code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCAmelCase = logging.get_logger(__name__) class __a ( _a ): def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float , **UpperCAmelCase : str ): lowerCAmelCase_ : List[str] = feature_size lowerCAmelCase_ : str = sampling_rate lowerCAmelCase_ : Dict = padding_value lowerCAmelCase_ : List[str] = kwargs.pop("""padding_side""" , """right""" ) lowerCAmelCase_ : List[Any] = kwargs.pop("""return_attention_mask""" , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) def A ( self : int , UpperCAmelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , UpperCAmelCase : Union[bool, str, PaddingStrategy] = True , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): lowerCAmelCase_ : Optional[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" F' to this method that includes {self.model_input_names[0]}, but you provided' F' {list(processed_features.keys() )}' ) lowerCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] lowerCAmelCase_ : int = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCamelCase ) == 0: if return_attention_mask: lowerCAmelCase_ : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch lowerCAmelCase_ : List[str] = required_input[0] if isinstance(__lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. lowerCAmelCase_ : Optional[Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCamelCase ): lowerCAmelCase_ : str = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCamelCase ): lowerCAmelCase_ : int = """tf""" elif is_torch_tensor(__lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = """pt""" elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ): lowerCAmelCase_ : List[str] = """np""" else: raise ValueError( F'type of {first_element} unknown: {type(__lowerCamelCase )}. ' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): lowerCAmelCase_ : str = to_numpy(__lowerCamelCase ) else: lowerCAmelCase_ : int = [to_numpy(__lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy lowerCAmelCase_ : Dict = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase ) lowerCAmelCase_ : str = processed_features[self.model_input_names[0]] lowerCAmelCase_ : int = len(__lowerCamelCase ) if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) lowerCAmelCase_ : Optional[Any] = [] for i in range(__lowerCamelCase ): lowerCAmelCase_ : Union[str, Any] = {k: v[i] for k, v in processed_features.items()} # truncation lowerCAmelCase_ : List[str] = self._truncate( __lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) truncated_inputs.append(__lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length lowerCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) lowerCAmelCase_ : Union[str, Any] = PaddingStrategy.MAX_LENGTH lowerCAmelCase_ : Dict = {} for i in range(__lowerCamelCase ): # padding lowerCAmelCase_ : Optional[int] = self._pad( truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: lowerCAmelCase_ : List[str] = [] if value.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : List[str] = value.astype(np.floataa ) batch_outputs[key].append(__lowerCamelCase ) return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase ) def A ( self : str , UpperCAmelCase : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ): lowerCAmelCase_ : Optional[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: lowerCAmelCase_ : List[Any] = len(__lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase_ : Union[str, Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: lowerCAmelCase_ : Union[str, Any] = np.ones(len(__lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: lowerCAmelCase_ : Tuple = max_length - len(__lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: lowerCAmelCase_ : Tuple = np.pad( processed_features["""attention_mask"""] , (0, difference) ) lowerCAmelCase_ : int = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) lowerCAmelCase_ : Tuple = np.pad( __lowerCamelCase , __lowerCamelCase , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: lowerCAmelCase_ : Optional[Any] = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) lowerCAmelCase_ : Tuple = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) lowerCAmelCase_ : Tuple = np.pad( __lowerCamelCase , __lowerCamelCase , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def A ( self : Any , UpperCAmelCase : Union[Dict[str, np.ndarray], BatchFeature] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) lowerCAmelCase_ : Optional[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): lowerCAmelCase_ : Optional[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of lowerCAmelCase_ : Any = len(__lowerCamelCase ) > max_length if needs_to_be_truncated: lowerCAmelCase_ : str = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: lowerCAmelCase_ : List[Any] = processed_features["""attention_mask"""][:max_length] return processed_features def A ( self : str , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=None ): # Get padding strategy if padding is not False: if padding is True: lowerCAmelCase_ : List[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ : Optional[int] = PaddingStrategy(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase_ : Any = padding else: lowerCAmelCase_ : Dict = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any]=13 , UpperCAmelCase : str=[30, 30] , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Any=True , UpperCAmelCase : Dict=True , UpperCAmelCase : List[str]=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : List[str]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Any=10 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=8 , UpperCAmelCase : Tuple=10 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : List[Any] = image_size lowerCAmelCase_ : str = patch_size lowerCAmelCase_ : List[str] = num_channels lowerCAmelCase_ : Dict = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Union[str, Any] = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Tuple = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : int = scope lowerCAmelCase_ : int = n_targets lowerCAmelCase_ : Any = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase_ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase_ : List[Any] = num_patches + 1 + self.num_detection_tokens def A ( self : Union[str, Any] ): lowerCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase_ : Union[str, Any] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase_ : Optional[Any] = [] for i in range(self.batch_size ): lowerCAmelCase_ : Optional[Any] = {} lowerCAmelCase_ : str = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=lowercase_ ) lowerCAmelCase_ : str = torch.rand(self.n_targets , 4 , device=lowercase_ ) labels.append(lowercase_ ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : str ): return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def A ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : List[str] = YolosModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ : Tuple = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def A ( self : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ): lowerCAmelCase_ : Dict = YolosForObjectDetection(lowercase_ ) model.to(lowercase_ ) model.eval() lowerCAmelCase_ : Tuple = model(pixel_values=lowercase_ ) lowerCAmelCase_ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase_ : Union[str, Any] = model(pixel_values=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def A ( self : List[Any] ): lowerCAmelCase_ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : int = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __snake_case : Optional[Any] = ( {"""feature-extraction""": YolosModel, """object-detection""": YolosForObjectDetection} if is_torch_available() else {} ) __snake_case : Tuple = False __snake_case : Dict = False __snake_case : Any = False __snake_case : Optional[Any] = False def A ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict=False ): lowerCAmelCase_ : Tuple = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase_ : Optional[int] = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase_ : Any = {} lowerCAmelCase_ : str = torch.ones( size=(self.model_tester.n_targets,) , device=lowercase_ , dtype=torch.long ) lowerCAmelCase_ : Tuple = torch.ones( self.model_tester.n_targets , 4 , device=lowercase_ , dtype=torch.float ) labels.append(lowercase_ ) lowerCAmelCase_ : Optional[int] = labels return inputs_dict def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = YolosModelTester(self ) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def A ( self : Tuple ): self.config_tester.run_common_tests() def A ( self : int ): pass def A ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def A ( self : Tuple ): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(lowercase_ ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def A ( self : int ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A ( self : Optional[int] ): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : List[Any] = True # in YOLOS, the seq_len is different lowerCAmelCase_ : Tuple = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : List[str] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowerCAmelCase_ : str = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Dict = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowerCAmelCase_ : str = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase_ : int = len(lowercase_ ) # Check attention is always last and order is fine lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Any = True lowerCAmelCase_ : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowerCAmelCase_ : Optional[int] = 1 self.assertEqual(out_len + added_hidden_states , len(lowercase_ ) ) lowerCAmelCase_ : Tuple = outputs.attentions self.assertEqual(len(lowercase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any ): lowerCAmelCase_ : Optional[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowerCAmelCase_ : Any = outputs.hidden_states lowerCAmelCase_ : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowercase_ ) , lowercase_ ) # YOLOS has a different seq_length lowerCAmelCase_ : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Union[str, Any] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def A ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowercase_ ) @slow def A ( self : Dict ): for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = YolosModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Any ): return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None @slow def A ( self : Tuple ): lowerCAmelCase_ : List[str] = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(lowercase_ ) lowerCAmelCase_ : List[str] = self.default_image_processor lowerCAmelCase_ : List[Any] = prepare_img() lowerCAmelCase_ : str = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowerCAmelCase_ : List[str] = model(inputs.pixel_values ) # verify outputs lowerCAmelCase_ : Any = torch.Size((1, 1_00, 92) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowerCAmelCase_ : Any = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=lowercase_ , ) lowerCAmelCase_ : List[Any] = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase_ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase_ , atol=1e-4 ) ) # verify postprocessing lowerCAmelCase_ : int = image_processor.post_process_object_detection( lowercase_ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase_ : Union[str, Any] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(lowercase_ ) lowerCAmelCase_ : Union[str, Any] = [75, 75, 17, 63, 17] lowerCAmelCase_ : Union[str, Any] = torch.tensor([3_35.06_09, 79.3848, 3_75.42_16, 1_87.24_95] ).to(lowercase_ ) self.assertEqual(len(results["""scores"""] ) , 5 ) self.assertTrue(torch.allclose(results["""scores"""] , lowercase_ , atol=1e-4 ) ) self.assertSequenceEqual(results["""labels"""].tolist() , lowercase_ ) self.assertTrue(torch.allclose(results["""boxes"""][0, :] , lowercase_ ) )
