int = feat_extract(UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase ) lowerCAmelCase_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def A ( self : Any ): lowerCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" ) lowerCAmelCase_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def A ( self : Dict ): lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : List[str] = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=10_00 , padding="""longest""" , return_tensors="""np""" ) lowerCAmelCase_ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowerCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : Any = feat_extract( UpperCAmelCase , truncation=UpperCAmelCase , max_length=20_00 , padding="""longest""" , return_tensors="""np""" ) lowerCAmelCase_ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def A ( self : str ): import torch lowerCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Optional[Any] = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase_ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : Optional[int] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_ : str = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def A ( self : Tuple ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase_ : Union[str, Any] = WavaVecaConfig.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __UpperCAmelCase = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __UpperCamelCase ( lowercase__ : dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def __UpperCamelCase ( lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> XGBClassifier: '''simple docstring''' lowerCAmelCase_ : str = XGBClassifier() classifier.fit(lowercase__ , lowercase__ ) return classifier def __UpperCamelCase ( ) -> None: '''simple docstring''' lowerCAmelCase_ : int = load_iris() lowerCAmelCase_ : str = data_handling(lowercase__ ) lowerCAmelCase_ : Tuple = train_test_split( lowercase__ , lowercase__ , test_size=0.25 ) lowerCAmelCase_ : Union[str, Any] = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowerCAmelCase_ : Union[str, Any] = xgboost(lowercase__ , lowercase__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase__ , lowercase__ , lowercase__ , display_labels=lowercase__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = 'ResNetConfig' # Base docstring __UpperCAmelCase = 'microsoft/resnet-50' __UpperCAmelCase = [1, 20_48, 7, 7] # Image classification docstring __UpperCAmelCase = 'microsoft/resnet-50' __UpperCAmelCase = 'tiger cat' __UpperCAmelCase = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __a ( nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "relu" ): super().__init__() lowerCAmelCase_ : List[Any] = nn.Convad( UpperCAmelCase , UpperCAmelCase , kernel_size=UpperCAmelCase , stride=UpperCAmelCase , padding=kernel_size // 2 , bias=UpperCAmelCase ) lowerCAmelCase_ : str = nn.BatchNormad(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def A ( self : Tuple , UpperCAmelCase : Tensor ): lowerCAmelCase_ : Optional[Any] = self.convolution(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = self.normalization(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = self.activation(UpperCAmelCase ) return hidden_state class __a ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase : ResNetConfig ): super().__init__() lowerCAmelCase_ : Union[str, Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowerCAmelCase_ : List[Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowerCAmelCase_ : List[Any] = config.num_channels def A ( self : Dict , UpperCAmelCase : Tensor ): lowerCAmelCase_ : Optional[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) lowerCAmelCase_ : Any = self.embedder(UpperCAmelCase ) lowerCAmelCase_ : Dict = self.pooler(UpperCAmelCase ) return embedding class __a ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 2 ): super().__init__() lowerCAmelCase_ : Union[str, Any] = nn.Convad(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , stride=UpperCAmelCase , bias=UpperCAmelCase ) lowerCAmelCase_ : Tuple = nn.BatchNormad(UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : Tensor ): lowerCAmelCase_ : Any = self.convolution(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = self.normalization(UpperCAmelCase ) return hidden_state class __a ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "relu" ): super().__init__() lowerCAmelCase_ : Optional[int] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : str = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : List[Any] = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , activation=UpperCAmelCase ) , ) lowerCAmelCase_ : int = ACTaFN[activation] def A ( self : List[Any] , UpperCAmelCase : str ): lowerCAmelCase_ : List[Any] = hidden_state lowerCAmelCase_ : List[str] = self.layer(UpperCAmelCase ) lowerCAmelCase_ : str = self.shortcut(UpperCAmelCase ) hidden_state += residual lowerCAmelCase_ : Dict = self.activation(UpperCAmelCase ) return hidden_state class __a ( nn.Module ): def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "relu" , UpperCAmelCase : int = 4 ): super().__init__() lowerCAmelCase_ : Optional[int] = in_channels != out_channels or stride != 1 lowerCAmelCase_ : Dict = out_channels // reduction lowerCAmelCase_ : Optional[Any] = ( ResNetShortCut(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ : List[str] = nn.Sequential( ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase ) , ResNetConvLayer(UpperCAmelCase , UpperCAmelCase , kernel_size=1 , activation=UpperCAmelCase ) , ) lowerCAmelCase_ : List[str] = ACTaFN[activation] def A ( self : Tuple , UpperCAmelCase : Any ): lowerCAmelCase_ : Any = hidden_state lowerCAmelCase_ : Optional[Any] = self.layer(UpperCAmelCase ) lowerCAmelCase_ : str = self.shortcut(UpperCAmelCase ) hidden_state += residual lowerCAmelCase_ : Tuple = self.activation(UpperCAmelCase ) return hidden_state class __a ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase : ResNetConfig , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , ): super().__init__() lowerCAmelCase_ : Dict = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer lowerCAmelCase_ : Union[str, Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(UpperCAmelCase , UpperCAmelCase , stride=UpperCAmelCase , activation=config.hidden_act ) , *[layer(UpperCAmelCase , UpperCAmelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def A ( self : List[Any] , UpperCAmelCase : Tensor ): lowerCAmelCase_ : Optional[Any] = input for layer in self.layers: lowerCAmelCase_ : Dict = layer(UpperCAmelCase ) return hidden_state class __a ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : ResNetConfig ): super().__init__() lowerCAmelCase_ : Tuple = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase_ : str = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase , config.depths[1:] ): self.stages.append(ResNetStage(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , depth=UpperCAmelCase ) ) def A ( self : Optional[Any] , UpperCAmelCase : Tensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ): lowerCAmelCase_ : List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase_ : List[str] = hidden_states + (hidden_state,) lowerCAmelCase_ : Union[str, Any] = stage_module(UpperCAmelCase ) if output_hidden_states: lowerCAmelCase_ : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase , hidden_states=UpperCAmelCase , ) class __a ( __UpperCamelCase ): __snake_case : Dict = ResNetConfig __snake_case : str = """resnet""" __snake_case : List[Any] = """pixel_values""" __snake_case : Optional[int] = True def A ( self : str , UpperCAmelCase : Dict ): if isinstance(UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict=False ): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : str = value __UpperCAmelCase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCAmelCase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" ,__UpperCamelCase ,) class __a ( __UpperCamelCase ): def __init__( self : Dict , UpperCAmelCase : str ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Dict = config lowerCAmelCase_ : Optional[int] = ResNetEmbeddings(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = ResNetEncoder(UpperCAmelCase ) lowerCAmelCase_ : Any = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : List[Any] , UpperCAmelCase : Tensor , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None ): lowerCAmelCase_ : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : List[str] = self.embedder(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = self.encoder( UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = encoder_outputs[0] lowerCAmelCase_ : Dict = self.pooler(UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase , pooler_output=UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,__UpperCamelCase ,) class __a ( __UpperCamelCase ): def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int] ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : str = config.num_labels lowerCAmelCase_ : Any = ResNetModel(UpperCAmelCase ) # classification head lowerCAmelCase_ : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.LongTensor] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : str = self.resnet(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : Any = self.classifier(UpperCAmelCase ) lowerCAmelCase_ : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : Dict = """single_label_classification""" else: lowerCAmelCase_ : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": lowerCAmelCase_ : Tuple = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase_ : int = loss_fct(UpperCAmelCase , UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : Tuple = CrossEntropyLoss() lowerCAmelCase_ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : Union[str, Any] = BCEWithLogitsLoss() lowerCAmelCase_ : Optional[Any] = loss_fct(UpperCAmelCase , UpperCAmelCase ) if not return_dict: lowerCAmelCase_ : Any = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase , logits=UpperCAmelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ ,__UpperCamelCase ,) class __a ( __UpperCamelCase ,__UpperCamelCase ): def __init__( self : List[Any] , UpperCAmelCase : Optional[Any] ): super().__init__(UpperCAmelCase ) super()._init_backbone(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [config.embedding_size] + config.hidden_sizes lowerCAmelCase_ : List[str] = ResNetEmbeddings(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = ResNetEncoder(UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase ) @replace_return_docstrings(output_type=UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def A ( self : List[str] , UpperCAmelCase : Tensor , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None ): lowerCAmelCase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Union[str, Any] = self.embedder(UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.encoder(UpperCAmelCase , output_hidden_states=UpperCAmelCase , return_dict=UpperCAmelCase ) lowerCAmelCase_ : int = outputs.hidden_states lowerCAmelCase_ : Optional[int] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCAmelCase_ : Tuple = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase , )
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = 0 for i in range(1 , 1001 ): total += i**i return str(lowercase__ )[-10:] if __name__ == "__main__": print(solution())
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : int ): warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
def __UpperCamelCase ( lowercase__ : int = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : str = 1 lowerCAmelCase_ : List[Any] = {1: 1} for inputa in range(2 , lowercase__ ): lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Optional[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: lowerCAmelCase_ : Optional[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: lowerCAmelCase_ : int = counter if counter > pre_counter: lowerCAmelCase_ : Optional[Any] = inputa lowerCAmelCase_ : Any = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCamelCase ( lowercase__ : int ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> tuple[int, int]: '''simple docstring''' lowerCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase_ : int = x_den * y_den * z_den lowerCAmelCase_ : int = gcd(lowercase__ , lowercase__ ) top //= hcf bottom //= hcf return top, bottom def __UpperCamelCase ( lowercase__ : int = 35 ) -> int: '''simple docstring''' lowerCAmelCase_ : set = set() lowerCAmelCase_ : int lowerCAmelCase_ : Fraction = Fraction(0 ) lowerCAmelCase_ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase_ : Union[str, Any] = x_num * y_den + x_den * y_num lowerCAmelCase_ : Union[str, Any] = x_den * y_den lowerCAmelCase_ : Optional[int] = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : str = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 lowerCAmelCase_ : List[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase_ : Tuple = x_den * x_den * y_den * y_den if is_sq(lowercase__ ) and is_sq(lowercase__ ): lowerCAmelCase_ : Any = int(sqrt(lowercase__ ) ) lowerCAmelCase_ : List[str] = int(sqrt(lowercase__ ) ) lowerCAmelCase_ : List[str] = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Dict = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=-1 lowerCAmelCase_ : Union[str, Any] = x_num * y_num lowerCAmelCase_ : Any = x_den * y_num + x_num * y_den lowerCAmelCase_ : Tuple = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Optional[Any] = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 lowerCAmelCase_ : Tuple = x_num * x_num * y_num * y_num lowerCAmelCase_ : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase__ ) and is_sq(lowercase__ ): lowerCAmelCase_ : Union[str, Any] = int(sqrt(lowercase__ ) ) lowerCAmelCase_ : Any = int(sqrt(lowercase__ ) ) lowerCAmelCase_ : Tuple = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : int = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) for num, den in unique_s: total += Fraction(lowercase__ , lowercase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class __a ( unittest.TestCase ): @slow def A ( self : Any ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(UpperCAmelCase ): lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = FlaxAutoModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def A ( self : Dict ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(UpperCAmelCase ): lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[str] = FlaxAutoModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) @slow def A ( self : Optional[int] ): for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase_ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : str = FlaxBertModel.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Dict = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCAmelCase : List[str] ): return model(**UpperCAmelCase ) eval(**UpperCAmelCase ).block_until_ready() @slow def A ( self : Tuple ): for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxRobertaModel.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**UpperCAmelCase : Dict ): return model(**UpperCAmelCase ) eval(**UpperCAmelCase ).block_until_ready() def A ( self : Tuple ): with self.assertRaisesRegex( UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase_ : Tuple = FlaxAutoModel.from_pretrained("""bert-base""" ) def A ( self : Union[str, Any] ): with self.assertRaisesRegex( UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase_ : Optional[int] = FlaxAutoModel.from_pretrained(UpperCAmelCase , revision="""aaaaaa""" ) def A ( self : List[Any] ): with self.assertRaisesRegex( UpperCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): lowerCAmelCase_ : Any = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def A ( self : Optional[int] ): with self.assertRaisesRegex(UpperCAmelCase , """Use `from_pt=True` to load this model""" ): lowerCAmelCase_ : Optional[int] = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __UpperCAmelCase = get_tests_dir('fixtures') class __a ( unittest.TestCase ): def A ( self : Any ): # A mock response for an HTTP head request to emulate server down lowerCAmelCase_ : Tuple = mock.Mock() lowerCAmelCase_ : int = 5_00 lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : List[str] = HTTPError lowerCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. lowerCAmelCase_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCAmelCase ) as mock_head: lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained("""hf-internal-testing/tiny-random-wav2vec2""" ) # This check we did call the fake head request mock_head.assert_called() def A ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 lowerCAmelCase_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json""" ) @is_staging_test class __a ( unittest.TestCase ): @classmethod def A ( cls : Dict ): lowerCAmelCase_ : Optional[int] = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def A ( cls : str ): try: delete_repo(token=cls._token , repo_id="""test-feature-extractor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-feature-extractor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-feature-extractor""" ) except HTTPError: pass def A ( self : Dict ): lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase ) feature_extractor.push_to_hub("""test-feature-extractor""" , use_auth_token=self._token ) lowerCAmelCase_ : str = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase , repo_id="""test-feature-extractor""" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCAmelCase_ : Dict = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Any ): lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase ) feature_extractor.push_to_hub("""valid_org/test-feature-extractor""" , use_auth_token=self._token ) lowerCAmelCase_ : Tuple = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-feature-extractor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( UpperCAmelCase , repo_id="""valid_org/test-feature-extractor-org""" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) lowerCAmelCase_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained("""valid_org/test-feature-extractor-org""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(UpperCAmelCase , getattr(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): CustomFeatureExtractor.register_for_auto_class() lowerCAmelCase_ : Tuple = CustomFeatureExtractor.from_pretrained(UpperCAmelCase ) feature_extractor.push_to_hub("""test-dynamic-feature-extractor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"""AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor"""} , ) lowerCAmelCase_ : Dict = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , """CustomFeatureExtractor""" )
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : str ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A ( self : Tuple , UpperCAmelCase : int=None ): lowerCAmelCase_ : Union[str, Any] = {} if top_k is not None: lowerCAmelCase_ : Union[str, Any] = top_k return {}, {}, postprocess_params def __call__( self : Union[str, Any] , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : Any ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Dict , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : List[str] = load_image(UpperCAmelCase ) lowerCAmelCase_ : List[str] = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) return model_inputs def A ( self : Dict , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Dict = self.model(**UpperCAmelCase ) return model_outputs def A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[Any]=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase_ : List[str] = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ : Union[str, Any] = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase_ : Optional[int] = probs.topk(UpperCAmelCase ) elif self.framework == "tf": lowerCAmelCase_ : List[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] lowerCAmelCase_ : Tuple = tf.math.top_k(UpperCAmelCase , k=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowerCAmelCase_ : str = scores.tolist() lowerCAmelCase_ : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase , UpperCAmelCase )]