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = 0.00 lowerCAmelCase_ : Tuple = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase_ : Tuple = f'Resistor at index {index} has a negative or zero value!' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def __UpperCamelCase ( lowercase__ : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = 0.00 lowerCAmelCase_ : Optional[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase_ : int = f'Resistor at index {index} has a negative value!' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
def __UpperCamelCase ( lowercase__ : str ) -> Tuple: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(lowerCamelCase__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __a ( unittest.TestCase ): def __init__( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Any=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=5_12 , UpperCAmelCase : Any=16 , UpperCAmelCase : str=2 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Optional[Any]=4 , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Optional[Any] = batch_size lowerCAmelCase_ : int = seq_length lowerCAmelCase_ : List[Any] = is_training lowerCAmelCase_ : Dict = use_attention_mask lowerCAmelCase_ : int = use_token_type_ids lowerCAmelCase_ : str = use_labels lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : Union[str, Any] = type_sequence_label_size lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : Optional[int] = num_choices def A ( self : str ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_attention_mask: lowerCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[str] = None if self.use_token_type_ids: lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : str = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : List[Any] = config_and_inputs lowerCAmelCase_ : Any = True lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __a ( __SCREAMING_SNAKE_CASE ,unittest.TestCase ): __snake_case : Any = True __snake_case : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : str ): lowerCAmelCase_ : Dict = FlaxRobertaPreLayerNormModelTester(self ) @slow def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Dict = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_snake_case ) lowerCAmelCase_ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class __a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_snake_case ) lowerCAmelCase_ : List[str] = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) lowerCAmelCase_ : int = model(_snake_case )[0] lowerCAmelCase_ : Optional[int] = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase_ : List[Any] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_snake_case ) lowerCAmelCase_ : Tuple = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) lowerCAmelCase_ : Dict = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase_ : Any = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Tuple = KandinskyVaaImgaImgPipeline __snake_case : List[Any] = ["""image_embeds""", """negative_image_embeds""", """image"""] __snake_case : Tuple = [ """image_embeds""", """negative_image_embeds""", """image""", ] __snake_case : Tuple = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __snake_case : Dict = False @property def A ( self : Tuple ): return 32 @property def A ( self : Optional[int] ): return 32 @property def A ( self : List[str] ): return self.time_input_dim @property def A ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def A ( self : Any ): return 1_00 @property def A ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase_ : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase_ : str = UNetaDConditionModel(**UpperCAmelCase ) return model @property def A ( self : Optional[Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : str ): torch.manual_seed(0 ) lowerCAmelCase_ : int = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = self.dummy_unet lowerCAmelCase_ : Tuple = self.dummy_movq lowerCAmelCase_ : Optional[int] = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowerCAmelCase_ : Optional[int] = DDIMScheduler(**UpperCAmelCase ) lowerCAmelCase_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=0 ): lowerCAmelCase_ : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase ) # create init_image lowerCAmelCase_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : Tuple = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : Dict = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : List[str] ): lowerCAmelCase_ : Optional[int] = '''cpu''' lowerCAmelCase_ : List[Any] = self.get_dummy_components() lowerCAmelCase_ : Any = self.pipeline_class(**UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : List[Any] = pipe(**self.get_dummy_inputs(UpperCAmelCase ) ) lowerCAmelCase_ : List[Any] = output.images lowerCAmelCase_ : Dict = pipe( **self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0] lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Tuple = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __a ( unittest.TestCase ): def A ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any ): lowerCAmelCase_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) lowerCAmelCase_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase_ : List[Any] = '''A red cartoon frog, 4k''' lowerCAmelCase_ : Dict = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase ) lowerCAmelCase_ : Dict = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) lowerCAmelCase_ : str = pipeline.to(UpperCAmelCase ) pipeline.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : Tuple = pipe_prior( UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowerCAmelCase_ : List[Any] = pipeline( image=UpperCAmelCase , image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) lowerCAmelCase_ : Any = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
import math import sys def __UpperCamelCase ( lowercase__ : int ) -> Optional[Any]: '''simple docstring''' if number != int(UpperCAmelCase_ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 lowerCAmelCase_ : Tuple = [-1] * (number + 1) lowerCAmelCase_ : Optional[Any] = 0 for i in range(1 , number + 1 ): lowerCAmelCase_ : Dict = sys.maxsize lowerCAmelCase_ : Union[str, Any] = int(math.sqrt(UpperCAmelCase_ ) ) for j in range(1 , root + 1 ): lowerCAmelCase_ : Any = 1 + answers[i - (j**2)] lowerCAmelCase_ : Optional[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase_ : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class __a ( lowerCamelCase__ ): __snake_case : int = ["""pixel_values"""] def __init__( self : List[str] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Any , ): super().__init__(**UpperCAmelCase ) lowerCAmelCase_ : str = size if size is not None else {"shortest_edge": 2_56} lowerCAmelCase_ : str = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowerCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowerCAmelCase_ : Union[str, Any] = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) lowerCAmelCase_ : int = do_resize lowerCAmelCase_ : Union[str, Any] = size lowerCAmelCase_ : List[Any] = do_center_crop lowerCAmelCase_ : Dict = crop_size lowerCAmelCase_ : List[Any] = resample lowerCAmelCase_ : Optional[int] = do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor lowerCAmelCase_ : Tuple = offset lowerCAmelCase_ : Optional[int] = do_normalize lowerCAmelCase_ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ): lowerCAmelCase_ : Optional[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: lowerCAmelCase_ : Any = get_resize_output_image_size(UpperCAmelCase , size["""shortest_edge"""] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: lowerCAmelCase_ : Optional[int] = (size["height"], size["width"]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ): lowerCAmelCase_ : str = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ): lowerCAmelCase_ : List[Any] = image.astype(np.floataa ) if offset: lowerCAmelCase_ : Optional[Any] = image - (scale / 2) return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Dict , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ : Dict = to_numpy_array(UpperCAmelCase ) if do_resize: lowerCAmelCase_ : Any = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: lowerCAmelCase_ : Tuple = self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: lowerCAmelCase_ : Optional[Any] = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase , offset=UpperCAmelCase ) if do_normalize: lowerCAmelCase_ : List[str] = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) lowerCAmelCase_ : str = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def A ( self : Dict , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : int = resample if resample is not None else self.resample lowerCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Any = offset if offset is not None else self.offset lowerCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : str = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Optional[Any] = size if size is not None else self.size lowerCAmelCase_ : List[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowerCAmelCase_ : Any = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : Dict = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCAmelCase_ : str = make_batched(UpperCAmelCase ) lowerCAmelCase_ : str = [ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , offset=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] lowerCAmelCase_ : Tuple = {"pixel_values": videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Tuple = CycleDiffusionPipeline __snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __snake_case : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} __snake_case : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) __snake_case : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __snake_case : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : Optional[Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=10_00 , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase_ : Optional[Any] = CLIPTextModel(lowerCamelCase_ ) lowerCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any]=0 ): lowerCAmelCase_ : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCAmelCase_ : List[str] = image / 2 + 0.5 if str(lowerCamelCase_ ).startswith("""mps""" ): lowerCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) else: lowerCAmelCase_ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def A ( self : str ): lowerCAmelCase_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase_ : List[Any] = CycleDiffusionPipeline(**lowerCamelCase_ ) lowerCAmelCase_ : Optional[int] = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCAmelCase_ : List[str] = pipe(**lowerCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase_ : Any = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def A ( self : Tuple ): lowerCAmelCase_ : Any = self.get_dummy_components() for name, module in components.items(): if hasattr(lowerCamelCase_ , """half""" ): lowerCAmelCase_ : int = module.half() lowerCAmelCase_ : Optional[Any] = CycleDiffusionPipeline(**lowerCamelCase_ ) lowerCAmelCase_ : int = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(lowerCamelCase_ ) lowerCAmelCase_ : Dict = pipe(**lowerCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = output.images lowerCAmelCase_ : str = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCAmelCase_ : Any = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def A ( self : Union[str, Any] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def A ( self : int ): return super().test_inference_batch_single_identical() @skip_mps def A ( self : Any ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def A ( self : Optional[Any] ): return super().test_save_load_optional_components() @skip_mps def A ( self : Dict ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __a ( unittest.TestCase ): def A ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : str ): lowerCAmelCase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCAmelCase_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) lowerCAmelCase_ : str = init_image.resize((5_12, 5_12) ) lowerCAmelCase_ : int = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase_ : List[str] = DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder="""scheduler""" ) lowerCAmelCase_ : str = CycleDiffusionPipeline.from_pretrained( lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ : List[Any] = """A black colored car""" lowerCAmelCase_ : Optional[Any] = """A blue colored car""" lowerCAmelCase_ : List[str] = torch.manual_seed(0 ) lowerCAmelCase_ : str = pipe( prompt=lowerCamelCase_ , source_prompt=lowerCamelCase_ , image=lowerCamelCase_ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase_ , output_type="""np""" , ) lowerCAmelCase_ : Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def A ( self : str ): lowerCAmelCase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCAmelCase_ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) lowerCAmelCase_ : List[Any] = init_image.resize((5_12, 5_12) ) lowerCAmelCase_ : Dict = """CompVis/stable-diffusion-v1-4""" lowerCAmelCase_ : List[Any] = DDIMScheduler.from_pretrained(lowerCamelCase_ , subfolder="""scheduler""" ) lowerCAmelCase_ : int = CycleDiffusionPipeline.from_pretrained(lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() lowerCAmelCase_ : str = """A black colored car""" lowerCAmelCase_ : int = """A blue colored car""" lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = pipe( prompt=lowerCamelCase_ , source_prompt=lowerCamelCase_ , image=lowerCamelCase_ , num_inference_steps=1_00 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=lowerCamelCase_ , output_type="""np""" , ) lowerCAmelCase_ : str = output.images assert np.abs(image - expected_image ).max() < 2e-2
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = tempfile.mkdtemp() lowerCAmelCase_ : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase_ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } lowerCAmelCase_ : Tuple = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase_ , lowercase_ ) def A ( self : Tuple , **UpperCAmelCase : str ): return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def A ( self : Any , **UpperCAmelCase : List[Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def A ( self : Optional[Any] , **UpperCAmelCase : List[str] ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def A ( self : Any ): shutil.rmtree(self.tmpdirname ) def A ( self : List[str] ): lowerCAmelCase_ : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase_ : Any = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : int ): lowerCAmelCase_ : Dict = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[str] = self.get_image_processor() lowerCAmelCase_ : int = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : Optional[Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) lowerCAmelCase_ : List[str] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase_ : Optional[Any] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase_ : Optional[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : List[str] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ : List[str] = self.prepare_image_inputs() lowerCAmelCase_ : str = image_processor(lowercase_ , return_tensors="""np""" ) lowerCAmelCase_ : str = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : List[str] = self.get_image_processor() lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase_ : int = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ : Optional[int] = """lower newer""" lowerCAmelCase_ : int = processor(text=lowercase_ ) lowerCAmelCase_ : Optional[int] = tokenizer(lowercase_ , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A ( self : List[Any] ): lowerCAmelCase_ : str = self.get_image_processor() lowerCAmelCase_ : List[str] = self.get_tokenizer() lowerCAmelCase_ : Any = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ : str = """lower newer""" lowerCAmelCase_ : int = self.prepare_image_inputs() lowerCAmelCase_ : Optional[int] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = self.get_image_processor() lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : List[Any] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : Optional[Any] = processor.batch_decode(lowercase_ ) lowerCAmelCase_ : Optional[Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def A ( self : List[Any] ): lowerCAmelCase_ : str = self.get_image_processor() lowerCAmelCase_ : List[str] = self.get_tokenizer() lowerCAmelCase_ : Union[str, Any] = AlignProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ : Union[str, Any] = """lower newer""" lowerCAmelCase_ : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase_ : List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
from typing import Any class __a : def __init__( self : Optional[int] , UpperCAmelCase : int ): lowerCAmelCase_ : Tuple = data lowerCAmelCase_ : str = None class __a : def __init__( self : List[str] ): lowerCAmelCase_ : Dict = None def A ( self : List[str] ): lowerCAmelCase_ : Any = self.head while temp is not None: print(temp.data , end=""" """ ) lowerCAmelCase_ : str = temp.next print() def A ( self : Any , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = Node(lowerCamelCase__ ) lowerCAmelCase_ : int = self.head lowerCAmelCase_ : Optional[int] = new_node def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): if node_data_a == node_data_a: return else: lowerCAmelCase_ : int = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase_ : Any = node_a.next lowerCAmelCase_ : str = self.head while node_a is not None and node_a.data != node_data_a: lowerCAmelCase_ : List[str] = node_a.next if node_a is None or node_a is None: return lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = node_a.data, node_a.data if __name__ == "__main__": __UpperCAmelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCAmelCase = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] ) return (item, float(_lowercase )) def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Dict ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = random.randint(0 , len(_lowercase ) - 1 ) lowerCAmelCase_ : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase_ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = list(_lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase_ : Tuple = random.choice(_lowercase ) return "".join(_lowercase ) def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = [] # Generate more children proportionally to the fitness score. lowerCAmelCase_ : str = int(parent_a[1] * 100 ) + 1 lowerCAmelCase_ : Tuple = 10 if child_n >= 10 else child_n for _ in range(_lowercase ): lowerCAmelCase_ : Dict = population_score[random.randint(0 , _lowercase )][0] lowerCAmelCase_ , lowerCAmelCase_ : str = crossover(parent_a[0] , _lowercase ) # Append new string to the population list. pop.append(mutate(_lowercase , _lowercase ) ) pop.append(mutate(_lowercase , _lowercase ) ) return pop def __UpperCamelCase ( lowercase__ : int , lowercase__ : Tuple , lowercase__ : Dict = True ) -> Tuple: '''simple docstring''' if N_POPULATION < N_SELECTED: lowerCAmelCase_ : Any = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase_ : str = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase_ : List[Any] = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_lowercase ) # Generate random starting population. lowerCAmelCase_ : Optional[int] = [] for _ in range(_lowercase ): population.append("""""".join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase_ : List[Any] = [evaluate(_lowercase , _lowercase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase_ : List[Any] = sorted(_lowercase , key=lambda lowercase__ : x[1] , reverse=_lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase_ : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowercase ) # Normalize population score to be between 0 and 1. lowerCAmelCase_ : Optional[Any] = [ (item, score / len(_lowercase )) for item, score in population_score ] # This is selection for i in range(_lowercase ): population.extend(select(population_score[int(_lowercase )] , _lowercase , _lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowercase ) > N_POPULATION: break if __name__ == "__main__": __UpperCAmelCase = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) __UpperCAmelCase = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
from collections.abc import Sequence def __UpperCamelCase ( lowercase__ : Sequence[float] , lowercase__ : bool = False ) -> Optional[Any]: '''simple docstring''' if not arr: return 0 lowerCAmelCase_ : str = 0 if allow_empty_subarrays else float("""-inf""" ) lowerCAmelCase_ : Tuple = 0.0 for num in arr: lowerCAmelCase_ : Optional[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase_ : int = max(lowercase__ , lowercase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> str: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(__lowerCAmelCase , int(b / 2 ) ) * actual_power(__lowerCAmelCase , int(b / 2 ) ) else: return a * actual_power(__lowerCAmelCase , int(b / 2 ) ) * actual_power(__lowerCAmelCase , int(b / 2 ) ) def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(__lowerCAmelCase , __lowerCAmelCase ) return actual_power(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __a : def __init__( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int=13 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : int=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : str=0.02 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : int=0.6 , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : str = image_size lowerCAmelCase_ : List[Any] = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Any = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : List[Any] = mask_ratio lowerCAmelCase_ : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowerCAmelCase_ : Tuple = (image_size // patch_size) ** 2 lowerCAmelCase_ : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : int = None if self.use_labels: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def A ( self : Tuple ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : List[str] = ViTMAEModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Optional[int] = ViTMAEForPreTraining(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = (self.image_size // self.patch_size) ** 2 lowerCAmelCase_ : List[Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : Dict = ViTMAEForPreTraining(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Dict = model(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def A ( self : Optional[Any] ): lowerCAmelCase_ : List[str] = self.prepare_config_and_inputs() lowerCAmelCase_ : str = config_and_inputs lowerCAmelCase_ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( a__ ,a__ ,unittest.TestCase ): __snake_case : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __snake_case : Optional[int] = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} __snake_case : Dict = False __snake_case : Optional[int] = False __snake_case : str = False __snake_case : Tuple = False def A ( self : List[Any] ): lowerCAmelCase_ : Union[str, Any] = ViTMAEModelTester(self ) lowerCAmelCase_ : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def A ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def A ( self : Any ): pass def A ( self : List[str] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def A ( self : List[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def A ( self : str ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def A ( self : List[Any] ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase__ ) def A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): # make masks reproducible np.random.seed(2 ) lowerCAmelCase_ : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowerCAmelCase_ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowerCAmelCase_ : List[Any] = torch.from_numpy(lowerCAmelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowerCAmelCase_ : int = pt_noise super().check_pt_tf_models(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A ( self : List[str] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase_ : Tuple = outputs[0].cpu().numpy() lowerCAmelCase_ : Optional[Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Make sure we don't have nans lowerCAmelCase_ : Tuple = after_outputs[0].cpu().numpy() lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" ) def A ( self : Dict ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" ) def A ( self : List[str] ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" ) def A ( self : str ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def A ( self : Optional[Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A ( self : Any ): pass @slow def A ( self : str ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : str = ViTMAEModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def A ( self : Optional[int] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowerCAmelCase_ : Dict = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = self.default_image_processor lowerCAmelCase_ : Union[str, Any] = prepare_img() lowerCAmelCase_ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowerCAmelCase_ : List[str] = ViTMAEConfig() lowerCAmelCase_ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowerCAmelCase_ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Dict = model(**lowerCAmelCase__ , noise=torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ) ) # verify the logits lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase__ ) , atol=1e-4 ) )
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[list[int]] ) -> bool: '''simple docstring''' lowerCAmelCase_ : str = len(lowercase__ ) # We need to create solution object to save path. lowerCAmelCase_ : str = [[0 for _ in range(lowercase__ )] for _ in range(lowercase__ )] lowerCAmelCase_ : Optional[Any] = run_maze(lowercase__ , 0 , 0 , lowercase__ ) if solved: print("""\n""".join(str(lowercase__ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __UpperCamelCase ( lowercase__ : list[list[int]] , lowercase__ : int , lowercase__ : int , lowercase__ : list[list[int]] ) -> bool: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) # Final check point. if i == j == (size - 1): lowerCAmelCase_ : List[Any] = 1 return True lowerCAmelCase_ : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase_ : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase_ : Optional[int] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase_ : int = 1 # check for directions if ( run_maze(lowercase__ , i + 1 , lowercase__ , lowercase__ ) or run_maze(lowercase__ , lowercase__ , j + 1 , lowercase__ ) or run_maze(lowercase__ , i - 1 , lowercase__ , lowercase__ ) or run_maze(lowercase__ , lowercase__ , j - 1 , lowercase__ ) ): return True lowerCAmelCase_ : Optional[int] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
import math import random def __UpperCamelCase ( lowercase__ : float , lowercase__ : bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> float: '''simple docstring''' lowerCAmelCase_ : List[Any] = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation lowerCAmelCase_ : List[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCAmelCase_ : Any = (expected / 100) - layer_a # Error delta lowerCAmelCase_ : str = layer_1_error * sigmoid_function(snake_case__ , snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('Expected value: ')) __UpperCAmelCase = int(input('Number of propagations: ')) print(forward_propagation(expected, number_propagations))
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __UpperCAmelCase = logging.get_logger(__name__) class __a ( _lowerCAmelCase ): def __init__( self : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["""bs4"""] ) super().__init__(**SCREAMING_SNAKE_CASE_ ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Any = [] lowerCAmelCase_ : str = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase_ : int = parent.find_all(child.name , recursive=SCREAMING_SNAKE_CASE_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(SCREAMING_SNAKE_CASE_ ) else next(i for i, s in enumerate(SCREAMING_SNAKE_CASE_ , 1 ) if s is child ) ) lowerCAmelCase_ : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def A ( self : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : List[str] = BeautifulSoup(SCREAMING_SNAKE_CASE_ , """html.parser""" ) lowerCAmelCase_ : int = [] lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Dict = [] for element in html_code.descendants: if type(SCREAMING_SNAKE_CASE_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase_ : str = html.unescape(SCREAMING_SNAKE_CASE_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = self.xpath_soup(SCREAMING_SNAKE_CASE_ ) stringaxtag_seq.append(SCREAMING_SNAKE_CASE_ ) stringaxsubs_seq.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : str ): lowerCAmelCase_ : List[str] = """""" for tagname, subs in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): xpath += F'/{tagname}' if subs != 0: xpath += F'[{subs}]' return xpath def __call__( self : Dict , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : str = False # Check that strings has a valid type if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[Any] = True elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): if len(SCREAMING_SNAKE_CASE_ ) == 0 or isinstance(html_strings[0] , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : int = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ F'but is of type {type(SCREAMING_SNAKE_CASE_ )}.' ) lowerCAmelCase_ : Optional[int] = bool(isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(html_strings[0] , SCREAMING_SNAKE_CASE_ )) ) if not is_batched: lowerCAmelCase_ : Optional[int] = [html_strings] # Get nodes + xpaths lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : List[Any] = [] for html_string in html_strings: lowerCAmelCase_ : Dict = self.get_three_from_single(SCREAMING_SNAKE_CASE_ ) nodes.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = [] for node, tag_list, sub_list in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Dict = self.construct_xpath(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) xpath_strings.append(SCREAMING_SNAKE_CASE_ ) xpaths.append(SCREAMING_SNAKE_CASE_ ) # return as Dict lowerCAmelCase_ : List[Any] = {"""nodes""": nodes, """xpaths""": xpaths} lowerCAmelCase_ : Union[str, Any] = BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) return encoded_inputs
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
class __a : def __init__( self : List[Any] , UpperCAmelCase : list[int] ): lowerCAmelCase_ : List[Any] = len(UpperCamelCase__ ) lowerCAmelCase_ : Tuple = [0] * len_array if len_array > 0: lowerCAmelCase_ : List[str] = array[0] for i in range(1 , UpperCamelCase__ ): lowerCAmelCase_ : Tuple = self.prefix_sum[i - 1] + array[i] def A ( self : str , UpperCAmelCase : int , UpperCAmelCase : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A ( self : str , UpperCAmelCase : int ): lowerCAmelCase_ : int = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCamelCase__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __UpperCAmelCase = "sshleifer/mar_enro_6_3_student" class __a ( _a ): def A ( self : Union[str, Any] ): super().setUp() lowerCAmelCase_ : int = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=UpperCAmelCase , ) lowerCAmelCase_ : Any = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def A ( self : Union[str, Any] ): MarianMTModel.from_pretrained(UpperCAmelCase ) @slow @require_torch_gpu def A ( self : Optional[int] ): lowerCAmelCase_ : str = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCAmelCase_ : Optional[int] = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split("""finetune.py""" )[1].strip() lowerCAmelCase_ : List[Any] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : str = bash_script.replace(UpperCAmelCase , str(UpperCAmelCase ) ) lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase_ : Tuple = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase_ : int = ['finetune.py'] + bash_script.split() + args with patch.object(UpperCAmelCase , """argv""" , UpperCAmelCase ): lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() lowerCAmelCase_ : str = pl.Trainer.add_argparse_args(UpperCAmelCase ) lowerCAmelCase_ : List[str] = SummarizationModule.add_model_specific_args(UpperCAmelCase , os.getcwd() ) lowerCAmelCase_ : List[Any] = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = main(UpperCAmelCase ) # Check metrics lowerCAmelCase_ : Tuple = load_json(model.metrics_save_path ) lowerCAmelCase_ : Dict = metrics['val'][0] lowerCAmelCase_ : int = metrics['val'][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , UpperCAmelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : List[Any] = os.listdir(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : List[str] = os.path.join(args.output_dir , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = torch.load(UpperCAmelCase , map_location="""cpu""" ) lowerCAmelCase_ : str = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : int = {os.path.basename(UpperCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class __a ( _a ): @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def A ( self : int ): lowerCAmelCase_ : List[Any] = F'{self.test_file_dir_str}/test_data/wmt_en_ro' lowerCAmelCase_ : Optional[Any] = { '--fp16_opt_level=O1': '', '$MAX_LEN': 1_28, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCAmelCase_ : Optional[int] = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split("""distillation.py""" )[1].strip() ) lowerCAmelCase_ : Any = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowerCAmelCase_ : List[str] = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(UpperCAmelCase , str(UpperCAmelCase ) ) lowerCAmelCase_ : Any = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : str = bash_script.replace("""--fp16""" , """""" ) lowerCAmelCase_ : Dict = 6 lowerCAmelCase_ : Tuple = ( ['distillation.py'] + bash_script.split() + [ F'--output_dir={output_dir}', '--gpus=1', '--learning_rate=1e-3', F'--num_train_epochs={epochs}', '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(UpperCAmelCase , """argv""" , UpperCAmelCase ): lowerCAmelCase_ : Dict = argparse.ArgumentParser() lowerCAmelCase_ : int = pl.Trainer.add_argparse_args(UpperCAmelCase ) lowerCAmelCase_ : Tuple = SummarizationDistiller.add_model_specific_args(UpperCAmelCase , os.getcwd() ) lowerCAmelCase_ : Optional[int] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase_ : Tuple = distill_main(UpperCAmelCase ) # Check metrics lowerCAmelCase_ : Tuple = load_json(model.metrics_save_path ) lowerCAmelCase_ : Any = metrics['val'][0] lowerCAmelCase_ : int = metrics['val'][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , UpperCAmelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : List[str] = os.listdir(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : List[str] = os.path.join(args.output_dir , UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.load(UpperCAmelCase , map_location="""cpu""" ) lowerCAmelCase_ : Dict = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : List[Any] = {os.path.basename(UpperCAmelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __a ( __a ): __snake_case : Optional[int] = """gpt_neox""" def __init__( self : List[Any] , UpperCAmelCase : Optional[Any]=5_04_32 , UpperCAmelCase : str=61_44 , UpperCAmelCase : Tuple=44 , UpperCAmelCase : Dict=64 , UpperCAmelCase : List[str]=2_45_76 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Tuple=0.25 , UpperCAmelCase : Any=1_00_00 , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=20_48 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : List[Any] , ): super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : int = rotary_pct lowerCAmelCase_ : str = rotary_emb_base lowerCAmelCase_ : Tuple = attention_dropout lowerCAmelCase_ : Dict = hidden_dropout lowerCAmelCase_ : Optional[int] = classifier_dropout lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Tuple = tie_word_embeddings lowerCAmelCase_ : Any = use_parallel_residual lowerCAmelCase_ : List[str] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def A ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCamelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) lowerCAmelCase_ : Optional[Any] = self.rope_scaling.get("""type""" , UpperCamelCase__ ) lowerCAmelCase_ : List[str] = self.rope_scaling.get("""factor""" , UpperCamelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class __a ( _lowerCAmelCase ): def __init__( self : Union[str, Any] , UpperCAmelCase : str=None , UpperCAmelCase : Tuple=None , *UpperCAmelCase : List[str] , **UpperCAmelCase : Dict ): super().__init__(*_lowercase , **_lowercase ) if config is None: assert isinstance(self.model , _lowercase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) lowerCAmelCase_ : Any = self.model.config else: lowerCAmelCase_ : Dict = config lowerCAmelCase_ : Dict = data_args lowerCAmelCase_ : str = self.config.tgt_vocab_size if isinstance(self.config , _lowercase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' """ padding..""" ) if self.args.label_smoothing == 0: lowerCAmelCase_ : Dict = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowerCAmelCase_ : List[Any] = label_smoothed_nll_loss def A ( self : Any , UpperCAmelCase : int ): if self.optimizer is None: lowerCAmelCase_ : List[str] = ["""bias""", """LayerNorm.weight"""] lowerCAmelCase_ : Optional[Any] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] lowerCAmelCase_ : str = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowerCAmelCase_ : Tuple = Adafactor lowerCAmelCase_ : List[Any] = {"""scale_parameter""": False, """relative_step""": False} else: lowerCAmelCase_ : Optional[Any] = AdamW lowerCAmelCase_ : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } lowerCAmelCase_ : Any = self.args.learning_rate if self.sharded_ddp: lowerCAmelCase_ : Union[str, Any] = OSS( params=_lowercase , optim=_lowercase , **_lowercase , ) else: lowerCAmelCase_ : Optional[Any] = optimizer_cls(_lowercase , **_lowercase ) if self.lr_scheduler is None: lowerCAmelCase_ : int = self._get_lr_scheduler(_lowercase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def A ( self : int , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : List[Any] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowerCAmelCase_ : Dict = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowerCAmelCase_ : Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowerCAmelCase_ : Dict = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=_lowercase ) return scheduler def A ( self : Union[str, Any] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowerCAmelCase_ : Union[str, Any] = model(**_lowercase , use_cache=_lowercase )[0] lowerCAmelCase_ : Union[str, Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowerCAmelCase_ , lowerCAmelCase_ : Any = model(**_lowercase , labels=_lowercase , use_cache=_lowercase )[:2] else: # compute label smoothed loss lowerCAmelCase_ : Dict = model(**_lowercase , use_cache=_lowercase )[0] lowerCAmelCase_ : int = torch.nn.functional.log_softmax(_lowercase , dim=-1 ) lowerCAmelCase_ , lowerCAmelCase_ : int = self.loss_fn(_lowercase , _lowercase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : int ): lowerCAmelCase_ : Dict = inputs.pop("""labels""" ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self._compute_loss(_lowercase , _lowercase , _lowercase ) return loss def A ( self : Any , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase : bool , UpperCAmelCase : Optional[List[str]] = None , ): lowerCAmelCase_ : Optional[Any] = self._prepare_inputs(_lowercase ) lowerCAmelCase_ : Tuple = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowerCAmelCase_ : Dict = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **_lowercase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase_ : Dict = self._pad_tensors_to_max_len(_lowercase , gen_kwargs["""max_length"""] ) lowerCAmelCase_ : Dict = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self._compute_loss(_lowercase , _lowercase , _lowercase ) lowerCAmelCase_ : List[str] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowerCAmelCase_ : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowerCAmelCase_ : Union[str, Any] = self._pad_tensors_to_max_len(_lowercase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any ): # If PAD token is not defined at least EOS token has to be defined lowerCAmelCase_ : List[str] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F' padded to `max_length`={max_length}' ) lowerCAmelCase_ : List[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowerCAmelCase_ : List[Any] = tensor return padded_tensor
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json', # See all SEW models at https://huggingface.co/models?filter=sew } class __a ( _a ): __snake_case : Optional[Any] = """sew""" def __init__( self : Dict , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : int=12 , UpperCAmelCase : str=30_72 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Optional[int]=1e-5 , UpperCAmelCase : Tuple="group" , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Tuple=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , UpperCAmelCase : Dict=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCAmelCase : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCAmelCase : List[Any]=False , UpperCAmelCase : List[str]=1_28 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=0.05 , UpperCAmelCase : str=10 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[str]=10 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : List[str]="mean" , UpperCAmelCase : Dict=False , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[str]=2_56 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=2 , **UpperCAmelCase : int , ): super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : Dict = feat_extract_norm lowerCAmelCase_ : str = feat_extract_activation lowerCAmelCase_ : List[Any] = list(__lowerCAmelCase ) lowerCAmelCase_ : int = list(__lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = list(__lowerCAmelCase ) lowerCAmelCase_ : Tuple = conv_bias lowerCAmelCase_ : Optional[Any] = num_conv_pos_embeddings lowerCAmelCase_ : Optional[int] = num_conv_pos_embedding_groups lowerCAmelCase_ : List[Any] = len(self.conv_dim ) lowerCAmelCase_ : List[str] = num_hidden_layers lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : Optional[int] = squeeze_factor lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Tuple = hidden_dropout lowerCAmelCase_ : Optional[int] = attention_dropout lowerCAmelCase_ : List[str] = activation_dropout lowerCAmelCase_ : Dict = feat_proj_dropout lowerCAmelCase_ : List[Any] = final_dropout lowerCAmelCase_ : str = layerdrop lowerCAmelCase_ : Any = layer_norm_eps lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : Union[str, Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ : Union[str, Any] = apply_spec_augment lowerCAmelCase_ : Union[str, Any] = mask_time_prob lowerCAmelCase_ : str = mask_time_length lowerCAmelCase_ : str = mask_time_min_masks lowerCAmelCase_ : Optional[Any] = mask_feature_prob lowerCAmelCase_ : Optional[Any] = mask_feature_length lowerCAmelCase_ : int = mask_feature_min_masks # ctc loss lowerCAmelCase_ : str = ctc_loss_reduction lowerCAmelCase_ : Optional[Any] = ctc_zero_infinity # sequence classification lowerCAmelCase_ : Union[str, Any] = use_weighted_layer_sum lowerCAmelCase_ : Optional[int] = classifier_proj_size @property def A ( self : List[str] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = abs(__a ) lowerCAmelCase_ : Dict = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCamelCase ( lowercase__ : List[str] ) -> List[str]: '''simple docstring''' return sum(int(__a ) for c in str(abs(__a ) ) ) def __UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ : str , lowercase__ : Union[str, Any] ) -> None: lowerCAmelCase_ : List[Any] = f'{func.