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = abs(lowercase__ ) lowerCAmelCase_ : int = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = abs(lowercase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' return sum(int(lowercase__ ) for c in str(abs(lowercase__ ) ) ) def __UpperCamelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ : Callable , lowercase__ : int ) -> None: lowerCAmelCase_ : Union[str, Any] = f'{func.__name__}({value})' lowerCAmelCase_ : Any = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(lowercase__ )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase__ , lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
from __future__ import annotations from math import pow, sqrt def __UpperCamelCase ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(lowercase__ , 2 ) - pow(lowercase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase__ , 2 ) - pow(lowercase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase__ , 2 ) + pow(lowercase__ , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __UpperCAmelCase = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class __a : __snake_case : str __snake_case : str __snake_case : Optional[str] = None __snake_case : Optional[str] = None __snake_case : Optional[str] = None @dataclass(frozen=__UpperCamelCase ) class __a : __snake_case : List[int] __snake_case : Optional[List[int]] = None __snake_case : Optional[List[int]] = None __snake_case : Optional[Union[int, float]] = None __snake_case : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __a ( __UpperCamelCase ): __snake_case : List[InputFeatures] def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : bool = False , ): lowerCAmelCase_ : int = hans_processors[task]() lowerCAmelCase_ : int = os.path.join( UpperCAmelCase , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(UpperCAmelCase ) , UpperCAmelCase , ) , ) lowerCAmelCase_ : Any = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ : int = label_list[2], label_list[1] lowerCAmelCase_ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ : Tuple = cached_features_file + """.lock""" with FileLock(UpperCAmelCase ): if os.path.exists(UpperCAmelCase ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) lowerCAmelCase_ : str = torch.load(UpperCAmelCase ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) lowerCAmelCase_ : Optional[int] = ( processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) ) logger.info("""Training examples: %s""" , len(UpperCAmelCase ) ) lowerCAmelCase_ : Any = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) logger.info("""Saving features into cached file %s""" , UpperCAmelCase ) torch.save(self.features , UpperCAmelCase ) def __len__( self : str ): return len(self.features ) def __getitem__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): return self.features[i] def A ( self : List[str] ): return self.label_list if is_tf_available(): import tensorflow as tf class __a : __snake_case : List[InputFeatures] def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : str , UpperCAmelCase : Optional[int] = 1_28 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : bool = False , ): lowerCAmelCase_ : Union[str, Any] = hans_processors[task]() lowerCAmelCase_ : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ : Any = label_list[2], label_list[1] lowerCAmelCase_ : Dict = label_list lowerCAmelCase_ : Any = processor.get_dev_examples(UpperCAmelCase ) if evaluate else processor.get_train_examples(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = hans_convert_examples_to_features(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(UpperCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowerCAmelCase_ : List[Any] = tf.data.Dataset.from_generator( UpperCAmelCase , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A ( self : Dict ): return self.dataset def __len__( self : Optional[Any] ): return len(self.features ) def __getitem__( self : Dict , UpperCAmelCase : Union[str, Any] ): return self.features[i] def A ( self : Optional[int] ): return self.label_list class __a ( __UpperCamelCase ): def A ( self : Tuple , UpperCAmelCase : Union[str, Any] ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , """heuristics_train_set.txt""" ) ) , """train""" ) def A ( self : Any , UpperCAmelCase : Dict ): return self._create_examples(self._read_tsv(os.path.join(UpperCAmelCase , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def A ( self : List[Any] ): return ["contradiction", "entailment", "neutral"] def A ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : int ): lowerCAmelCase_ : int = [] for i, line in enumerate(UpperCAmelCase ): if i == 0: continue lowerCAmelCase_ : Optional[int] = """%s-%s""" % (set_type, line[0]) lowerCAmelCase_ : Any = line[5] lowerCAmelCase_ : Union[str, Any] = line[6] lowerCAmelCase_ : Dict = line[7][2:] if line[7].startswith("""ex""" ) else line[7] lowerCAmelCase_ : List[Any] = line[0] examples.append(InputExample(guid=UpperCAmelCase , text_a=UpperCAmelCase , text_b=UpperCAmelCase , label=UpperCAmelCase , pairID=UpperCAmelCase ) ) return examples def __UpperCamelCase ( lowercase__ : List[InputExample] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : PreTrainedTokenizer , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = {label: i for i, label in enumerate(lowercase__ )} lowerCAmelCase_ : str = [] for ex_index, example in tqdm.tqdm(enumerate(lowercase__ ) , desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d""" % (ex_index) ) lowerCAmelCase_ : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowercase__ , max_length=lowercase__ , padding="""max_length""" , truncation=lowercase__ , return_overflowing_tokens=lowercase__ , ) lowerCAmelCase_ : Union[str, Any] = label_map[example.label] if example.label in label_map else 0 lowerCAmelCase_ : Optional[Any] = int(example.pairID ) features.append(InputFeatures(**lowercase__ , label=lowercase__ , pairID=lowercase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features __UpperCAmelCase = { 'hans': 3, } __UpperCAmelCase = { 'hans': HansProcessor, }
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
def __UpperCamelCase ( lowercase__ : list[list[float]] ) -> list[list[float]]: '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for data in source_data: for i, el in enumerate(lowercase__ ): if len(lowercase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase__ ) ) return data_lists def __UpperCamelCase ( lowercase__ : list[list[float]] , lowercase__ : list[int] ) -> list[list[float]]: '''simple docstring''' lowerCAmelCase_ : list[list[float]] = [] for dlist, weight in zip(lowercase__ , lowercase__ ): lowerCAmelCase_ : str = min(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = max(lowercase__ ) lowerCAmelCase_ : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowerCAmelCase_ : int = f'Invalid weight of {weight:f} provided' raise ValueError(lowercase__ ) score_lists.append(lowercase__ ) return score_lists def __UpperCamelCase ( lowercase__ : list[list[float]] ) -> list[float]: '''simple docstring''' lowerCAmelCase_ : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase__ ): lowerCAmelCase_ : List[str] = final_scores[j] + ele return final_scores def __UpperCamelCase ( lowercase__ : list[list[float]] , lowercase__ : list[int] ) -> list[list[float]]: '''simple docstring''' lowerCAmelCase_ : int = get_data(lowercase__ ) lowerCAmelCase_ : Optional[int] = calculate_each_score(lowercase__ , lowercase__ ) lowerCAmelCase_ : Union[str, Any] = generate_final_scores(lowercase__ ) # append scores to source data for i, ele in enumerate(lowercase__ ): source_data[i].append(lowercase__ ) return source_data
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __a ( __UpperCamelCase ): __snake_case : str = DistilBertTokenizer __snake_case : Dict = DistilBertTokenizerFast __snake_case : Tuple = True @slow def A ( self : List[str] ): lowerCAmelCase_ : Tuple = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowerCAmelCase_ : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __UpperCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] __UpperCAmelCase = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """whisper""" __snake_case : str = ["""past_key_values"""] __snake_case : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[int] , UpperCAmelCase : Any=5_18_65 , UpperCAmelCase : Optional[int]=80 , UpperCAmelCase : Union[str, Any]=6 , UpperCAmelCase : int=4 , UpperCAmelCase : Tuple=6 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Any=15_36 , UpperCAmelCase : Optional[Any]=15_36 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : List[str]=5_02_57 , UpperCAmelCase : int=True , UpperCAmelCase : str=True , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Tuple=2_56 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=15_00 , UpperCAmelCase : Optional[int]=4_48 , UpperCAmelCase : Optional[int]=5_02_56 , UpperCAmelCase : str=5_02_56 , UpperCAmelCase : str=5_02_56 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : List[Any]=[2_20, 5_02_56] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : Any=2_56 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Optional[Any]=0.05 , UpperCAmelCase : int=10 , UpperCAmelCase : Any=2 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[Any]=10 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[int]=7 , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Optional[Any] = num_mel_bins lowerCAmelCase_ : int = d_model lowerCAmelCase_ : int = encoder_layers lowerCAmelCase_ : int = encoder_attention_heads lowerCAmelCase_ : Any = decoder_layers lowerCAmelCase_ : str = decoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim lowerCAmelCase_ : Tuple = encoder_ffn_dim lowerCAmelCase_ : int = dropout lowerCAmelCase_ : Dict = attention_dropout lowerCAmelCase_ : Union[str, Any] = activation_dropout lowerCAmelCase_ : List[Any] = activation_function lowerCAmelCase_ : str = init_std lowerCAmelCase_ : Tuple = encoder_layerdrop lowerCAmelCase_ : List[str] = decoder_layerdrop lowerCAmelCase_ : List[Any] = use_cache lowerCAmelCase_ : Optional[int] = encoder_layers lowerCAmelCase_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : int = max_source_positions lowerCAmelCase_ : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ : Optional[int] = classifier_proj_size lowerCAmelCase_ : Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ : List[Any] = apply_spec_augment lowerCAmelCase_ : Any = mask_time_prob lowerCAmelCase_ : Dict = mask_time_length lowerCAmelCase_ : List[Any] = mask_time_min_masks lowerCAmelCase_ : str = mask_feature_prob lowerCAmelCase_ : Dict = mask_feature_length lowerCAmelCase_ : Dict = mask_feature_min_masks lowerCAmelCase_ : Any = median_filter_width super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , suppress_tokens=UpperCAmelCase , begin_suppress_tokens=UpperCAmelCase , **UpperCAmelCase , ) class __a ( __UpperCamelCase ): @property def A ( self : Any ): lowerCAmelCase_ : List[str] = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: lowerCAmelCase_ : int = {0: """batch"""} else: lowerCAmelCase_ : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) return common_inputs def A ( self : str , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 2_20_50 , UpperCAmelCase : float = 5.0 , UpperCAmelCase : int = 2_20 , ): lowerCAmelCase_ : Tuple = OrderedDict() lowerCAmelCase_ : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCAmelCase , framework=UpperCAmelCase , sampling_rate=UpperCAmelCase , time_duration=UpperCAmelCase , frequency=UpperCAmelCase , ) lowerCAmelCase_ : Optional[Any] = encoder_inputs["""input_features"""].shape[2] lowerCAmelCase_ : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase_ : Optional[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = encoder_inputs.pop("""input_features""" ) lowerCAmelCase_ : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: lowerCAmelCase_ : Optional[Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def A ( self : List[Any] ): return 1e-3
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __a ( nn.Module ): def __init__( self : Tuple ): super().__init__() lowerCAmelCase_ : str = nn.Linear(3 , 4 ) lowerCAmelCase_ : str = nn.BatchNormad(4 ) lowerCAmelCase_ : List[Any] = nn.Linear(4 , 5 ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __a ( unittest.TestCase ): def A ( self : Optional[Any] ): lowerCAmelCase_ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , model.state_dict() ) lowerCAmelCase_ : Any = os.path.join(UpperCAmelCase , """index.json""" ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowerCAmelCase_ : Optional[int] = os.path.join(UpperCAmelCase , F'{key}.dat' ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) # TODO: add tests on the fact weights are properly loaded def A ( self : List[Any] ): lowerCAmelCase_ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowerCAmelCase_ : List[str] = torch.randn(2 , 3 , dtype=UpperCAmelCase ) with TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : List[str] = offload_weight(UpperCAmelCase , """weight""" , UpperCAmelCase , {} ) lowerCAmelCase_ : Optional[Any] = os.path.join(UpperCAmelCase , """weight.dat""" ) self.assertTrue(os.path.isfile(UpperCAmelCase ) ) self.assertDictEqual(UpperCAmelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(UpperCAmelCase ).split(""".""" )[1]}} ) lowerCAmelCase_ : Optional[Any] = load_offloaded_weight(UpperCAmelCase , index["""weight"""] ) self.assertTrue(torch.equal(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : int ): lowerCAmelCase_ : Optional[Any] = ModelForTest() lowerCAmelCase_ : Optional[int] = model.state_dict() lowerCAmelCase_ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" not in k} lowerCAmelCase_ : Any = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) ) lowerCAmelCase_ : Dict = {k: v for k, v in state_dict.items() if """weight""" in k} lowerCAmelCase_ : Dict = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCAmelCase , UpperCAmelCase ) # Duplicates are removed lowerCAmelCase_ : List[str] = OffloadedWeightsLoader(state_dict=UpperCAmelCase , save_folder=UpperCAmelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCAmelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCAmelCase , weight_map[key] ) ) def A ( self : str ): lowerCAmelCase_ : Optional[Any] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} lowerCAmelCase_ : Dict = extract_submodules_state_dict(UpperCAmelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCAmelCase , {"""a.1""": 0, """a.2""": 2} ) lowerCAmelCase_ : Union[str, Any] = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} lowerCAmelCase_ : Optional[Any] = extract_submodules_state_dict(UpperCAmelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCAmelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __a ( __UpperCamelCase ): __snake_case : int = """openai/whisper-base""" __snake_case : Optional[int] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) __snake_case : List[str] = """transcriber""" __snake_case : str = WhisperProcessor __snake_case : Optional[Any] = WhisperForConditionalGeneration __snake_case : List[Any] = ["""audio"""] __snake_case : List[str] = ["""text"""] def A ( self : int , UpperCAmelCase : List[str] ): return self.pre_processor(UpperCAmelCase , return_tensors="""pt""" ).input_features def A ( self : Union[str, Any] , UpperCAmelCase : Tuple ): return self.model.generate(inputs=UpperCAmelCase ) def A ( self : Optional[int] , UpperCAmelCase : List[str] ): return self.pre_processor.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )[0]
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str: '''simple docstring''' return "\n".join( f'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __a ( __UpperCamelCase ): def A ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """num_attention_heads""" ) ) class __a : def __init__( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int=13 , UpperCAmelCase : str=64 , UpperCAmelCase : Any=3 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Dict=[1_28, 2_56, 3_84] , UpperCAmelCase : Optional[int]=[4, 6, 8] , UpperCAmelCase : Dict=[2, 3, 4] , UpperCAmelCase : Optional[Any]=[16, 16, 16] , UpperCAmelCase : Tuple=0 , UpperCAmelCase : str=[2, 2, 2] , UpperCAmelCase : Optional[Any]=[2, 2, 2] , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Any=2 , ): lowerCAmelCase_ : List[str] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : Optional[int] = kernel_size lowerCAmelCase_ : Optional[int] = stride lowerCAmelCase_ : Tuple = padding lowerCAmelCase_ : Union[str, Any] = hidden_sizes lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : int = depths lowerCAmelCase_ : Any = key_dim lowerCAmelCase_ : Dict = drop_path_rate lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : int = attention_ratio lowerCAmelCase_ : List[Any] = mlp_ratio lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Optional[Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Union[str, Any] = use_labels lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : List[Any] = initializer_range def A ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : Any ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : str ): lowerCAmelCase_ : Tuple = LevitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Tuple = model(UpperCAmelCase ) lowerCAmelCase_ : Dict = (self.image_size, self.image_size) lowerCAmelCase_ : Tuple = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase_ : Union[str, Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCAmelCase_ : str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ): lowerCAmelCase_ : List[Any] = self.num_labels lowerCAmelCase_ : int = LevitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : str = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : int ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __snake_case : List[str] = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case : Dict = False __snake_case : List[Any] = False __snake_case : Optional[Any] = False __snake_case : Optional[Any] = False __snake_case : Union[str, Any] = False def A ( self : Dict ): lowerCAmelCase_ : Tuple = LevitModelTester(self ) lowerCAmelCase_ : Tuple = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Tuple ): return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def A ( self : List[str] ): pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def A ( self : Optional[Any] ): pass @unittest.skip(reason="""Levit does not output attentions""" ) def A ( self : Dict ): pass def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(UpperCAmelCase ) lowerCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : int = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : List[str] ): def check_hidden_states_output(UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ): lowerCAmelCase_ : Dict = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCAmelCase_ : Optional[int] = outputs.hidden_states lowerCAmelCase_ : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowerCAmelCase_ : List[str] = (self.model_tester.image_size, self.model_tester.image_size) lowerCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase_ : List[str] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCAmelCase_ : Optional[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : List[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A ( self : List[Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=False ): lowerCAmelCase_ : Any = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self : Dict ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : str ): if not self.model_tester.is_training: return lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[int] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCAmelCase_ : Optional[int] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) lowerCAmelCase_ : Dict = model(**UpperCAmelCase ).loss loss.backward() def A ( self : List[str] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase_ : int = False lowerCAmelCase_ : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase ) model.train() lowerCAmelCase_ : List[str] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) lowerCAmelCase_ : List[str] = model(**UpperCAmelCase ).loss loss.backward() def A ( self : Any ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): lowerCAmelCase_ : List[Any] = problem_type["""title"""] lowerCAmelCase_ : List[str] = problem_type["""num_labels"""] lowerCAmelCase_ : Optional[Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() lowerCAmelCase_ : Any = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if problem_type["num_labels"] > 1: lowerCAmelCase_ : Optional[Any] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) lowerCAmelCase_ : List[str] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=UpperCAmelCase ) as warning_list: lowerCAmelCase_ : Optional[int] = model(**UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def A ( self : Union[str, Any] ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Dict = LevitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Any ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : Optional[int] ): lowerCAmelCase_ : List[str] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Tuple = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = torch.tensor([1.0448, -0.3745, -1.8317] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