__name__}({value})' lowerCAmelCase_ : Tuple = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(__a )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : int | float | str , lowercase__ : int | float | str ) -> Tuple: '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase_ : str = int(A__ ) lowerCAmelCase_ : Tuple = int(A__ ) lowerCAmelCase_ : list[str] = [] for temp in range(int(A__ ) ): series.append(f'1 / {pow(temp + 1 , int(A__ ) )}' if series else """1""" ) return series if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('Enter the last number (nth term) of the P-Series')) __UpperCAmelCase = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def __UpperCamelCase ( lowercase__ : Dict ) -> int: '''simple docstring''' return int(x / 2**20 ) class __a : def __enter__( self : str ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase_ : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self : Optional[int] , *UpperCAmelCase : int ): gc.collect() torch.cuda.empty_cache() lowerCAmelCase_ : List[str] = torch.cuda.memory_allocated() lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() lowerCAmelCase_ : Optional[Any] = bamb(self.end - self.begin ) lowerCAmelCase_ : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __UpperCamelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" , lowercase__ : int = 320 , lowercase__ : int = 160 , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase_ : str = load_dataset( """glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(lowercase__ : Dict ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ : List[Any] = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) lowerCAmelCase_ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : List[Any] = config['''lr'''] lowerCAmelCase_ : str = int(config["""num_epochs"""] ) lowerCAmelCase_ : List[str] = int(config["""seed"""] ) lowerCAmelCase_ : Tuple = int(config["""batch_size"""] ) lowerCAmelCase_ : int = args.model_name_or_path set_seed(lowerCAmelCase__ ) lowerCAmelCase_ : int = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer lowerCAmelCase_ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ : Union[str, Any] = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase_ : List[str] = 1 lowerCAmelCase_ : Tuple = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: lowerCAmelCase_ : List[str] = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ : List[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ : List[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ : List[Any] = 0 # Now we train the model lowerCAmelCase_ : Dict = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCAmelCase__ ): lowerCAmelCase_ : Union[str, Any] = model(**lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = outputs.loss lowerCAmelCase_ : Dict = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase_ : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCAmelCase__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCAmelCase__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=1 , help="""Number of train epochs.""" , ) lowerCAmelCase_ : Optional[int] = parser.parse_args() lowerCAmelCase_ : Tuple = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a ( __UpperCamelCase ): __snake_case : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process __UpperCAmelCase = logging.getLogger(__name__) __UpperCAmelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) __UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __a : __snake_case : Optional[str] = field( default=lowercase_ ,metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } ,) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(lowercase_ )} ,) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } ,) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) __snake_case : bool = field( default=lowercase_ ,metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} ,) __snake_case : str = field( default="""main""" ,metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} ,) __snake_case : bool = field( default=lowercase_ ,metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } ,) def A ( self : Union[str, Any] ): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __a : __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __snake_case : Optional[str] = field(default=lowercase_ ,metadata={"""help""": """The input training data file (a text file)."""} ) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} ,) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} ,) __snake_case : Optional[str] = field( default=lowercase_ ,metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} ,) __snake_case : bool = field( default=lowercase_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __snake_case : Optional[int] = field( default=5 ,metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } ,) __snake_case : Optional[int] = field( default=lowercase_ ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } ,) __snake_case : Optional[int] = field( default=lowercase_ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,) __snake_case : float = field( default=0.15 ,metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __snake_case : bool = field( default=lowercase_ ,metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } ,) def A ( self : Dict ): if self.train_file is not None: lowerCAmelCase_ : Union[str, Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: lowerCAmelCase_ : Any = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Dict ) -> str: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : List[Any] = [json.loads(lowercase__ ) for line in f.read().splitlines() if (len(lowercase__ ) > 0 and not line.isspace())] assert len(lowercase__ ) == len(lowercase__ ) lowerCAmelCase_ : Optional[int] = {c: dataset[c] for c in dataset.column_names} lowerCAmelCase_ : Optional[Any] = refs return Dataset.from_dict(lowercase__ ) def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. lowerCAmelCase_ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase_ : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase_ : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): lowerCAmelCase_ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[:{data_args.validation_split_percentage}%]' , ) lowerCAmelCase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'train[{data_args.validation_split_percentage}%:]' , ) else: lowerCAmelCase_ : Tuple = {} if data_args.train_file is not None: lowerCAmelCase_ : List[str] = data_args.train_file if data_args.validation_file is not None: lowerCAmelCase_ : str = data_args.validation_file lowerCAmelCase_ : Optional[Any] = data_args.train_file.split(""".""" )[-1] if extension == "txt": lowerCAmelCase_ : Tuple = """text""" lowerCAmelCase_ : Tuple = load_dataset(lowercase__ , data_files=lowercase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : Any = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: lowerCAmelCase_ : List[str] = AutoConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: lowerCAmelCase_ : int = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: lowerCAmelCase_ : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(f'New config: {config}' ) lowerCAmelCase_ : Optional[int] = { """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase__ ) elif model_args.model_name_or_path: lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: lowerCAmelCase_ : Optional[int] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) lowerCAmelCase_ : int = AutoModelForMaskedLM.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: lowerCAmelCase_ : Optional[Any] = datasets["""train"""].column_names else: lowerCAmelCase_ : List[str] = datasets["""validation"""].column_names lowerCAmelCase_ : Optional[int] = """text""" if """text""" in column_names else column_names[0] lowerCAmelCase_ : Any = """max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowercase__ : str ): # Remove empty lines lowerCAmelCase_ : List[str] = [line for line in examples["""text"""] if len(lowercase__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowercase__ , truncation=lowercase__ , max_length=data_args.max_seq_length ) lowerCAmelCase_ : Tuple = datasets.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: lowerCAmelCase_ : str = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: lowerCAmelCase_ : Tuple = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer lowerCAmelCase_ : Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: lowerCAmelCase_ : Any = False # Data collator # This one will take care of randomly masking the tokens. lowerCAmelCase_ : Dict = DataCollatorForWholeWordMask(tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase_ : str = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: lowerCAmelCase_ : Optional[Any] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): lowerCAmelCase_ : int = model_args.model_name_or_path else: lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCAmelCase_ : str = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation lowerCAmelCase_ : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase_ : int = trainer.evaluate() lowerCAmelCase_ : Any = math.exp(eval_output["""eval_loss"""] ) lowerCAmelCase_ : Union[str, Any] = perplexity lowerCAmelCase_ : Dict = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f' {key} = {value}' ) writer.write(f'{key} = {value}\n' ) return results def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __a : __snake_case : CommonSchedulerState # setable values __snake_case : jnp.ndarray __snake_case : jnp.ndarray __snake_case : Optional[int] = None @classmethod def A ( cls : Dict , UpperCAmelCase : CommonSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ): return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ ) @dataclass class __a ( UpperCamelCase__ ): __snake_case : DDPMSchedulerState class __a ( UpperCamelCase__ ,UpperCamelCase__ ): __snake_case : Tuple = [e.name for e in FlaxKarrasDiffusionSchedulers] __snake_case : jnp.dtype @property def A ( self : Optional[Any] ): return True @register_to_config def __init__( self : Any , UpperCAmelCase : int = 10_00 , UpperCAmelCase : float = 0.0001 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : str = "linear" , UpperCAmelCase : Optional[jnp.ndarray] = None , UpperCAmelCase : str = "fixed_small" , UpperCAmelCase : bool = True , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : jnp.dtype = jnp.floataa , ): lowerCAmelCase_ : Optional[int] = dtype def A ( self : Optional[int] , UpperCAmelCase : Optional[CommonSchedulerState] = None ): if common is None: lowerCAmelCase_ : Union[str, Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase_ : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase_ : List[Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def A ( self : Dict , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : Dict , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : int , UpperCAmelCase : Tuple = () ): lowerCAmelCase_ : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase_ : List[str] = (jnp.