from typing import List import numpy as np def __UpperCamelCase ( lowercase__ : dict ) -> int: '''simple docstring''' lowerCAmelCase_ : int = {key: len(lowercase__ ) for key, value in gen_kwargs.items() if isinstance(lowercase__ , lowercase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowerCAmelCase_ : int = max(lists_lengths.values() , default=0 ) return max(1 , lowercase__ ) def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> List[range]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] for group_idx in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCAmelCase_ : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCAmelCase_ : List[str] = range(lowercase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowercase__ ) return shards_indices_per_group def __UpperCamelCase ( lowercase__ : dict , lowercase__ : int ) -> List[dict]: '''simple docstring''' lowerCAmelCase_ : str = _number_of_shards_in_gen_kwargs(lowercase__ ) if num_shards == 1: return [dict(lowercase__ )] else: lowerCAmelCase_ : Tuple = _distribute_shards(num_shards=lowercase__ , max_num_jobs=lowercase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase__ , lowercase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase__ ) ) ] def __UpperCamelCase ( lowercase__ : List[dict] ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __UpperCamelCase ( lowercase__ : np.random.Generator , lowercase__ : dict ) -> dict: '''simple docstring''' lowerCAmelCase_ : str = {len(lowercase__ ) for value in gen_kwargs.values() if isinstance(lowercase__ , lowercase__ )} lowerCAmelCase_ : Tuple = {} for size in list_sizes: lowerCAmelCase_ : List[Any] = list(range(lowercase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCAmelCase_ : Optional[Any] = dict(lowercase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ : str = [value[i] for i in indices_per_size[len(lowercase__ )]] return shuffled_kwargs
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Optional[int] , UpperCAmelCase : float , UpperCAmelCase : Callable , UpperCAmelCase : int , UpperCAmelCase : float = 1.0 , UpperCAmelCase : str = None , ): super().__init__() lowerCAmelCase_ : Optional[int] = initial_learning_rate lowerCAmelCase_ : Tuple = warmup_steps lowerCAmelCase_ : Dict = power lowerCAmelCase_ : List[Any] = decay_schedule_fn lowerCAmelCase_ : Any = name def __call__( self : Dict , UpperCAmelCase : Union[str, Any] ): with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowerCAmelCase_ : Any = tf.cast(UpperCAmelCase , tf.floataa ) lowerCAmelCase_ : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowerCAmelCase_ : Tuple = global_step_float / warmup_steps_float lowerCAmelCase_ : Tuple = self.initial_learning_rate * tf.math.pow(UpperCAmelCase , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=UpperCAmelCase , ) def A ( self : Any ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __UpperCamelCase ( lowercase__ : float , lowercase__ : int , lowercase__ : int , lowercase__ : float = 0.0 , lowercase__ : float = 0.9 , lowercase__ : float = 0.999 , lowercase__ : float = 1E-8 , lowercase__ : Optional[float] = None , lowercase__ : Optional[float] = None , lowercase__ : float = 0.0 , lowercase__ : float = 1.0 , lowercase__ : Optional[List[str]] = None , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=lowercase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=lowercase__ , ) if num_warmup_steps: lowerCAmelCase_ : Optional[int] = WarmUp( initial_learning_rate=lowercase__ , decay_schedule_fn=lowercase__ , warmup_steps=lowercase__ , ) if weight_decay_rate > 0.0: lowerCAmelCase_ : Union[str, Any] = AdamWeightDecay( learning_rate=lowercase__ , weight_decay_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=lowercase__ , ) else: lowerCAmelCase_ : Optional[Any] = tf.keras.optimizers.Adam( learning_rate=lowercase__ , beta_a=lowercase__ , beta_a=lowercase__ , epsilon=lowercase__ , clipnorm=lowercase__ , global_clipnorm=lowercase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a ( __UpperCamelCase ): def __init__( self : Dict , UpperCAmelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.999 , UpperCAmelCase : float = 1e-7 , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "AdamWeightDecay" , **UpperCAmelCase : List[str] , ): super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = weight_decay_rate lowerCAmelCase_ : Tuple = include_in_weight_decay lowerCAmelCase_ : Optional[Any] = exclude_from_weight_decay @classmethod def A ( cls : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : int = {"""WarmUp""": WarmUp} return super(UpperCAmelCase , cls ).from_config(UpperCAmelCase , custom_objects=UpperCAmelCase ) def A ( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): super(UpperCAmelCase , self )._prepare_local(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = tf.constant( self.weight_decay_rate , name="""adam_weight_decay_rate""" ) def A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , ) return tf.no_op() def A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Tuple ): lowerCAmelCase_ : Optional[int] = list(zip(*UpperCAmelCase ) ) return super(UpperCAmelCase , self ).apply_gradients(zip(UpperCAmelCase , UpperCAmelCase ) , name=UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : str ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowerCAmelCase_ : Dict = apply_state or {} lowerCAmelCase_ : Optional[int] = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowerCAmelCase_ : Any = self._fallback_apply_state(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str=None ): lowerCAmelCase_ : Optional[int] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_dense(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): lowerCAmelCase_ : Union[str, Any] = self._get_lr(var.device , var.dtype.base_dtype , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = self._decay_weights_op(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) with tf.control_dependencies([decay] ): return super(UpperCAmelCase , self )._resource_apply_sparse(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Tuple = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def A ( self : int , UpperCAmelCase : Union[str, Any] ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(UpperCAmelCase , UpperCAmelCase ) is not None: return False return True class __a ( __UpperCamelCase ): def __init__( self : List[Any] ): lowerCAmelCase_ : str = [] lowerCAmelCase_ : List[Any] = None @property def A ( self : Any ): if self._accum_steps is None: lowerCAmelCase_ : Dict = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def A ( self : Tuple ): if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : List[Any] , UpperCAmelCase : List[Any] ): if not self._gradients: lowerCAmelCase_ : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(UpperCAmelCase ) , trainable=UpperCAmelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(UpperCAmelCase ) != len(self._gradients ): raise ValueError(F'Expected {len(self._gradients )} gradients, but got {len(UpperCAmelCase )}' ) for accum_gradient, gradient in zip(self._gradients , UpperCAmelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(UpperCAmelCase ) self._accum_steps.assign_add(1 ) def A ( self : Dict ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(UpperCAmelCase ) )
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __UpperCAmelCase = '\nHuman: <<task>>\n\nAssistant: ' __UpperCAmelCase = 'huggingface-tools/default-prompts' __UpperCAmelCase = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[int]="run" ) -> Any: '''simple docstring''' if prompt_or_repo_id is None: lowerCAmelCase_ : int = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowercase__ ) is not None: return prompt_or_repo_id lowerCAmelCase_ : Optional[Any] = cached_file( lowercase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
from __future__ import annotations class __a : def __init__( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : str ): lowerCAmelCase_ : List[Any] = text, pattern lowerCAmelCase_ : Dict = len(UpperCAmelCase ), len(UpperCAmelCase ) def A ( self : Any , UpperCAmelCase : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A ( self : Optional[int] , UpperCAmelCase : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A ( self : List[Any] ): # searches pattern in text and returns index positions lowerCAmelCase_ : str = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase_ : List[Any] = self.mismatch_in_text(UpperCAmelCase ) if mismatch_index == -1: positions.append(UpperCAmelCase ) else: lowerCAmelCase_ : Any = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase_ : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCAmelCase = 'ABAABA' __UpperCAmelCase = 'AB' __UpperCAmelCase = BoyerMooreSearch(text, pattern) __UpperCAmelCase = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
from collections import deque from math import floor from random import random from time import time class lowerCamelCase__: def __init__( self: Any ): __lowerCamelCase = {} def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=1 ): if self.graph.get(UpperCamelCase_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __lowerCamelCase = [[w, v]] if not self.graph.get(UpperCamelCase_ ): __lowerCamelCase = [] def lowerCAmelCase__ ( self: Any ): return list(self.graph ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int ): if self.graph.get(UpperCamelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Union[str, Any]=-2 , UpperCamelCase_: Union[str, Any]=-1 ): if s == d: return [] __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return visited def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any=-1 ): if c == -1: __lowerCamelCase = floor(random() * 1_00_00 ) + 10 for i in range(UpperCamelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __lowerCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase_ , UpperCamelCase_ , 1 ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Dict=-2 ): __lowerCamelCase = deque() __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] d.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) while d: __lowerCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any ): return len(self.graph[u] ) def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Any=-2 ): __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = s __lowerCamelCase = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return sorted_nodes def lowerCAmelCase__ ( self: str ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(UpperCamelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = False indirect_parents.append(UpperCamelCase_ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return list(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(UpperCamelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = False indirect_parents.append(UpperCamelCase_ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return False def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str=-2 , UpperCamelCase_: Optional[Any]=-1 ): __lowerCamelCase = time() self.dfs(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = time() return end - begin def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[str]=-2 ): __lowerCamelCase = time() self.bfs(UpperCamelCase_ ) __lowerCamelCase = time() return end - begin class lowerCamelCase__: def __init__( self: str ): __lowerCamelCase = {} def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Union[str, Any]=1 ): # check if the u exists if self.graph.get(UpperCamelCase_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __lowerCamelCase = [[w, v]] # add the other way if self.graph.get(UpperCamelCase_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __lowerCamelCase = [[w, u]] def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict ): if self.graph.get(UpperCamelCase_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase_ ) # the other way round if self.graph.get(UpperCamelCase_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any=-2 , UpperCamelCase_: str=-1 ): if s == d: return [] __lowerCamelCase = [] __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return visited def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str=-1 ): if c == -1: __lowerCamelCase = floor(random() * 1_00_00 ) + 10 for i in range(UpperCamelCase_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __lowerCamelCase = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase_ , UpperCamelCase_ , 1 ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Any=-2 ): __lowerCamelCase = deque() __lowerCamelCase = [] if s == -2: __lowerCamelCase = list(self.graph )[0] d.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) while d: __lowerCamelCase = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Optional[Any] ): return len(self.graph[u] ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(UpperCamelCase_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = False indirect_parents.append(UpperCamelCase_ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return list(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = list(self.graph )[0] stack.append(UpperCamelCase_ ) visited.append(UpperCamelCase_ ) __lowerCamelCase = -2 __lowerCamelCase = [] __lowerCamelCase = s __lowerCamelCase = False __lowerCamelCase = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __lowerCamelCase = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __lowerCamelCase = len(UpperCamelCase_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __lowerCamelCase = node[1] break # check if all the children are visited if s == ss: stack.pop() __lowerCamelCase = True if len(UpperCamelCase_ ) != 0: __lowerCamelCase = stack[len(UpperCamelCase_ ) - 1] else: __lowerCamelCase = False indirect_parents.append(UpperCamelCase_ ) __lowerCamelCase = s __lowerCamelCase = ss # check if se have reached the starting point if len(UpperCamelCase_ ) == 0: return False def lowerCAmelCase__ ( self: Dict ): return list(self.graph ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any]=-2 , UpperCamelCase_: Dict=-1 ): __lowerCamelCase = time() self.dfs(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = time() return end - begin def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Dict=-2 ): __lowerCamelCase = time() self.bfs(UpperCamelCase_ ) __lowerCamelCase = time() return end - begin
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = 'Hello, World!' UpperCAmelCase_ = 'en_XX' def lowerCamelCase__ ( A__ : str , A__ : str , A__ : bool ): '''simple docstring''' __lowerCamelCase = Path("""data_bin""" ) __lowerCamelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(A__ ).parent ) , checkpoint_file=Path(A__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(A__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(A__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(A__ ) __lowerCamelCase = xmod.model.encoder.sentence_encoder __lowerCamelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCamelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , A__ ) __lowerCamelCase = XmodForSequenceClassification(A__ ) if classification_head else XmodForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = xmod_sent_encoder.embed_tokens.weight __lowerCamelCase = xmod_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCamelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = xmod_sent_encoder.layers[i] # self attention __lowerCamelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) __lowerCamelCase = xmod_layer.self_attn.q_proj.weight __lowerCamelCase = xmod_layer.self_attn.q_proj.bias __lowerCamelCase = xmod_layer.self_attn.k_proj.weight __lowerCamelCase = xmod_layer.self_attn.k_proj.bias __lowerCamelCase = xmod_layer.self_attn.v_proj.weight __lowerCamelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) __lowerCamelCase = xmod_layer.self_attn.out_proj.weight __lowerCamelCase = xmod_layer.self_attn.out_proj.bias __lowerCamelCase = xmod_layer.self_attn_layer_norm.weight __lowerCamelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias # output __lowerCamelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) __lowerCamelCase = xmod_layer.fca.weight __lowerCamelCase = xmod_layer.fca.bias __lowerCamelCase = xmod_layer.final_layer_norm.weight __lowerCamelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCamelCase = xmod_layer.adapter_layer_norm.weight __lowerCamelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCamelCase = bert_output.adapter_modules[lang_code] __lowerCamelCase = xmod_layer.adapter_modules[lang_code] __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias __lowerCamelCase = from_adapter.fca.weight __lowerCamelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCamelCase = xmod_sent_encoder.layer_norm.weight __lowerCamelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCamelCase = xmod.model.classification_heads["""mnli"""].dense.weight __lowerCamelCase = xmod.model.classification_heads["""mnli"""].dense.bias __lowerCamelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight __lowerCamelCase = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowerCamelCase = xmod.model.encoder.lm_head.dense.weight __lowerCamelCase = xmod.model.encoder.lm_head.dense.bias __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = xmod.model.encoder.lm_head.weight __lowerCamelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = xmod.encode(A__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(A__ ) __lowerCamelCase = model(A__ )[0] if classification_head: __lowerCamelCase = xmod.model.classification_heads["""mnli"""](xmod.extract_features(A__ ) ) else: __lowerCamelCase = xmod.model(A__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCamelCase = torch.allclose(A__ , A__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase_ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : "DiagonalGaussianDistribution" class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : Dict = True @register_to_config def __init__( self: Union[str, Any] , UpperCamelCase_: int = 3 , UpperCamelCase_: int = 3 , UpperCamelCase_: Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase_: Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase_: Tuple[int] = (64,) , UpperCamelCase_: int = 1 , UpperCamelCase_: str = "silu" , UpperCamelCase_: int = 4 , UpperCamelCase_: int = 32 , UpperCamelCase_: int = 32 , UpperCamelCase_: float = 0.1_8215 , ): super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , act_fn=UpperCamelCase_ , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Any=False ): if isinstance(UpperCamelCase_ , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: bool = True ): __lowerCamelCase = use_tiling def lowerCAmelCase__ ( self: Optional[int] ): self.enable_tiling(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = True def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = {} def fn_recursive_add_processors(UpperCamelCase_: str , UpperCamelCase_: torch.nn.Module , UpperCamelCase_: Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase_ , """set_processor""" ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase_: str , UpperCamelCase_: torch.nn.Module , UpperCamelCase_: int ): if hasattr(UpperCamelCase_ , """set_processor""" ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(UpperCamelCase_ ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(UpperCamelCase_ ) else: __lowerCamelCase = self.encoder(UpperCamelCase_ ) __lowerCamelCase = self.quant_conv(UpperCamelCase_ ) __lowerCamelCase = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) __lowerCamelCase = self.post_quant_conv(UpperCamelCase_ ) __lowerCamelCase = self.decoder(UpperCamelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) @apply_forward_hook def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(UpperCamelCase_ ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(UpperCamelCase_ ) else: __lowerCamelCase = self._decode(UpperCamelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] ): __lowerCamelCase = min(a.shape[2] , b.shape[2] , UpperCamelCase_ ) for y in range(UpperCamelCase_ ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = min(a.shape[3] , b.shape[3] , UpperCamelCase_ ) for x in range(UpperCamelCase_ ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase__ ( self: int , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , UpperCamelCase_ ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , UpperCamelCase_ ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(UpperCamelCase_ ) __lowerCamelCase = self.quant_conv(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) __lowerCamelCase = [] for i, row in enumerate(UpperCamelCase_ ): __lowerCamelCase = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = True ): __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , UpperCamelCase_ ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , UpperCamelCase_ ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(UpperCamelCase_ ) __lowerCamelCase = self.decoder(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) __lowerCamelCase = [] for i, row in enumerate(UpperCamelCase_ ): __lowerCamelCase = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[torch.Generator] = None , ): __lowerCamelCase = sample __lowerCamelCase = self.encode(UpperCamelCase_ ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=UpperCamelCase_ ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(UpperCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ )
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase__ ( A__ : List[Any]=2 , A__ : Tuple=3 , A__ : Union[str, Any]=16 , A__ : int = 10 , A__ : int = 2 ): '''simple docstring''' def get_dataset(A__ : List[str] ): __lowerCamelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __lowerCamelCase = get_dataset(A__ ) __lowerCamelCase = get_dataset(A__ ) __lowerCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) __lowerCamelCase = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase__ ( A__ : str , A__ : Tuple , A__ : List[str] , A__ : str , A__ : List[str] , A__ : List[Any]=None ): '''simple docstring''' __lowerCamelCase = [] for epoch in range(A__ ): # Train quickly model.train() for batch in dataloader: __lowerCamelCase, __lowerCamelCase = batch __lowerCamelCase = model(A__ ) __lowerCamelCase = torch.nn.functional.mse_loss(A__ , A__ ) accelerator.backward(A__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase__( nn.Module): def __init__( self: Dict ): super().__init__() __lowerCamelCase = nn.Parameter(torch.randn(1 ) ) __lowerCamelCase = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[Any] ): return x * self.a + self.b class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase_ , automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline __lowerCamelCase = Accelerator(project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCAmelCase__ ( self: Dict ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() # Train baseline __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial __lowerCamelCase = os.path.join(UpperCamelCase_ , """initial""" ) accelerator.save_state(UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() __lowerCamelCase = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = Accelerator() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.load_state(UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save everything __lowerCamelCase = os.path.join(UpperCamelCase_ , """checkpoint""" ) accelerator.save_state(UpperCamelCase_ ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase_ ) test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() __lowerCamelCase = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() # Train partially set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase_ ) __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.load_state(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_0""" ) ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((__lowerCamelCase), (__lowerCamelCase)) = model.a.item(), model.b.item() __lowerCamelCase = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = torch.tensor([1, 2, 3] ) __lowerCamelCase = torch.tensor([2, 3, 4] ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(net.parameters() ) __lowerCamelCase = Accelerator() with self.assertRaises(UpperCamelCase_ ) as ve: accelerator.register_for_checkpointing(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) __lowerCamelCase = torch.optim.lr_scheduler.StepLR(UpperCamelCase_ , step_size=1 , gamma=0.99 ) __lowerCamelCase, __lowerCamelCase = dummy_dataloaders() __lowerCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() __lowerCamelCase = scheduler.state_dict() train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(UpperCamelCase_ , scheduler.state_dict() ) def lowerCAmelCase__ ( self: List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) __lowerCamelCase = DummyModel() __lowerCamelCase = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ , total_limit=2 ) # Train baseline __lowerCamelCase = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) __lowerCamelCase = accelerator.prepare(UpperCamelCase_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = '/tmp/accelerate/state_checkpointing' UpperCAmelCase_ = DummyModel() UpperCAmelCase_ = torch.optim.Adam(params=model.parameters(), lr=1E-3) UpperCAmelCase_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCAmelCase_ , UpperCAmelCase_ = dummy_dataloaders() UpperCAmelCase_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCAmelCase_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCAmelCase_ = group['params'][0].device break assert param_device.type == accelerator.device.type UpperCAmelCase_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: UpperCAmelCase_ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: UpperCAmelCase_ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCAmelCase_ = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize UpperCAmelCase_ = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' UpperCAmelCase_ = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' UpperCAmelCase_ = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__( datasets.Metric): def lowerCAmelCase__ ( self: Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] ): import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any]=0.9 , UpperCamelCase_: Dict=3 , UpperCamelCase_: Dict=0.5 ): if NLTK_VERSION >= version.Version("""3.6.5""" ): __lowerCamelCase = [ meteor_score.single_meteor_score( word_tokenize(UpperCamelCase_ ) , word_tokenize(UpperCamelCase_ ) , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] else: __lowerCamelCase = [ meteor_score.single_meteor_score(UpperCamelCase_ , UpperCamelCase_ , alpha=UpperCamelCase_ , beta=UpperCamelCase_ , gamma=UpperCamelCase_ ) for ref, pred in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return {"meteor": np.mean(UpperCamelCase_ )}
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
UpperCAmelCase_ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } UpperCAmelCase_ = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def lowerCamelCase__ ( A__ : float , A__ : str , A__ : str ): '''simple docstring''' if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowerCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(A__ )}' ) raise ValueError(A__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCAmelCase_ = logging.getLogger(__name__) @dataclass(frozen=__lowerCamelCase) class lowerCamelCase__: UpperCAmelCase__ : str UpperCAmelCase__ : str UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None UpperCAmelCase__ : Optional[str] = None @dataclass(frozen=__lowerCamelCase) class lowerCamelCase__: UpperCAmelCase__ : List[int] UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[List[int]] = None UpperCAmelCase__ : Optional[Union[int, float]] = None UpperCAmelCase__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[InputFeatures] def __init__( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: str , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Any]=False , UpperCamelCase_: bool = False , ): __lowerCamelCase = hans_processors[task]() __lowerCamelCase = os.path.join( UpperCamelCase_ , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(UpperCamelCase_ ) , UpperCamelCase_ , ) , ) __lowerCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase, __lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase = cached_features_file + """.lock""" with FileLock(UpperCamelCase_ ): if os.path.exists(UpperCamelCase_ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) __lowerCamelCase = torch.load(UpperCamelCase_ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) __lowerCamelCase = ( processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) ) logger.info("""Training examples: %s""" , len(UpperCamelCase_ ) ) __lowerCamelCase = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info("""Saving features into cached file %s""" , UpperCamelCase_ ) torch.save(self.features , UpperCamelCase_ ) def __len__( self: Optional[int] ): return len(self.features ) def __getitem__( self: Any , UpperCamelCase_: Optional[int] ): return self.features[i] def lowerCAmelCase__ ( self: Dict ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase__: UpperCAmelCase__ : List[InputFeatures] def __init__( self: Dict , UpperCamelCase_: str , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: str , UpperCamelCase_: Optional[int] = 1_28 , UpperCamelCase_: Dict=False , UpperCamelCase_: bool = False , ): __lowerCamelCase = hans_processors[task]() __lowerCamelCase = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase, __lowerCamelCase = label_list[2], label_list[1] __lowerCamelCase = label_list __lowerCamelCase = processor.get_dev_examples(UpperCamelCase_ ) if evaluate else processor.get_train_examples(UpperCamelCase_ ) __lowerCamelCase = hans_convert_examples_to_features(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_00_00 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(UpperCamelCase_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __lowerCamelCase = tf.data.Dataset.from_generator( UpperCamelCase_ , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowerCAmelCase__ ( self: Optional[int] ): return self.dataset def __len__( self: Tuple ): return len(self.features ) def __getitem__( self: Dict , UpperCamelCase_: List[Any] ): return self.features[i] def lowerCAmelCase__ ( self: Dict ): return self.label_list class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: List[Any] ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , """heuristics_train_set.txt""" ) ) , """train""" ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int ): return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase_ , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def lowerCAmelCase__ ( self: List[Any] ): return ["contradiction", "entailment", "neutral"] def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] ): __lowerCamelCase = [] for i, line in enumerate(UpperCamelCase_ ): if i == 0: continue __lowerCamelCase = """%s-%s""" % (set_type, line[0]) __lowerCamelCase = line[5] __lowerCamelCase = line[6] __lowerCamelCase = line[7][2:] if line[7].startswith("""ex""" ) else line[7] __lowerCamelCase = line[0] examples.append(InputExample(guid=UpperCamelCase_ , text_a=UpperCamelCase_ , text_b=UpperCamelCase_ , label=UpperCamelCase_ , pairID=UpperCamelCase_ ) ) return examples def lowerCamelCase__ ( A__ : List[InputExample] , A__ : List[str] , A__ : int , A__ : PreTrainedTokenizer , ): '''simple docstring''' __lowerCamelCase = {label: i for i, label in enumerate(A__ )} __lowerCamelCase = [] for ex_index, example in tqdm.tqdm(enumerate(A__ ) , desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d""" % (ex_index) ) __lowerCamelCase = tokenizer( example.text_a , example.text_b , add_special_tokens=A__ , max_length=A__ , padding="""max_length""" , truncation=A__ , return_overflowing_tokens=A__ , ) __lowerCamelCase = label_map[example.label] if example.label in label_map else 0 __lowerCamelCase = int(example.pairID ) features.append(InputFeatures(**A__ , label=A__ , pairID=A__ ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f'guid: {example}' ) logger.info(f'features: {features[i]}' ) return features UpperCAmelCase_ = { 'hans': 3, } UpperCAmelCase_ = { 'hans': HansProcessor, }
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[Any] , A__ : Any , A__ : Optional[int] , A__ : Optional[Any] , A__ : str ): '''simple docstring''' if index == r: for j in range(A__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowerCamelCase = arr[i] combination_util(A__ , A__ , A__ , index + 1 , A__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A__ , A__ , A__ , A__ , A__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any] , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(A__ , A__ , A__ , 0 , A__ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
from collections.abc import Sequence def lowerCamelCase__ ( A__ : Sequence[int] | None = None ): '''simple docstring''' if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __lowerCamelCase = nums[0] for i in range(1 , len(A__ ) ): __lowerCamelCase = nums[i] __lowerCamelCase = max(A__ , ans + num , A__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user UpperCAmelCase_ = int(input('Enter number of elements : ').strip()) UpperCAmelCase_ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
29
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
1
def lowerCamelCase__ ( A__ : int , A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowerCamelCase__ ( ): '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( A__ : dict ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( A__ : np.ndarray , A__ : np.ndarray ): '''simple docstring''' __lowerCamelCase = XGBClassifier() classifier.fit(A__ , A__ ) return classifier def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = load_iris() __lowerCamelCase, __lowerCamelCase = data_handling(A__ ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = train_test_split( A__ , A__ , test_size=0.25 ) __lowerCamelCase = iris["""target_names"""] # Create an XGBoost Classifier from the training data __lowerCamelCase = xgboost(A__ , A__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A__ , A__ , A__ , display_labels=A__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if length <= 0 or not isinstance(A__ , A__ ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
def lowerCamelCase__ ( A__ : List[Any] , A__ : Any ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase__ ( A__ : Dict , A__ : Optional[Any]=0 ): '''simple docstring''' return sorted(A__ , key=lambda A__ : x[column] ) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : List[Any] , A__ : Optional[int]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , A__ ): __lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowerCamelCase = current_dis return min_dis def lowerCamelCase__ ( A__ : Tuple , A__ : List[Any] , A__ : int=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , A__ ): for j in range(max(0 , i - 6 ) , A__ ): __lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __lowerCamelCase = current_dis return min_dis def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[str] , A__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(A__ , A__ ) # recursion __lowerCamelCase = points_counts // 2 __lowerCamelCase = closest_pair_of_points_sqr( A__ , points_sorted_on_y[:mid] , A__ ) __lowerCamelCase = closest_pair_of_points_sqr( A__ , points_sorted_on_y[mid:] , points_counts - mid ) __lowerCamelCase = min(A__ , A__ ) __lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(A__ ) __lowerCamelCase = dis_between_closest_in_strip( A__ , len(A__ ) , A__ ) return min(A__ , A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Any ): '''simple docstring''' __lowerCamelCase = column_based_sort(A__ , column=0 ) __lowerCamelCase = column_based_sort(A__ , column=1 ) return ( closest_pair_of_points_sqr( A__ , A__ , A__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : List[str] , A__ : Optional[Any] ): '''simple docstring''' if isinstance(A__ , torch.Tensor ): return image elif isinstance(A__ , PIL.Image.Image ): __lowerCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): __lowerCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __lowerCamelCase = np.concatenate(A__ , axis=0 ) __lowerCamelCase = np.array(A__ ).astype(np.floataa ) / 255.0 __lowerCamelCase = image.transpose(0 , 3 , 1 , 2 ) __lowerCamelCase = 2.0 * image - 1.0 __lowerCamelCase = torch.from_numpy(A__ ) elif isinstance(image[0] , torch.Tensor ): __lowerCamelCase = torch.cat(A__ , dim=0 ) return image def lowerCamelCase__ ( A__ : List[str] , A__ : int , A__ : int , A__ : str=0.9_995 ): '''simple docstring''' if not isinstance(A__ , np.ndarray ): __lowerCamelCase = True __lowerCamelCase = va.device __lowerCamelCase = va.cpu().numpy() __lowerCamelCase = va.cpu().numpy() __lowerCamelCase = np.sum(va * va / (np.linalg.norm(A__ ) * np.linalg.norm(A__ )) ) if np.abs(A__ ) > DOT_THRESHOLD: __lowerCamelCase = (1 - t) * va + t * va else: __lowerCamelCase = np.arccos(A__ ) __lowerCamelCase = np.sin(A__ ) __lowerCamelCase = theta_a * t __lowerCamelCase = np.sin(A__ ) __lowerCamelCase = np.sin(theta_a - theta_t ) / sin_theta_a __lowerCamelCase = sin_theta_t / sin_theta_a __lowerCamelCase = sa * va + sa * va if inputs_are_torch: __lowerCamelCase = torch.from_numpy(A__ ).to(A__ ) return va def lowerCamelCase__ ( A__ : Optional[int] , A__ : Tuple ): '''simple docstring''' __lowerCamelCase = F.normalize(A__ , dim=-1 ) __lowerCamelCase = F.normalize(A__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' for param in model.parameters(): __lowerCamelCase = value class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , UpperCamelCase_: AutoencoderKL , UpperCamelCase_: CLIPTextModel , UpperCamelCase_: CLIPModel , UpperCamelCase_: CLIPTokenizer , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , UpperCamelCase_: CLIPFeatureExtractor , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[str]=None , ): super().__init__() self.register_modules( vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , clip_model=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , coca_model=UpperCamelCase_ , coca_tokenizer=UpperCamelCase_ , coca_transform=UpperCamelCase_ , ) __lowerCamelCase = ( feature_extractor.size if isinstance(feature_extractor.size , UpperCamelCase_ ) else feature_extractor.size["""shortest_edge"""] ) __lowerCamelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , UpperCamelCase_ ) set_requires_grad(self.clip_model , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): self.enable_attention_slicing(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): set_requires_grad(self.vae , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): set_requires_grad(self.vae , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): set_requires_grad(self.unet , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): set_requires_grad(self.unet , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Dict , UpperCamelCase_: List[str] , UpperCamelCase_: str ): # get the original timestep using init_timestep __lowerCamelCase = min(int(num_inference_steps * strength ) , UpperCamelCase_ ) __lowerCamelCase = max(num_inference_steps - init_timestep , 0 ) __lowerCamelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self: str , UpperCamelCase_: str , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any]=None ): if not isinstance(UpperCamelCase_ , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = image.to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCamelCase_ ) ] __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) else: __lowerCamelCase = self.vae.encode(UpperCamelCase_ ).latent_dist.sample(UpperCamelCase_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase = 0.1_8215 * init_latents __lowerCamelCase = init_latents.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = randn_tensor(init_latents.shape , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) # get latents __lowerCamelCase = self.scheduler.add_noise(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = init_latents return latents def lowerCAmelCase__ ( self: int , UpperCamelCase_: Any ): __lowerCamelCase = self.coca_transform(UpperCamelCase_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowerCamelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __lowerCamelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = self.feature_extractor.preprocess(UpperCamelCase_ ) __lowerCamelCase = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() __lowerCamelCase = self.clip_model.get_image_features(UpperCamelCase_ ) __lowerCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = image_embeddings_clip.repeat_interleave(UpperCamelCase_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any , UpperCamelCase_: List[Any] , ): __lowerCamelCase = latents.detach().requires_grad_() __lowerCamelCase = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # predict the noise residual __lowerCamelCase = self.unet(UpperCamelCase_ , UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowerCamelCase = self.scheduler.alphas_cumprod[timestep] __lowerCamelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowerCamelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowerCamelCase = torch.sqrt(UpperCamelCase_ ) __lowerCamelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCamelCase_ ): __lowerCamelCase = self.scheduler.sigmas[index] __lowerCamelCase = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase = 1 / 0.1_8215 * sample __lowerCamelCase = self.vae.decode(UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = transforms.Resize(self.feature_extractor_size )(UpperCamelCase_ ) __lowerCamelCase = self.normalize(UpperCamelCase_ ).to(latents.dtype ) __lowerCamelCase = self.clip_model.get_image_features(UpperCamelCase_ ) __lowerCamelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCamelCase_ ) __lowerCamelCase = spherical_dist_loss(UpperCamelCase_ , UpperCamelCase_ ).mean() * clip_guidance_scale __lowerCamelCase = -torch.autograd.grad(UpperCamelCase_ , UpperCamelCase_ )[0] if isinstance(self.scheduler , UpperCamelCase_ ): __lowerCamelCase = latents.detach() + grads * (sigma**2) __lowerCamelCase = noise_pred_original else: __lowerCamelCase = noise_pred_original - torch.sqrt(UpperCamelCase_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase_: Union[torch.FloatTensor, PIL.Image.Image] , UpperCamelCase_: Union[torch.FloatTensor, PIL.Image.Image] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: Optional[int] = 5_12 , UpperCamelCase_: Optional[int] = 5_12 , UpperCamelCase_: float = 0.6 , UpperCamelCase_: Optional[int] = 50 , UpperCamelCase_: Optional[float] = 7.5 , UpperCamelCase_: Optional[int] = 1 , UpperCamelCase_: float = 0.0 , UpperCamelCase_: Optional[float] = 1_00 , UpperCamelCase_: Optional[torch.Generator] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , UpperCamelCase_: float = 0.8 , UpperCamelCase_: float = 0.1 , UpperCamelCase_: float = 0.1 , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(UpperCamelCase_ )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(UpperCamelCase_ , torch.Generator ) and batch_size > 1: __lowerCamelCase = [generator] + [None] * (batch_size - 1) __lowerCamelCase = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] __lowerCamelCase = [x[0] for x in coca_is_none if x[1]] __lowerCamelCase = """, """.join(UpperCamelCase_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCamelCase_ ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase = self.get_image_description(UpperCamelCase_ ) if style_prompt is None: if len(UpperCamelCase_ ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __lowerCamelCase = self.get_image_description(UpperCamelCase_ ) # get prompt text embeddings for content and style __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase = self.tokenizer( UpperCamelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors="""pt""" , ) __lowerCamelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowerCamelCase = slerp(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = text_embeddings.repeat_interleave(UpperCamelCase_ , dim=0 ) # set timesteps __lowerCamelCase = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowerCamelCase = {} if accepts_offset: __lowerCamelCase = 1 self.scheduler.set_timesteps(UpperCamelCase_ , **UpperCamelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowerCamelCase, __lowerCamelCase = self.get_timesteps(UpperCamelCase_ , UpperCamelCase_ , self.device ) __lowerCamelCase = timesteps[:1].repeat(UpperCamelCase_ ) # Preprocess image __lowerCamelCase = preprocess(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text_embeddings.dtype , self.device , UpperCamelCase_ ) __lowerCamelCase = preprocess(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.prepare_latents( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text_embeddings.dtype , self.device , UpperCamelCase_ ) __lowerCamelCase = slerp(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip_guidance_scale > 0: __lowerCamelCase = self.get_clip_image_embeddings(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.get_clip_image_embeddings(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = slerp( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase = content_text_input.input_ids.shape[-1] __lowerCamelCase = self.tokenizer([""""""] , padding="""max_length""" , max_length=UpperCamelCase_ , return_tensors="""pt""" ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowerCamelCase = uncond_embeddings.repeat_interleave(UpperCamelCase_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowerCamelCase = torch.randn(UpperCamelCase_ , generator=UpperCamelCase_ , device="""cpu""" , dtype=UpperCamelCase_ ).to( self.device ) else: __lowerCamelCase = torch.randn(UpperCamelCase_ , generator=UpperCamelCase_ , device=self.device , dtype=UpperCamelCase_ ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase = {} if accepts_eta: __lowerCamelCase = eta # check if the scheduler accepts generator __lowerCamelCase = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowerCamelCase = generator with self.progress_bar(total=UpperCamelCase_ ): for i, t in enumerate(UpperCamelCase_ ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) # predict the noise residual __lowerCamelCase = self.unet(UpperCamelCase_ , UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowerCamelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowerCamelCase, __lowerCamelCase = self.cond_fn( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowerCamelCase = 1 / 0.1_8215 * latents __lowerCamelCase = self.vae.decode(UpperCamelCase_ ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCamelCase_ , nsfw_content_detected=UpperCamelCase_ )
29
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : int = 0 UpperCAmelCase__ : bool = False UpperCAmelCase__ : float = 3.0 class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCamelCase_ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def lowerCAmelCase__ ( self: str ): # If no defaults are changed, `to_kwargs` returns an empty dict. __lowerCamelCase = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() __lowerCamelCase = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __lowerCamelCase = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , UpperCamelCase_ ) @require_multi_gpu def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase_ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase_ = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase_ = torch.nn.Linear(100, 200) UpperCAmelCase_ = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase_ = '' UpperCAmelCase_ = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : UNetaDModel UpperCAmelCase__ : ScoreSdeVeScheduler def __init__( self: Any , UpperCamelCase_: UNetaDModel , UpperCamelCase_: ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) @torch.no_grad() def __call__( self: str , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 20_00 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , **UpperCamelCase_: List[str] , ): __lowerCamelCase = self.unet.config.sample_size __lowerCamelCase = (batch_size, 3, img_size, img_size) __lowerCamelCase = self.unet __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ ) * self.scheduler.init_noise_sigma __lowerCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase_ ) self.scheduler.set_sigmas(UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __lowerCamelCase = self.unet(UpperCamelCase_ , UpperCamelCase_ ).sample __lowerCamelCase = self.scheduler.step_correct(UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # prediction step __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ).sample __lowerCamelCase = self.scheduler.step_pred(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = output.prev_sample, output.prev_sample_mean __lowerCamelCase = sample_mean.clamp(0 , 1 ) __lowerCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=UpperCamelCase_ )
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = 256 class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = ['melgan'] def __init__( self: Optional[Any] , UpperCamelCase_: SpectrogramNotesEncoder , UpperCamelCase_: SpectrogramContEncoder , UpperCamelCase_: TaFilmDecoder , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN __lowerCamelCase = math.log(1E-5 ) # Matches MelGAN training. __lowerCamelCase = 4.0 # Largest value for most examples __lowerCamelCase = 1_28 self.register_modules( notes_encoder=UpperCamelCase_ , continuous_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ , scheduler=UpperCamelCase_ , melgan=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple , UpperCamelCase_: int=(-1.0, 1.0) , UpperCamelCase_: Union[str, Any]=False ): __lowerCamelCase, __lowerCamelCase = output_range if clip: __lowerCamelCase = torch.clip(UpperCamelCase_ , self.min_value , self.max_value ) # Scale to [0, 1]. __lowerCamelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def lowerCAmelCase__ ( self: int , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any]=(-1.0, 1.0) , UpperCamelCase_: Dict=False ): __lowerCamelCase, __lowerCamelCase = input_range __lowerCamelCase = torch.clip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if clip else outputs # Scale to [0, 1]. __lowerCamelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any , UpperCamelCase_: Dict ): __lowerCamelCase = input_tokens > 0 __lowerCamelCase, __lowerCamelCase = self.notes_encoder( encoder_input_tokens=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) __lowerCamelCase, __lowerCamelCase = self.continuous_encoder( encoder_inputs=UpperCamelCase_ , encoder_inputs_mask=UpperCamelCase_ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] ): __lowerCamelCase = noise_time if not torch.is_tensor(UpperCamelCase_ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(UpperCamelCase_ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.decoder( encodings_and_masks=UpperCamelCase_ , decoder_input_tokens=UpperCamelCase_ , decoder_noise_time=UpperCamelCase_ ) return logits @torch.no_grad() def __call__( self: List[Any] , UpperCamelCase_: List[List[int]] , UpperCamelCase_: Optional[torch.Generator] = None , UpperCamelCase_: int = 1_00 , UpperCamelCase_: bool = True , UpperCamelCase_: str = "numpy" , UpperCamelCase_: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_: int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCamelCase_ )}.' ) __lowerCamelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __lowerCamelCase = np.zeros([1, 0, self.n_dims] , np.floataa ) __lowerCamelCase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) for i, encoder_input_tokens in enumerate(UpperCamelCase_ ): if i == 0: __lowerCamelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __lowerCamelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCamelCase_ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __lowerCamelCase = ones __lowerCamelCase = self.scale_features( UpperCamelCase_ , output_range=[-1.0, 1.0] , clip=UpperCamelCase_ ) __lowerCamelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=UpperCamelCase_ , continuous_mask=UpperCamelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __lowerCamelCase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCamelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCamelCase_ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase = self.decode( encodings_and_masks=UpperCamelCase_ , input_tokens=UpperCamelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample __lowerCamelCase = self.scale_to_features(UpperCamelCase_ , input_range=[-1.0, 1.0] ) __lowerCamelCase = mel[:1] __lowerCamelCase = mel.cpu().float().numpy() __lowerCamelCase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase_ , UpperCamelCase_ ) logger.info("""Generated segment""" , UpperCamelCase_ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( """Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'.""" ) elif output_type == "numpy" and self.melgan is None: raise ValueError( """Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'.""" ) if output_type == "numpy": __lowerCamelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __lowerCamelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCamelCase_ )
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = 'luke' def __init__( self: Any , UpperCamelCase_: Optional[int]=5_02_67 , UpperCamelCase_: List[str]=50_00_00 , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: List[Any]=2_56 , UpperCamelCase_: str=12 , UpperCamelCase_: List[Any]=12 , UpperCamelCase_: Dict=30_72 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: int=5_12 , UpperCamelCase_: str=2 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Dict=None , UpperCamelCase_: List[str]=1 , UpperCamelCase_: Tuple=0 , UpperCamelCase_: Optional[Any]=2 , **UpperCamelCase_: Optional[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = vocab_size __lowerCamelCase = entity_vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = entity_emb_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = use_entity_aware_attention __lowerCamelCase = classifier_dropout
29
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
1
def lowerCamelCase__ ( A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' def count_of_possible_combinations(A__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(A__ ) def lowerCamelCase__ ( A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( A__ : int , A__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCamelCase = sum( count_of_possible_combinations_with_dp_array(target - item , A__ ) for item in array ) __lowerCamelCase = answer return answer __lowerCamelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(A__ , A__ ) def lowerCamelCase__ ( A__ : int , A__ : list[int] , A__ : int ): '''simple docstring''' __lowerCamelCase = [0] * (target + 1) __lowerCamelCase = 1 for i in range(1 , target + 1 ): for j in range(A__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = 3 UpperCAmelCase_ = 5 UpperCAmelCase_ = [1, 2, 5] print(combination_sum_iv(n, array, target))
29
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = 'segformer' def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Any=4 , UpperCamelCase_: int=[2, 2, 2, 2] , UpperCamelCase_: Optional[Any]=[8, 4, 2, 1] , UpperCamelCase_: Union[str, Any]=[32, 64, 1_60, 2_56] , UpperCamelCase_: int=[7, 3, 3, 3] , UpperCamelCase_: Dict=[4, 2, 2, 2] , UpperCamelCase_: str=[1, 2, 5, 8] , UpperCamelCase_: List[str]=[4, 4, 4, 4] , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: List[Any]=0.0 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Optional[int]=1E-6 , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=2_55 , **UpperCamelCase_: List[Any] , ): super().__init__(**UpperCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase_ , ) __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = depths __lowerCamelCase = sr_ratios __lowerCamelCase = hidden_sizes __lowerCamelCase = patch_sizes __lowerCamelCase = strides __lowerCamelCase = mlp_ratios __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = classifier_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = drop_path_rate __lowerCamelCase = layer_norm_eps __lowerCamelCase = decoder_hidden_size __lowerCamelCase = kwargs.get("""reshape_last_stage""" , UpperCamelCase_ ) __lowerCamelCase = semantic_loss_ignore_index class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Union[str, Any] ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
29
import string import numpy def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , A__ ) class lowerCamelCase__: UpperCAmelCase__ : Optional[int] = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase__ : Optional[int] = numpy.vectorize(lambda __lowerCamelCase: x % 36) UpperCAmelCase__ : List[Any] = numpy.vectorize(__lowerCamelCase) def __init__( self: List[Any] , UpperCamelCase_: numpy.ndarray ): __lowerCamelCase = self.modulus(UpperCamelCase_ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowerCamelCase = encrypt_key.shape[0] def lowerCAmelCase__ ( self: str , UpperCamelCase_: str ): return self.key_string.index(UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int ): return self.key_string[round(UpperCamelCase_ )] def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = len(self.key_string ) if greatest_common_divisor(UpperCamelCase_ , len(self.key_string ) ) != 1: __lowerCamelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str ): __lowerCamelCase = [char for char in text.upper() if char in self.key_string] __lowerCamelCase = chars[-1] while len(UpperCamelCase_ ) % self.break_key != 0: chars.append(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(self.encrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[ 0 ] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowerCamelCase = det % len(self.key_string ) __lowerCamelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowerCamelCase = i break __lowerCamelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.make_decrypt_key() __lowerCamelCase = self.process_text(text.upper() ) __lowerCamelCase = """""" for i in range(0 , len(UpperCamelCase_ ) - self.break_key + 1 , self.break_key ): __lowerCamelCase = text[i : i + self.break_key] __lowerCamelCase = [self.replace_letters(UpperCamelCase_ ) for char in batch] __lowerCamelCase = numpy.array([vec] ).T __lowerCamelCase = self.modulus(decrypt_key.dot(UpperCamelCase_ ) ).T.tolist()[0] __lowerCamelCase = """""".join( self.replace_digits(UpperCamelCase_ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = int(input("""Enter the order of the encryption key: """ ) ) __lowerCamelCase = [] print("""Enter each row of the encryption key with space separated integers""" ) for _ in range(A__ ): __lowerCamelCase = [int(A__ ) for x in input().split()] hill_matrix.append(A__ ) __lowerCamelCase = HillCipher(numpy.array(A__ ) ) print("""Would you like to encrypt or decrypt some text? (1 or 2)""" ) __lowerCamelCase = input("""\n1. Encrypt\n2. Decrypt\n""" ) if option == "1": __lowerCamelCase = input("""What text would you like to encrypt?: """ ) print("""Your encrypted text is:""" ) print(hc.encrypt(A__ ) ) elif option == "2": __lowerCamelCase = input("""What text would you like to decrypt?: """ ) print("""Your decrypted text is:""" ) print(hc.decrypt(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
29
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import qiskit def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = qiskit.Aer.get_backend("""aer_simulator""" ) __lowerCamelCase = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase_ = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
29
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 UpperCAmelCase_ = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] UpperCAmelCase__ : List[str] = TaTokenizer UpperCAmelCase__ : List[int] = [] def __init__( self: int , UpperCamelCase_: str=None , UpperCamelCase_: Tuple=None , UpperCamelCase_: int="</s>" , UpperCamelCase_: Tuple="<unk>" , UpperCamelCase_: Any="<pad>" , UpperCamelCase_: str=1_00 , UpperCamelCase_: str=None , **UpperCamelCase_: int , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __lowerCamelCase = [F'<extra_id_{i}>' for i in range(UpperCamelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __lowerCamelCase = len(set(filter(lambda UpperCamelCase_ : bool("""extra_id_""" in str(UpperCamelCase_ ) ) , UpperCamelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , extra_ids=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , **UpperCamelCase_ , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True __lowerCamelCase = extra_ids @staticmethod def lowerCAmelCase__ ( UpperCamelCase_: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __lowerCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase_ , ) return max_model_length def lowerCAmelCase__ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) logger.info(F'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __lowerCamelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): __lowerCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase__ ( self: Any ): return list( set(filter(lambda UpperCamelCase_ : bool(re.search(r"""<extra_id_\d+>""" , UpperCamelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase__ ( self: Union[str, Any] ): return [self.convert_tokens_to_ids(UpperCamelCase_ ) for token in self.get_sentinel_tokens()]
29
def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCamelCase = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: UpperCAmelCase_ = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: UpperCAmelCase_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
29
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger() def lowerCamelCase__ ( A__ : int , A__ : str , A__ : LevitConfig , A__ : Path , A__ : bool = True ): '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __lowerCamelCase = timm.create_model("""levit_128s""" , pretrained=A__ ) else: __lowerCamelCase = timm.create_model("""levit_128""" , pretrained=A__ ) if hidden_sizes == 192: __lowerCamelCase = timm.create_model("""levit_192""" , pretrained=A__ ) if hidden_sizes == 256: __lowerCamelCase = timm.create_model("""levit_256""" , pretrained=A__ ) if hidden_sizes == 384: __lowerCamelCase = timm.create_model("""levit_384""" , pretrained=A__ ) from_model.eval() __lowerCamelCase = LevitForImageClassificationWithTeacher(A__ ).eval() __lowerCamelCase = OrderedDict() __lowerCamelCase = from_model.state_dict() __lowerCamelCase = list(from_model.state_dict().keys() ) __lowerCamelCase = list(our_model.state_dict().keys() ) print(len(A__ ) , len(A__ ) ) for i in range(len(A__ ) ): __lowerCamelCase = weights[og_keys[i]] our_model.load_state_dict(A__ ) __lowerCamelCase = torch.randn((2, 3, 224, 224) ) __lowerCamelCase = from_model(A__ ) __lowerCamelCase = our_model(A__ ).logits assert torch.allclose(A__ , A__ ), "The model logits don't match the original one." __lowerCamelCase = name print(A__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __lowerCamelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'Pushed {checkpoint_name}' ) def lowerCamelCase__ ( A__ : Path , A__ : str = None , A__ : bool = True ): '''simple docstring''' __lowerCamelCase = """imagenet-1k-id2label.json""" __lowerCamelCase = 1000 __lowerCamelCase = (1, num_labels) __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = num_labels __lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = partial(A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ ) __lowerCamelCase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } __lowerCamelCase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , A__ , names_to_config[model_name] , A__ , A__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , A__ , A__ , A__ , A__ ) return config, expected_shape if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
29
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Optional[int] ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=None ): __lowerCamelCase = {} if frame_sampling_rate is not None: __lowerCamelCase = frame_sampling_rate if num_frames is not None: __lowerCamelCase = num_frames __lowerCamelCase = {} if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Any , UpperCamelCase_: Union[str, List[str]] , **UpperCamelCase_: str ): return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str]=None , UpperCamelCase_: List[Any]=1 ): if num_frames is None: __lowerCamelCase = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __lowerCamelCase = BytesIO(requests.get(UpperCamelCase_ ).content ) __lowerCamelCase = VideoReader(UpperCamelCase_ ) videoreader.seek(0 ) __lowerCamelCase = 0 __lowerCamelCase = num_frames * frame_sampling_rate - 1 __lowerCamelCase = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa ) __lowerCamelCase = videoreader.get_batch(UpperCamelCase_ ).asnumpy() __lowerCamelCase = list(UpperCamelCase_ ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Any ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.softmax(-1 )[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCAmelCase_ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowerCamelCase__ ( A__ : str ): '''simple docstring''' if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 10: __lowerCamelCase = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: __lowerCamelCase = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: __lowerCamelCase = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __lowerCamelCase = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: __lowerCamelCase = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def lowerCamelCase__ ( A__ : Dict , A__ : Dict , A__ : Optional[int] , A__ : List[str] ): '''simple docstring''' __lowerCamelCase = {} import re __lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) __lowerCamelCase = re.compile( R"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) __lowerCamelCase = re.compile(R"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_conv_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_encoder_block_conv_in.sub(A__ , A__ ) elif re_encoder_block_resnet.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_encoder_block_resnet.sub(A__ , A__ ) elif re_encoder_block_proj_out.fullmatch(A__ ): __lowerCamelCase = re_encoder_block_proj_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' __lowerCamelCase = re_encoder_block_proj_out.sub(A__ , A__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_conv_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_decoder_block_conv_out.sub(A__ , A__ ) elif re_decoder_block_resnet.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_decoder_block_resnet.sub(A__ , A__ ) elif re_decoder_block_proj_in.fullmatch(A__ ): __lowerCamelCase = re_decoder_block_proj_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' __lowerCamelCase = re_decoder_block_proj_in.sub(A__ , A__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_conv_out.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' __lowerCamelCase = re_prior_cond_conv_out.sub(A__ , A__ ) elif re_prior_cond_resnet.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_resnet.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 __lowerCamelCase = {"""1""": 1, """3""": 2}[groups[-2]] __lowerCamelCase = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' __lowerCamelCase = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' __lowerCamelCase = prefix + resnet_block __lowerCamelCase = re_prior_cond_resnet.sub(A__ , A__ ) elif re_prior_cond_proj_in.fullmatch(A__ ): __lowerCamelCase = re_prior_cond_proj_in.match(A__ ) __lowerCamelCase = regex_match.groups() __lowerCamelCase = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' __lowerCamelCase = re_prior_cond_proj_in.sub(A__ , A__ ) # keep original key else: __lowerCamelCase = original_key __lowerCamelCase = replace_key(A__ ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: __lowerCamelCase = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) __lowerCamelCase = original_key __lowerCamelCase = original_key __lowerCamelCase = value return new_dict @torch.no_grad() def lowerCamelCase__ ( A__ : Tuple=None , A__ : List[Any]=None ): '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): __lowerCamelCase = requests.get(f'{PREFIX}{file}' , allow_redirects=A__ ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=A__ ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) __lowerCamelCase = MODEL_MAPPING[model_name.split("""/""" )[-1]] __lowerCamelCase = JukeboxConfig.from_pretrained(A__ ) __lowerCamelCase = JukeboxModel(A__ ) __lowerCamelCase = [] __lowerCamelCase = {} for i, dict_name in enumerate(A__ ): __lowerCamelCase = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] __lowerCamelCase = {} for k in old_dic.keys(): if k.endswith(""".b""" ): __lowerCamelCase = old_dic[k] elif k.endswith(""".w""" ): __lowerCamelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __lowerCamelCase = old_dic[k] else: __lowerCamelCase = old_dic[k] __lowerCamelCase = """vqvae""" if i == 0 else f'priors.{3 - i}' __lowerCamelCase = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ ) weight_dict.append(A__ ) __lowerCamelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(A__ ) for i in range(len(A__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A__ ).mkdir(exist_ok=A__ ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(A__ , A__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCAmelCase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger('transformers.models.encodec') UpperCAmelCase_ = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } UpperCAmelCase_ = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } UpperCAmelCase_ = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } UpperCAmelCase_ = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } UpperCAmelCase_ = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } UpperCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } UpperCAmelCase_ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } UpperCAmelCase_ = [] UpperCAmelCase_ = [] def lowerCamelCase__ ( A__ : List[str] , A__ : Tuple , A__ : List[str] , A__ : List[str] , A__ : Tuple ): '''simple docstring''' for attribute in key.split(""".""" ): __lowerCamelCase = getattr(A__ , A__ ) if weight_type is not None: __lowerCamelCase = getattr(A__ , A__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value elif weight_type == "weight_ih_l0": __lowerCamelCase = value elif weight_type == "weight_hh_l0": __lowerCamelCase = value elif weight_type == "bias_ih_l0": __lowerCamelCase = value elif weight_type == "bias_hh_l0": __lowerCamelCase = value elif weight_type == "weight_ih_l1": __lowerCamelCase = value elif weight_type == "weight_hh_l1": __lowerCamelCase = value elif weight_type == "bias_ih_l1": __lowerCamelCase = value elif weight_type == "bias_hh_l1": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def lowerCamelCase__ ( A__ : Any , A__ : List[str] ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase, __lowerCamelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase__ ( A__ : List[Any] , A__ : List[Any] , A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": __lowerCamelCase = MAPPING_24K elif model_name == "encodec_48khz": __lowerCamelCase = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(A__ , A__ ): logger.info(f'{name} was ignored' ) continue __lowerCamelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: __lowerCamelCase, __lowerCamelCase = key.split(""".*.""" ) if prefix in name and suffix in name: __lowerCamelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(A__ )[0].split(""".""" )[-2] __lowerCamelCase = mapped_key.replace("""*""" , A__ ) if "weight_g" in name: __lowerCamelCase = """weight_g""" elif "weight_v" in name: __lowerCamelCase = """weight_v""" elif "weight_ih_l0" in name: __lowerCamelCase = """weight_ih_l0""" elif "weight_hh_l0" in name: __lowerCamelCase = """weight_hh_l0""" elif "bias_ih_l0" in name: __lowerCamelCase = """bias_ih_l0""" elif "bias_hh_l0" in name: __lowerCamelCase = """bias_hh_l0""" elif "weight_ih_l1" in name: __lowerCamelCase = """weight_ih_l1""" elif "weight_hh_l1" in name: __lowerCamelCase = """weight_hh_l1""" elif "bias_ih_l1" in name: __lowerCamelCase = """bias_ih_l1""" elif "bias_hh_l1" in name: __lowerCamelCase = """bias_hh_l1""" elif "bias" in name: __lowerCamelCase = """bias""" elif "weight" in name: __lowerCamelCase = """weight""" elif "running_mean" in name: __lowerCamelCase = """running_mean""" elif "running_var" in name: __lowerCamelCase = """running_var""" elif "num_batches_tracked" in name: __lowerCamelCase = """num_batches_tracked""" else: __lowerCamelCase = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def lowerCamelCase__ ( A__ : Optional[int] , A__ : Any , A__ : Dict , A__ : List[str]=None , A__ : Dict=None , ): '''simple docstring''' if config_path is not None: __lowerCamelCase = EncodecConfig.from_pretrained(A__ ) else: __lowerCamelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __lowerCamelCase = [8, 5, 4, 4] __lowerCamelCase = [2.2] __lowerCamelCase = 64 __lowerCamelCase = 32000 __lowerCamelCase = 2048 __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False elif model_name == "encodec_48khz": __lowerCamelCase = [8, 5, 4, 2] __lowerCamelCase = [3.0, 6.0, 12.0, 24.0] __lowerCamelCase = 48000 __lowerCamelCase = 2 __lowerCamelCase = False __lowerCamelCase = """time_group_norm""" __lowerCamelCase = True __lowerCamelCase = 1.0 __lowerCamelCase = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) __lowerCamelCase = EncodecModel(A__ ) __lowerCamelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(A__ ) __lowerCamelCase = torch.load(A__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __lowerCamelCase = original_checkpoint["""best_state"""] recursively_load_weights(A__ , A__ , A__ ) model.save_pretrained(A__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(A__ ) model.push_to_hub(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) UpperCAmelCase_ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
29
UpperCAmelCase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} UpperCAmelCase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : str ): '''simple docstring''' __lowerCamelCase = start # add current to visited visited.append(A__ ) __lowerCamelCase = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # if all neighbors visited add current to sort sort.append(A__ ) # if all vertices haven't been visited select a new one to visit if len(A__ ) != len(A__ ): for vertice in vertices: if vertice not in visited: __lowerCamelCase = topological_sort(A__ , A__ , A__ ) # return sort return sort if __name__ == "__main__": UpperCAmelCase_ = topological_sort('a', [], []) print(sort)
29
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowerCamelCase = 192 __lowerCamelCase = 768 __lowerCamelCase = 12 __lowerCamelCase = 3 __lowerCamelCase = [800, 1333] __lowerCamelCase = False elif yolos_name == "yolos_s_dWr": __lowerCamelCase = 330 __lowerCamelCase = 14 __lowerCamelCase = 6 __lowerCamelCase = 1320 elif "yolos_s" in yolos_name: __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 12 __lowerCamelCase = 6 elif "yolos_b" in yolos_name: __lowerCamelCase = [800, 1344] __lowerCamelCase = 91 __lowerCamelCase = """huggingface/label-files""" __lowerCamelCase = """coco-detection-id2label.json""" __lowerCamelCase = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(A__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( A__ : dict , A__ : YolosConfig , A__ : bool = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __lowerCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[: config.hidden_size, :] __lowerCamelCase = in_proj_bias[: config.hidden_size] __lowerCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase = in_proj_weight[-config.hidden_size :, :] __lowerCamelCase = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( A__ : str ): '''simple docstring''' if "backbone" in name: __lowerCamelCase = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: __lowerCamelCase = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: __lowerCamelCase = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: __lowerCamelCase = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: __lowerCamelCase = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowerCamelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: __lowerCamelCase = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: __lowerCamelCase = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: __lowerCamelCase = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def lowerCamelCase__ ( A__ : dict , A__ : YolosForObjectDetection ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(A__ ) if "qkv" in key: __lowerCamelCase = key.split(""".""" ) __lowerCamelCase = int(key_split[2] ) __lowerCamelCase = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[ dim : dim * 2, : ] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val[:dim] __lowerCamelCase = val[dim : dim * 2] __lowerCamelCase = val[-dim:] else: __lowerCamelCase = val return orig_state_dict def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( A__ : str , A__ : str , A__ : str , A__ : bool = False ): '''simple docstring''' __lowerCamelCase = get_yolos_config(A__ ) # load original state_dict __lowerCamelCase = torch.load(A__ , map_location="""cpu""" )["""model"""] # load 🤗 model __lowerCamelCase = YolosForObjectDetection(A__ ) model.eval() __lowerCamelCase = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) # Check outputs on an image, prepared by YolosImageProcessor __lowerCamelCase = 800 if yolos_name != """yolos_ti""" else 512 __lowerCamelCase = YolosImageProcessor(format="""coco_detection""" , size=A__ ) __lowerCamelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowerCamelCase = model(**A__ ) __lowerCamelCase, __lowerCamelCase = outputs.logits, outputs.pred_boxes __lowerCamelCase, __lowerCamelCase = None, None if yolos_name == "yolos_ti": __lowerCamelCase = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __lowerCamelCase = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __lowerCamelCase = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __lowerCamelCase = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __lowerCamelCase = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __lowerCamelCase = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __lowerCamelCase = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __lowerCamelCase = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __lowerCamelCase = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __lowerCamelCase = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , A__ , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , A__ , atol=1E-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if push_to_hub: __lowerCamelCase = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) __lowerCamelCase = model_mapping[yolos_name] image_processor.push_to_hub(A__ , organization="""hustvl""" ) model.push_to_hub(A__ , organization="""hustvl""" ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCAmelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
29
import requests from bsa import BeautifulSoup def lowerCamelCase__ ( A__ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' __lowerCamelCase = BeautifulSoup(requests.get(A__ ).text , """html.parser""" ) __lowerCamelCase = soup.findAll("""h1""" ) __lowerCamelCase = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(A__ , A__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
29
1
def lowerCamelCase__ ( A__ : int = 4000000 ): '''simple docstring''' __lowerCamelCase = [0, 1] __lowerCamelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __lowerCamelCase = 0 for j in range(len(A__ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : List[str] = 'rwkv' UpperCAmelCase__ : List[Any] = {'max_position_embeddings': 'context_length'} def __init__( self: Optional[int] , UpperCamelCase_: Dict=5_02_77 , UpperCamelCase_: List[str]=10_24 , UpperCamelCase_: Optional[int]=40_96 , UpperCamelCase_: Optional[Any]=32 , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Optional[int]=1E-5 , UpperCamelCase_: Dict=0 , UpperCamelCase_: Optional[Any]=0 , UpperCamelCase_: Dict=6 , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=True , **UpperCamelCase_: List[Any] , ): __lowerCamelCase = vocab_size __lowerCamelCase = context_length __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = rescale_every __lowerCamelCase = use_cache __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id super().__init__( tie_word_embeddings=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
29
import os from math import logaa def lowerCamelCase__ ( A__ : str = "base_exp.txt" ): '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): __lowerCamelCase, __lowerCamelCase = list(map(A__ , line.split(""",""" ) ) ) if x * logaa(A__ ) > largest: __lowerCamelCase = x * logaa(A__ ) __lowerCamelCase = i + 1 return result if __name__ == "__main__": print(solution())
29
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[PIL.Image.Image, np.ndarray] class lowerCamelCase__( __lowerCamelCase): def __init__( self: int , UpperCamelCase_: PriorTransformer , UpperCamelCase_: CLIPVisionModel , UpperCamelCase_: CLIPImageProcessor , UpperCamelCase_: HeunDiscreteScheduler , UpperCamelCase_: ShapERenderer , ): super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: int , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Tuple ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: int ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Dict , ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): __lowerCamelCase = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) __lowerCamelCase = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) __lowerCamelCase = self.image_encoder(UpperCamelCase_ )["""last_hidden_state"""] __lowerCamelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Dict , UpperCamelCase_: Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 25 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 64 , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): if isinstance(UpperCamelCase_ , PIL.Image.Image ): __lowerCamelCase = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): __lowerCamelCase = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __lowerCamelCase = len(UpperCamelCase_ ) else: raise ValueError( F'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) __lowerCamelCase = self._execution_device __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.prior.config.num_embeddings __lowerCamelCase = self.prior.config.embedding_dim __lowerCamelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __lowerCamelCase = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance __lowerCamelCase, __lowerCamelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) __lowerCamelCase = [] for i, latent in enumerate(UpperCamelCase_ ): print() __lowerCamelCase = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(UpperCamelCase_ ) __lowerCamelCase = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(F'Only the output types `pil` and `np` are supported not output_type={output_type}' ) __lowerCamelCase = images.cpu().numpy() if output_type == "pil": __lowerCamelCase = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[str] = DebertaTokenizer UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : Tuple = DebertaTokenizerFast def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """[UNK]""", ] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowerCamelCase = {"""unk_token""": """[UNK]"""} __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: Tuple , **UpperCamelCase_: Any ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = """lower newer""" __lowerCamelCase = """lower newer""" return input_text, output_text def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = """lower newer""" __lowerCamelCase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __lowerCamelCase = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokens + [tokenizer.unk_token] __lowerCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tokenizer("""Hello""" , """World""" ) __lowerCamelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["""token_type_ids"""] , UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowerCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __lowerCamelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __lowerCamelCase = tokenizer_class.from_pretrained("""microsoft/deberta-base""" ) __lowerCamelCase = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] __lowerCamelCase = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) __lowerCamelCase = [tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for seq in encoding["""input_ids"""]] # fmt: off __lowerCamelCase = { """input_ids""": [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], """token_type_ids""": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], """attention_mask""": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __lowerCamelCase = [ """ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""", """ALBERT incorporates two parameter reduction techniques""", """The first one is a factorized embedding parameterization. By decomposing the large vocabulary""" """ embedding matrix into two small matrices, we separate the size of the hidden layers from the size of""" """ vocabulary embedding.""", ] self.assertDictEqual(encoding.data , UpperCamelCase_ ) for expected, decoded in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline UpperCAmelCase__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'}) UpperCAmelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: Optional[int] ): return self._get_superresolution_dummy_components() def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: int ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: List[str] ): self._test_save_load_local() def lowerCAmelCase__ ( self: List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' return abs(A__ ) if a == 0 else greatest_common_divisor(b % a , A__ ) def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCamelCase, __lowerCamelCase = y, x % y return abs(A__ ) def lowerCamelCase__ ( ): '''simple docstring''' try: __lowerCamelCase = input("""Enter two integers separated by comma (,): """ ).split(""",""" ) __lowerCamelCase = int(nums[0] ) __lowerCamelCase = int(nums[1] ) print( f'greatest_common_divisor({num_a}, {num_a}) = ' f'{greatest_common_divisor(A__ , A__ )}' ) print(f'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(A__ , A__ )}' ) except (IndexError, UnboundLocalError, ValueError): print("""Wrong input""" ) if __name__ == "__main__": main()
29
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = [False] * len(A__ ) __lowerCamelCase = [-1] * len(A__ ) def dfs(A__ : Optional[int] , A__ : Optional[int] ): __lowerCamelCase = True __lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(A__ , 1 - c ) for i in range(len(A__ ) ): if not visited[i]: dfs(A__ , 0 ) for i in range(len(A__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): __lowerCamelCase = logging.get_logger() # the current default level is logging.WARNING __lowerCamelCase = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = logging.get_verbosity() __lowerCamelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) __lowerCamelCase = """Testing 1, 2, 3""" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + """\n""" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , """""" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning(UpperCamelCase_ ) self.assertEqual(cl.out , msg + """\n""" ) # restore to the original level logging.set_verbosity(UpperCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY="""error""" ) def lowerCAmelCase__ ( self: int ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowerCamelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) __lowerCamelCase = os.getenv("""TRANSFORMERS_VERBOSITY""" , UpperCamelCase_ ) __lowerCamelCase = logging.log_levels[env_level_str] __lowerCamelCase = logging.get_verbosity() self.assertEqual( UpperCamelCase_ , UpperCamelCase_ , F'TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}' , ) # restore to the original level __lowerCamelCase = """""" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="""super-error""" ) def lowerCAmelCase__ ( self: List[Any] ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowerCamelCase = logging.logging.getLogger() with CaptureLogger(UpperCamelCase_ ) as cl: # this action activates the env var logging.get_logger("""transformers.models.bart.tokenization_bart""" ) self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase__ ( self: Tuple ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowerCamelCase = logging.get_logger("""transformers.models.bart.tokenization_bart""" ) __lowerCamelCase = """Testing 1, 2, 3""" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ): # nothing should be logged as env var disables this method with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , """""" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(UpperCamelCase_ ) as cl: logger.warning_advice(UpperCamelCase_ ) self.assertEqual(cl.out , msg + """\n""" ) def lowerCamelCase__ ( ): '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
29
from __future__ import annotations UpperCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: dict[str, list[str]] , UpperCamelCase_: str ): __lowerCamelCase = graph # mapping node to its parent in resulting breadth first tree __lowerCamelCase = {} __lowerCamelCase = source_vertex def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = {self.source_vertex} __lowerCamelCase = None __lowerCamelCase = [self.source_vertex] # first in first out queue while queue: __lowerCamelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCamelCase_ ) __lowerCamelCase = vertex queue.append(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): if target_vertex == self.source_vertex: return self.source_vertex __lowerCamelCase = self.parent.get(UpperCamelCase_ ) if target_vertex_parent is None: __lowerCamelCase = ( F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(UpperCamelCase_ ) return self.shortest_path(UpperCamelCase_ ) + F'->{target_vertex}' if __name__ == "__main__": UpperCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
29
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCamelCase__: def __init__( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int]=13 , UpperCamelCase_: List[Any]=7 , UpperCamelCase_: str=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=99 , UpperCamelCase_: List[Any]=32 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Union[str, Any]=4 , UpperCamelCase_: Tuple=37 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Union[str, Any]=5_12 , UpperCamelCase_: Optional[Any]=16 , UpperCamelCase_: Dict=2 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: str=3 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: List[Any]=None , UpperCamelCase_: Tuple=10_00 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = num_choices __lowerCamelCase = scope __lowerCamelCase = range_bbox def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCamelCase = bbox[i, j, 3] __lowerCamelCase = bbox[i, j, 1] __lowerCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCamelCase = bbox[i, j, 2] __lowerCamelCase = bbox[i, j, 0] __lowerCamelCase = t __lowerCamelCase = tf.convert_to_tensor(UpperCamelCase_ ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = TFLayoutLMModel(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = TFLayoutLMForMaskedLM(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFLayoutLMForSequenceClassification(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: List[str] , UpperCamelCase_: int , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: Dict ): __lowerCamelCase = self.num_labels __lowerCamelCase = TFLayoutLMForTokenClassification(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: str , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[int] ): __lowerCamelCase = TFLayoutLMForQuestionAnswering(config=UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.prepare_config_and_inputs() ( ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ( __lowerCamelCase ), ) = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) UpperCAmelCase__ : List[str] = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Optional[Any] = 10 def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = TFLayoutLMModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self: Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: List[str] ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = TFLayoutLMModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def lowerCAmelCase__ ( self: Union[str, Any] ): pass def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 __lowerCamelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __lowerCamelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __lowerCamelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __lowerCamelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCamelCase__( unittest.TestCase): @slow def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCamelCase = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) # test the sequence output on [0, :3, :3] __lowerCamelCase = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-3 ) ) # test the pooled output on [1, :3] __lowerCamelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , UpperCamelCase_ , atol=1E-3 ) ) @slow def lowerCAmelCase__ ( self: Tuple ): # initialize model with randomly initialized sequence classification head __lowerCamelCase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCamelCase = model( input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __lowerCamelCase = outputs.loss __lowerCamelCase = (2,) self.assertEqual(loss.shape , UpperCamelCase_ ) # test the shape of the logits __lowerCamelCase = outputs.logits __lowerCamelCase = (2, 2) self.assertEqual(logits.shape , UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: str ): # initialize model with randomly initialized token classification head __lowerCamelCase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCamelCase = model( input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) # test the shape of the logits __lowerCamelCase = outputs.logits __lowerCamelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , UpperCamelCase_ ) @slow def lowerCAmelCase__ ( self: List[Any] ): # initialize model with randomly initialized token classification head __lowerCamelCase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCamelCase = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) # test the shape of the logits __lowerCamelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , UpperCamelCase_ ) self.assertEqual(outputs.end_logits.shape , UpperCamelCase_ )
29
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = IFInpaintingPipeline UpperCAmelCase__ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase__ : List[str] = PipelineTesterMixin.required_optional_params - {'latents'} def lowerCAmelCase__ ( self: List[str] ): return self._get_dummy_components() def lowerCAmelCase__ ( self: int , UpperCamelCase_: Dict , UpperCamelCase_: str=0 ): if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase__ ( self: Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase__ ( self: Optional[int] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase__ ( self: Any ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase__ ( self: str ): self._test_save_load_local() def lowerCAmelCase__ ( self: str ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
29
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BeitFeatureExtractor'] UpperCAmelCase_ = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , **UpperCamelCase_: int ): super().__init__(**UpperCamelCase_ ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(UpperCamelCase_ ) def __call__( self: Union[str, Any] , UpperCamelCase_: Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCamelCase_: Union[str, List[str]] = None , **UpperCamelCase_: List[str] , ): if "text_queries" in kwargs: __lowerCamelCase = kwargs.pop("""text_queries""" ) if isinstance(UpperCamelCase_ , (str, Image.Image) ): __lowerCamelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: List[str] , **UpperCamelCase_: Dict ): __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs["""threshold"""] if "top_k" in kwargs: __lowerCamelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def lowerCAmelCase__ ( self: Any , UpperCamelCase_: Optional[Any] ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = inputs["""candidate_labels"""] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = candidate_labels.split(""",""" ) __lowerCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase_ ): __lowerCamelCase = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) __lowerCamelCase = self.image_processor(UpperCamelCase_ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase_ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Tuple ): __lowerCamelCase = model_inputs.pop("""target_size""" ) __lowerCamelCase = model_inputs.pop("""candidate_label""" ) __lowerCamelCase = model_inputs.pop("""is_last""" ) __lowerCamelCase = self.model(**UpperCamelCase_ ) __lowerCamelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Any , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Union[str, Any]=None ): __lowerCamelCase = [] for model_output in model_outputs: __lowerCamelCase = model_output["""candidate_label"""] __lowerCamelCase = BaseModelOutput(UpperCamelCase_ ) __lowerCamelCase = self.image_processor.post_process_object_detection( outputs=UpperCamelCase_ , threshold=UpperCamelCase_ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): __lowerCamelCase = outputs["""scores"""][index].item() __lowerCamelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) __lowerCamelCase = {"""score""": score, """label""": label, """box""": box} results.append(UpperCamelCase_ ) __lowerCamelCase = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k: __lowerCamelCase = results[:top_k] return results def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: "torch.Tensor" ): if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = box.int().tolist() __lowerCamelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
29
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class lowerCamelCase__( __lowerCamelCase): def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase_ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , """num_attention_heads""" ) ) self.parent.assertTrue(hasattr(UpperCamelCase_ , """num_encoder_blocks""" ) ) class lowerCamelCase__: def __init__( self: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: List[str]=13 , UpperCamelCase_: Any=64 , UpperCamelCase_: int=3 , UpperCamelCase_: Union[str, Any]=4 , UpperCamelCase_: Optional[int]=[2, 2, 2, 2] , UpperCamelCase_: int=[8, 4, 2, 1] , UpperCamelCase_: Tuple=[16, 32, 64, 1_28] , UpperCamelCase_: str=[1, 4, 8, 16] , UpperCamelCase_: Tuple=[1, 2, 4, 8] , UpperCamelCase_: Dict=True , UpperCamelCase_: List[Any]=True , UpperCamelCase_: Union[str, Any]="gelu" , UpperCamelCase_: str=0.1 , UpperCamelCase_: Union[str, Any]=0.1 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: Union[str, Any]=None , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = num_encoder_blocks __lowerCamelCase = sr_ratios __lowerCamelCase = depths __lowerCamelCase = hidden_sizes __lowerCamelCase = downsampling_rates __lowerCamelCase = num_attention_heads __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = num_labels __lowerCamelCase = scope def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase__ ( self: str ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Dict , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int] ): __lowerCamelCase = SegformerModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = __lowerCamelCase = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: int ): __lowerCamelCase = self.num_labels __lowerCamelCase = SegformerForSemanticSegmentation(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = model(UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) __lowerCamelCase = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[str] , UpperCamelCase_: Tuple ): __lowerCamelCase = 1 __lowerCamelCase = SegformerForSemanticSegmentation(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowerCamelCase = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase_ ) __lowerCamelCase = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertGreater(result.loss , 0.0 ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[int] = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : str = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = False def lowerCAmelCase__ ( self: str ): __lowerCamelCase = SegformerModelTester(self ) __lowerCamelCase = SegformerConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase_ ) @unittest.skip("""SegFormer does not use inputs_embeds""" ) def lowerCAmelCase__ ( self: int ): pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" ) def lowerCAmelCase__ ( self: List[Any] ): pass def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(UpperCamelCase_ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = True __lowerCamelCase = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.attentions __lowerCamelCase = sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCamelCase = True __lowerCamelCase = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # verify the first attentions (first block, first layer) __lowerCamelCase = (self.model_tester.image_size // 4) ** 2 __lowerCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __lowerCamelCase = (self.model_tester.image_size // 32) ** 2 __lowerCamelCase = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __lowerCamelCase = len(UpperCamelCase_ ) # Check attention is always last and order is fine __lowerCamelCase = True __lowerCamelCase = True __lowerCamelCase = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase_ ) ) __lowerCamelCase = outputs.attentions self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # verify the first attentions (first block, first layer) __lowerCamelCase = (self.model_tester.image_size // 4) ** 2 __lowerCamelCase = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowerCAmelCase__ ( self: Any ): def check_hidden_states_output(UpperCamelCase_: Optional[Any] , UpperCamelCase_: List[str] , UpperCamelCase_: List[Any] ): __lowerCamelCase = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): if not self.model_tester.is_training: return __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase_ ): continue __lowerCamelCase = model_class(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.train() __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) __lowerCamelCase = model(**UpperCamelCase_ ).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase__ ( self: Optional[Any] ): pass @slow def lowerCAmelCase__ ( self: List[str] ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = SegformerModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCamelCase__( unittest.TestCase): @slow def lowerCAmelCase__ ( self: Dict ): # only resize + normalize __lowerCamelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) __lowerCamelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase_ ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) __lowerCamelCase = encoded_inputs.pixel_values.to(UpperCamelCase_ ) with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase__ ( self: Any ): # only resize + normalize __lowerCamelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) __lowerCamelCase = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(UpperCamelCase_ ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) __lowerCamelCase = encoded_inputs.pixel_values.to(UpperCamelCase_ ) with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) __lowerCamelCase = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1E-1 ) ) @slow def lowerCAmelCase__ ( self: Tuple ): # only resize + normalize __lowerCamelCase = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=UpperCamelCase_ , align=UpperCamelCase_ , do_random_crop=UpperCamelCase_ ) __lowerCamelCase = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to( UpperCamelCase_ ) __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) __lowerCamelCase = encoded_inputs.pixel_values.to(UpperCamelCase_ ) with torch.no_grad(): __lowerCamelCase = model(UpperCamelCase_ ) __lowerCamelCase = outputs.logits.detach().cpu() __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(5_00, 3_00)] ) __lowerCamelCase = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ ) __lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ ) __lowerCamelCase = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , UpperCamelCase_ )
29
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') UpperCAmelCase_ = {'target_lang': 'fi', 'source_lang': 'en'} UpperCAmelCase_ = '>>zh<<' UpperCAmelCase_ = 'Helsinki-NLP/' if is_torch_available(): UpperCAmelCase_ = 'pt' elif is_tf_available(): UpperCAmelCase_ = 'tf' else: UpperCAmelCase_ = 'jax' @require_sentencepiece class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Union[str, Any] = MarianTokenizer UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : int = True def lowerCAmelCase__ ( self: Union[str, Any] ): super().setUp() __lowerCamelCase = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] __lowerCamelCase = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) __lowerCamelCase = Path(self.tmpdirname ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(UpperCamelCase_ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) __lowerCamelCase = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self: Optional[Any] , **UpperCamelCase_: Any ): return MarianTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: Optional[int] ): return ( "This is a test", "This is a test", ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = """</s>""" __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase_ ) , 9 ) def lowerCAmelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) __lowerCamelCase = en_de_tokenizer(["""I am a small frog"""] , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(UpperCamelCase_ , batch.input_ids[0] ) __lowerCamelCase = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = [x.name for x in Path(UpperCamelCase_ ).glob("""*""" )] self.assertIn("""source.spm""" , UpperCamelCase_ ) MarianTokenizer.from_pretrained(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok( ["""I am a small frog""" * 10_00, """I am a small frog"""] , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase__ ( self: Optional[int] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def lowerCAmelCase__ ( self: int ): __lowerCamelCase = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) __lowerCamelCase = """Tämä on testi""" __lowerCamelCase = """This is a test""" __lowerCamelCase = [76, 7, 20_47, 2] __lowerCamelCase = [69, 12, 11, 9_40, 2] __lowerCamelCase = tokenizer(UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer(text_target=UpperCamelCase_ ).input_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
29
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , config_name=UpperCamelCase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = AutoConfig.from_pretrained("""gpt2""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = { """max_new_tokens""": 10_24, """foo""": """bar""", } __lowerCamelCase = copy.deepcopy(UpperCamelCase_ ) __lowerCamelCase = generation_config.update(**UpperCamelCase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(UpperCamelCase_ , {"""foo""": """bar"""} ) def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() __lowerCamelCase = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) __lowerCamelCase = GenerationConfig.from_model_config(UpperCamelCase_ ) assert not hasattr(UpperCamelCase_ , """foo""" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self: Optional[Any] ): __lowerCamelCase = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , UpperCamelCase_ ) self.assertEqual(default_config.num_beams , 1 ) __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , UpperCamelCase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = GenerationConfig.from_pretrained(UpperCamelCase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , UpperCamelCase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__( unittest.TestCase): @classmethod def lowerCAmelCase__ ( cls: Optional[Any] ): __lowerCamelCase = TOKEN HfFolder.save_token(UpperCamelCase_ ) @classmethod def lowerCAmelCase__ ( cls: str ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""test-generation-config""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = GenerationConfig( do_sample=UpperCamelCase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=UpperCamelCase_ , use_auth_token=self._token ) __lowerCamelCase = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) )
29
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCamelCase__( __lowerCamelCase): @require_torch def lowerCAmelCase__ ( self: Dict ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __lowerCamelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ __lowerCamelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ __lowerCamelCase = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache __lowerCamelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase_ ) BertModel.from_pretrained(UpperCamelCase_ ) BertTokenizer.from_pretrained(UpperCamelCase_ ) pipeline(task="""fill-mask""" , model=UpperCamelCase_ ) # baseline - just load from_pretrained with normal network __lowerCamelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __lowerCamelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __lowerCamelCase = """1""" __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase__ ( self: Tuple ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched __lowerCamelCase = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ __lowerCamelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ __lowerCamelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache __lowerCamelCase = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(UpperCamelCase_ ) BertModel.from_pretrained(UpperCamelCase_ ) BertTokenizer.from_pretrained(UpperCamelCase_ ) pipeline(task="""fill-mask""" , model=UpperCamelCase_ ) # baseline - just load from_pretrained with normal network __lowerCamelCase = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __lowerCamelCase = self.get_env() __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase__ ( self: Optional[int] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __lowerCamelCase = """ from transformers import BertConfig, BertModel, BertTokenizer """ __lowerCamelCase = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ __lowerCamelCase = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network __lowerCamelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __lowerCamelCase = self.get_env() __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network __lowerCamelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __lowerCamelCase = """1""" __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase__ ( self: str ): __lowerCamelCase = """ from transformers import pipeline """ __lowerCamelCase = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ __lowerCamelCase = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ __lowerCamelCase = self.get_env() __lowerCamelCase = """1""" __lowerCamelCase = [sys.executable, """-c""", """\n""".join([load, mock, run] )] __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """ from transformers import AutoModel """ __lowerCamelCase = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network __lowerCamelCase = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __lowerCamelCase = self.get_env() __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __lowerCamelCase = """1""" __lowerCamelCase = subprocess.run(UpperCamelCase_ , env=UpperCamelCase_ , check=UpperCamelCase_ , capture_output=UpperCamelCase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
29
def lowerCamelCase__ ( A__ : list ): '''simple docstring''' for i in range(len(A__ ) - 1 , 0 , -1 ): __lowerCamelCase = False for j in range(A__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j - 1], unsorted[j] __lowerCamelCase = True for j in range(A__ ): if unsorted[j] > unsorted[j + 1]: __lowerCamelCase, __lowerCamelCase = unsorted[j + 1], unsorted[j] __lowerCamelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
29
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=False ): '''simple docstring''' try: __lowerCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowerCamelCase = default else: # KEY is set, convert it to True or False. try: __lowerCamelCase = strtobool(A__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.' ) return _value UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skip("""Test was skipped""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , """test is slow""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(A__ ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(A__ ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(A__ ) def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(A__ ) def lowerCamelCase__ ( A__ : Tuple=None , A__ : Optional[Any]=None ): '''simple docstring''' if test_case is None: return partial(A__ , version=A__ ) return unittest.skipUnless(is_torch_version(""">=""" , A__ ) , f'test requires torch version >= {version}' )(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(A__ ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(A__ ) def lowerCamelCase__ ( A__ : str ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(A__ ) UpperCAmelCase_ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( A__ : Any ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(A__ ) class lowerCamelCase__( unittest.TestCase): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCAmelCase__ ( cls: int ): __lowerCamelCase = tempfile.mkdtemp() @classmethod def lowerCAmelCase__ ( cls: Any ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase__ ( self: Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCamelCase_ ) class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: int ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: Union[mock.Mock, List[mock.Mock]] ): __lowerCamelCase = mocks if isinstance(UpperCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = AcceleratorState() __lowerCamelCase = tensor[None].clone().to(state.device ) __lowerCamelCase = gather(A__ ).cpu() __lowerCamelCase = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A__ ): return False return True class lowerCamelCase__: def __init__( self: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Any , UpperCamelCase_: Any ): __lowerCamelCase = returncode __lowerCamelCase = stdout __lowerCamelCase = stderr async def lowerCamelCase__ ( A__ : int , A__ : Any ): '''simple docstring''' while True: __lowerCamelCase = await stream.readline() if line: callback(A__ ) else: break async def lowerCamelCase__ ( A__ : Dict , A__ : List[str]=None , A__ : Any=None , A__ : Optional[Any]=None , A__ : Tuple=False , A__ : List[Any]=False ): '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(A__ ) ) __lowerCamelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowerCamelCase = [] __lowerCamelCase = [] def tee(A__ : int , A__ : Any , A__ : Optional[Any] , A__ : int="" ): __lowerCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(A__ ) if not quiet: print(A__ , A__ , file=A__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A__ : tee(A__ , A__ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A__ : tee(A__ , A__ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=A__ , ) return _RunOutput(await p.wait() , A__ , A__ ) def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Any=None , A__ : Union[str, Any]=None , A__ : Dict=180 , A__ : str=False , A__ : List[Any]=True ): '''simple docstring''' __lowerCamelCase = asyncio.get_event_loop() __lowerCamelCase = loop.run_until_complete( _stream_subprocess(A__ , env=A__ , stdin=A__ , timeout=A__ , quiet=A__ , echo=A__ ) ) __lowerCamelCase = """ """.join(A__ ) if result.returncode > 0: __lowerCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}' ) return result class lowerCamelCase__( __lowerCamelCase): pass def lowerCamelCase__ ( A__ : List[str] , A__ : Union[str, Any]=False ): '''simple docstring''' try: __lowerCamelCase = subprocess.check_output(A__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A__ , """decode""" ): __lowerCamelCase = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(A__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
29
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase_ = { 'facebook/mbart-large-50-one-to-many-mmt': 1_024, } # fmt: off UpperCAmelCase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: List[str]=None , UpperCamelCase_: Optional[Any]="</s>" , UpperCamelCase_: Dict="</s>" , UpperCamelCase_: List[str]="<s>" , UpperCamelCase_: Tuple="<unk>" , UpperCamelCase_: int="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Optional[Dict[str, Any]] = None , **UpperCamelCase_: Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCamelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCamelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCamelCase = 1 __lowerCamelCase = len(self.sp_model ) __lowerCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } __lowerCamelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCamelCase = src_lang if src_lang is not None else """en_XX""" __lowerCamelCase = self.lang_code_to_id[self._src_lang] __lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase__ ( self: Dict ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase__ ( self: Dict ): return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: str ): __lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self: Optional[int] ): __lowerCamelCase = self.__dict__.copy() __lowerCamelCase = None return state def __setstate__( self: Tuple , UpperCamelCase_: Dict ): __lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase = {} __lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self: int , UpperCamelCase_: str ): return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: str ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCamelCase = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase__ ( self: Any , UpperCamelCase_: int ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Dict ): __lowerCamelCase = [] __lowerCamelCase = """""" __lowerCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __lowerCamelCase = True __lowerCamelCase = [] else: current_sub_tokens.append(UpperCamelCase_ ) __lowerCamelCase = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ): if not os.path.isdir(UpperCamelCase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: __lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None , UpperCamelCase_: bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) __lowerCamelCase = [1] * len(self.prefix_tokens ) __lowerCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any , UpperCamelCase_: str , UpperCamelCase_: Optional[str] , UpperCamelCase_: Optional[str] , **UpperCamelCase_: Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCamelCase = src_lang __lowerCamelCase = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) __lowerCamelCase = self.convert_tokens_to_ids(UpperCamelCase_ ) __lowerCamelCase = tgt_lang_id return inputs def lowerCAmelCase__ ( self: str , UpperCamelCase_: List[str] , UpperCamelCase_: str = "en_XX" , UpperCamelCase_: Optional[List[str]] = None , UpperCamelCase_: str = "ro_RO" , **UpperCamelCase_: Union[str, Any] , ): __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Any ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self: List[Any] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): __lowerCamelCase = self.lang_code_to_id[src_lang] __lowerCamelCase = [self.cur_lang_code_id] __lowerCamelCase = [self.eos_token_id] def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str ): __lowerCamelCase = self.lang_code_to_id[tgt_lang] __lowerCamelCase = [self.cur_lang_code_id] __lowerCamelCase = [self.eos_token_id]
29
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase_ = datasets.utils.logging.get_logger(__name__) class lowerCamelCase__( folder_based_builder.FolderBasedBuilderConfig): UpperCAmelCase__ : bool = None UpperCAmelCase__ : bool = None class lowerCamelCase__( folder_based_builder.FolderBasedBuilder): UpperCAmelCase__ : List[Any] = datasets.Audio() UpperCAmelCase__ : str = 'audio' UpperCAmelCase__ : Union[str, Any] = AudioFolderConfig UpperCAmelCase__ : List[str] # definition at the bottom of the script UpperCAmelCase__ : Optional[int] = AudioClassification(audio_column='audio' , label_column='label') UpperCAmelCase_ = [ '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', ] UpperCAmelCase_ = AUDIO_EXTENSIONS
29
1