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def A ( self : Union[str, Any] , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : str=None ): lowerCAmelCase_ : Any = state.common.alphas_cumprod[t] lowerCAmelCase_ : Any = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase_ : Any = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase_ : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase_ : Dict = jnp.clip(UpperCamelCase_ , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase_ : Any = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": lowerCAmelCase_ : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase_ : int = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase_ : int = variance lowerCAmelCase_ : int = state.common.betas[t] lowerCAmelCase_ : List[str] = (predicted_variance + 1) / 2 lowerCAmelCase_ : str = frac * max_log + (1 - frac) * min_log return variance def A ( self : Any , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : Optional[jax.random.KeyArray] = None , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Tuple = timestep if key is None: lowerCAmelCase_ : List[str] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1 ) else: lowerCAmelCase_ : Any = None # 1. compute alphas, betas lowerCAmelCase_ : Any = state.common.alphas_cumprod[t] lowerCAmelCase_ : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase_ : Dict = 1 - alpha_prod_t lowerCAmelCase_ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase_ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase_ : Dict = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase_ : Optional[int] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase_ : Optional[int] = jnp.clip(UpperCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : Dict = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase_ : Any = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase_ : List[str] = jax.random.split(UpperCamelCase_ , num=1 ) lowerCAmelCase_ : Dict = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise lowerCAmelCase_ : Optional[Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase_ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_ ) def A ( self : int , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , ): return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def A ( self : List[str] , UpperCAmelCase : DDPMSchedulerState , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , ): return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __len__( self : str ): return self.config.num_train_timesteps
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
import mpmath # for roots of unity import numpy as np class __a : def __init__( self : List[str] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=None ): lowerCAmelCase_ : Optional[Any] = list(poly_a or [0] )[:] lowerCAmelCase_ : Tuple = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowerCAmelCase_ : Tuple = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowerCAmelCase_ : int = len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowerCAmelCase_ : List[str] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowerCAmelCase_ : Dict = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowerCAmelCase_ : Any = self.__multiply() def A ( self : Any , UpperCAmelCase : str ): lowerCAmelCase_ : Optional[Any] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(__lowerCamelCase ) <= 1: return dft[0] # lowerCAmelCase_ : Dict = self.c_max_length // 2 while next_ncol > 0: lowerCAmelCase_ : Any = [[] for i in range(__lowerCamelCase )] lowerCAmelCase_ : Union[str, Any] = self.root**next_ncol # First half of next step lowerCAmelCase_ : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCamelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowerCAmelCase_ : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCamelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowerCAmelCase_ : List[Any] = new_dft lowerCAmelCase_ : Optional[int] = next_ncol // 2 return dft[0] def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.__dft("""A""" ) lowerCAmelCase_ : Optional[int] = self.__dft("""B""" ) lowerCAmelCase_ : Optional[int] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowerCAmelCase_ : Optional[int] = 2 while next_ncol <= self.c_max_length: lowerCAmelCase_ : Optional[Any] = [[] for i in range(__lowerCamelCase )] lowerCAmelCase_ : Optional[Any] = self.root ** (next_ncol // 2) lowerCAmelCase_ : Union[str, Any] = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowerCAmelCase_ : Optional[int] = new_inverse_c next_ncol *= 2 # Unpack lowerCAmelCase_ : Optional[int] = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = '''A = ''' + ''' + '''.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowerCAmelCase_ : Any = '''B = ''' + ''' + '''.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowerCAmelCase_ : Tuple = '''A*B = ''' + ''' + '''.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : int , *UpperCAmelCase : str , **UpperCAmelCase : List[str] ): warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , _A , ) super().__init__(*_A , **_A )
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
import functools from typing import Any def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' if not isinstance(_A , _A ) or len(_A ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_A , _A ) or not all( isinstance(_A , _A ) and len(_A ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie lowerCAmelCase_ : dict[str, Any] = {} lowerCAmelCase_ : Tuple = 'WORD_KEEPER' for word in words: lowerCAmelCase_ : Dict = trie for c in word: if c not in trie_node: lowerCAmelCase_ : List[str] = {} lowerCAmelCase_ : List[str] = trie_node[c] lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Optional[int] = len(_A ) # Dynamic programming method @functools.cache def is_breakable(lowercase__ : str ) -> bool: if index == len_string: return True lowerCAmelCase_ : Dict = trie for i in range(_A , _A ): lowerCAmelCase_ : Union[str, Any] = trie_node.get(string[i] , _A ) if trie_node is None: return False if trie_node.get(_A , _A ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Any ) -> str: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Tuple = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : List[Any] = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : Optional[int] = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : List[Any] = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : int = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Optional[int] = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : List[str] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : List[Any] = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : str = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : Any=None , lowercase__ : Union[str, Any]=None , ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig.from_pretrained(lowerCAmelCase__ ) else: lowerCAmelCase_ : List[str] = SpeechTaHifiGanConfig() lowerCAmelCase_ : Tuple = SpeechTaHifiGan(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = torch.load(lowerCAmelCase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = np.load(lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = stats[0].reshape(-1 ) lowerCAmelCase_ : Optional[Any] = stats[1].reshape(-1 ) lowerCAmelCase_ : List[str] = torch.from_numpy(lowerCAmelCase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowerCAmelCase__ ).float() model.save_pretrained(lowerCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( __a ,__a ,__a ,unittest.TestCase ): __snake_case : Union[str, Any] = StableDiffusionInpaintPipeline __snake_case : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __snake_case : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case : Optional[Any] = frozenset([] ) def A ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a__ , ) lowerCAmelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=a__ ) torch.manual_seed(0 ) lowerCAmelCase_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCAmelCase_ : Any = CLIPTextModel(a__ ) lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowerCAmelCase_ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) lowerCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : List[Any] = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase_ : List[str] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a__ ).startswith("""mps""" ): lowerCAmelCase_ : Tuple = torch.manual_seed(a__ ) else: lowerCAmelCase_ : Optional[Any] = torch.Generator(device=a__ ).manual_seed(a__ ) lowerCAmelCase_ : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : Dict = StableDiffusionInpaintPipeline(**a__ ) lowerCAmelCase_ : str = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(a__ ) lowerCAmelCase_ : str = sd_pipe(**a__ ).images lowerCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Dict = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __a ( unittest.TestCase ): def A ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple ): lowerCAmelCase_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase_ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowerCAmelCase_ : Union[str, Any] = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase_ : Tuple = StableDiffusionInpaintPipeline.from_pretrained(a__ , safety_checker=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase_ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type="""np""" , ) lowerCAmelCase_ : Tuple = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A ( self : List[str] ): lowerCAmelCase_ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase_ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowerCAmelCase_ : Optional[Any] = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase_ : Any = StableDiffusionInpaintPipeline.from_pretrained( a__ , torch_dtype=torch.floataa , safety_checker=a__ , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing() lowerCAmelCase_ : str = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , output_type="""np""" , ) lowerCAmelCase_ : Optional[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase_ : Any = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase_ : List[str] = PNDMScheduler.from_pretrained(a__ , subfolder="""scheduler""" ) lowerCAmelCase_ : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( a__ , safety_checker=a__ , scheduler=a__ , torch_dtype=torch.floataa , ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ : Union[str, Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = pipe( prompt=a__ , image=a__ , mask_image=a__ , generator=a__ , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase_ : str = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __a ( lowerCamelCase__ ,unittest.TestCase ): __snake_case : Dict = AlbertTokenizer __snake_case : List[str] = AlbertTokenizerFast __snake_case : Tuple = True __snake_case : List[str] = True __snake_case : int = True def A ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Union[str, Any] = AlbertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : List[Any] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = '''this is a test''' lowerCAmelCase_ : Optional[int] = '''this is a test''' return input_text, output_text def A ( self : List[str] ): lowerCAmelCase_ : Optional[Any] = '''<pad>''' lowerCAmelCase_ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def A ( self : Any ): lowerCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__A ) , 3_00_00 ) def A ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def A ( self : Dict ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : int = '''I was born in 92000, and this is falsé.''' lowerCAmelCase_ : int = tokenizer.tokenize(__A ) lowerCAmelCase_ : Dict = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ : List[str] = tokenizer.encode(__A , add_special_tokens=__A ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) lowerCAmelCase_ : str = self.get_rust_tokenizer() lowerCAmelCase_ : List[Any] = tokenizer.encode(__A ) lowerCAmelCase_ : Dict = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = AlbertTokenizer(__A , keep_accents=__A ) lowerCAmelCase_ : List[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__A , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [48, 25, 21, 12_89] ) lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowerCAmelCase_ : List[Any] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) lowerCAmelCase_ : List[str] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def A ( self : int ): lowerCAmelCase_ : Optional[Any] = AlbertTokenizer(__A ) lowerCAmelCase_ : Union[str, Any] = tokenizer.encode("""sequence builders""" ) lowerCAmelCase_ : Tuple = tokenizer.encode("""multi-sequence build""" ) lowerCAmelCase_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__A ) lowerCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def A ( self : Dict ): # fmt: off lowerCAmelCase_ : List[Any] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCAmelCase = '\\n\n' __UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def A ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] = 16 , UpperCAmelCase : Dict = True , UpperCAmelCase : List[Any]=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCAmelCase_ : Dict = """cuda""" else: lowerCAmelCase_ : Any = """cuda""" if torch.cuda.is_available() else """cpu""" lowerCAmelCase_ : str = AutoModelForCausalLM.from_pretrained(_A ) lowerCAmelCase_ : Union[str, Any] = model.to(_A ) lowerCAmelCase_ : str = AutoTokenizer.from_pretrained(_A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCAmelCase_ : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCAmelCase_ : List[str] = model.config.max_length - 1 else: lowerCAmelCase_ : Tuple = model.config.max_length lowerCAmelCase_ : Tuple = tokenizer( _A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , return_tensors="""pt""" , return_attention_mask=_A , ).to(_A ) lowerCAmelCase_ : Any = encodings["""input_ids"""] lowerCAmelCase_ : List[str] = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Optional[int] = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_A ) , _A ) ): lowerCAmelCase_ : int = min(start_index + batch_size , len(_A ) ) lowerCAmelCase_ : Tuple = encoded_texts[start_index:end_index] lowerCAmelCase_ : List[Any] = attn_masks[start_index:end_index] if add_start_token: lowerCAmelCase_ : Dict = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_A ) lowerCAmelCase_ : Any = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCAmelCase_ : Union[str, Any] = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_A ), attn_mask] , dim=1 ) lowerCAmelCase_ : Dict = encoded_batch with torch.no_grad(): lowerCAmelCase_ : List[str] = model(_A , attention_mask=_A ).logits lowerCAmelCase_ : Dict = out_logits[..., :-1, :].contiguous() lowerCAmelCase_ : int = labels[..., 1:].contiguous() lowerCAmelCase_ : Optional[int] = attn_mask[..., 1:].contiguous() lowerCAmelCase_ : List[str] = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_A )}
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
def __UpperCamelCase ( lowercase__ : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) lowerCAmelCase_ : Union[str, Any] = [True] * (num + 1) lowerCAmelCase_ : int = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , snake_case__ ): lowerCAmelCase_ : Union[str, Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): @property def A ( self : Optional[int] ): torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def A ( self : Optional[Any] ): lowerCAmelCase_ : int = self.dummy_uncond_unet lowerCAmelCase_ : Optional[int] = KarrasVeScheduler() lowerCAmelCase_ : List[Any] = KarrasVePipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase_ : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase , output_type="""numpy""" ).images lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : int = pipe(num_inference_steps=2 , generator=UpperCAmelCase , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] lowerCAmelCase_ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __a ( unittest.TestCase ): def A ( self : List[str] ): lowerCAmelCase_ : List[str] = """google/ncsnpp-celebahq-256""" lowerCAmelCase_ : Any = UNetaDModel.from_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = KarrasVeScheduler() lowerCAmelCase_ : List[Any] = KarrasVePipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.manual_seed(0 ) lowerCAmelCase_ : Dict = pipe(num_inference_steps=20 , generator=UpperCAmelCase , output_type="""numpy""" ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) lowerCAmelCase_ : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __a ( UpperCAmelCase_ ): @require_torch def A ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowerCAmelCase_ : Dict = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowerCAmelCase_ : List[Any] = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowerCAmelCase_ : Optional[int] = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowerCAmelCase_ : str = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__lowercase ) BertModel.from_pretrained(__lowercase ) BertTokenizer.from_pretrained(__lowercase ) pipeline(task="""fill-mask""" , model=__lowercase ) # baseline - just load from_pretrained with normal network lowerCAmelCase_ : List[Any] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowerCAmelCase_ : str = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCAmelCase_ : Dict = '''1''' lowerCAmelCase_ : Tuple = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A ( self : List[Any] ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowerCAmelCase_ : List[str] = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' lowerCAmelCase_ : Dict = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' lowerCAmelCase_ : Tuple = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache lowerCAmelCase_ : Optional[int] = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__lowercase ) BertModel.from_pretrained(__lowercase ) BertTokenizer.from_pretrained(__lowercase ) pipeline(task="""fill-mask""" , model=__lowercase ) # baseline - just load from_pretrained with normal network lowerCAmelCase_ : Tuple = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed lowerCAmelCase_ : Any = self.get_env() lowerCAmelCase_ : Dict = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A ( self : str ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched lowerCAmelCase_ : Any = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' lowerCAmelCase_ : Union[str, Any] = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' lowerCAmelCase_ : str = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network lowerCAmelCase_ : Any = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowerCAmelCase_ : Tuple = self.get_env() lowerCAmelCase_ : Tuple = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network lowerCAmelCase_ : Dict = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCAmelCase_ : Optional[Any] = '''1''' lowerCAmelCase_ : Dict = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def A ( self : Any ): lowerCAmelCase_ : List[str] = ''' from transformers import pipeline ''' lowerCAmelCase_ : List[Any] = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' lowerCAmelCase_ : int = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' lowerCAmelCase_ : Union[str, Any] = self.get_env() lowerCAmelCase_ : Optional[Any] = '''1''' lowerCAmelCase_ : List[Any] = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] lowerCAmelCase_ : List[str] = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def A ( self : Tuple ): lowerCAmelCase_ : Any = ''' from transformers import AutoModel ''' lowerCAmelCase_ : int = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network lowerCAmelCase_ : Optional[Any] = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed lowerCAmelCase_ : int = self.get_env() lowerCAmelCase_ : str = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files lowerCAmelCase_ : Dict = '''1''' lowerCAmelCase_ : Tuple = subprocess.run(__lowercase , env=__lowercase , check=__lowercase , capture_output=__lowercase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[Any] = os.path.dirname(os.path.realpath(snake_case_ ) ) lowerCAmelCase_ : Optional[Any] = os.path.join(snake_case_ , """words.txt""" ) lowerCAmelCase_ : List[str] = """""" with open(snake_case_ ) as f: lowerCAmelCase_ : str = f.readline() lowerCAmelCase_ : Dict = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] lowerCAmelCase_ : List[str] = [ word for word in [sum(ord(snake_case_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case_ ) if __name__ == "__main__": print(solution())
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
import math import sys def __UpperCamelCase ( lowercase__ : Any ) -> int: '''simple docstring''' if number != int(lowerCAmelCase_ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 lowerCAmelCase_ : Optional[int] = [-1] * (number + 1) lowerCAmelCase_ : Optional[int] = 0 for i in range(1 , number + 1 ): lowerCAmelCase_ : Optional[Any] = sys.maxsize lowerCAmelCase_ : Optional[Any] = int(math.sqrt(lowerCAmelCase_ ) ) for j in range(1 , root + 1 ): lowerCAmelCase_ : Tuple = 1 + answers[i - (j**2)] lowerCAmelCase_ : List[Any] = min(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : str = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[Any]=8 ) -> Dict: '''simple docstring''' lowerCAmelCase_ : str = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase_ : Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __a ( lowerCamelCase_ ): def __init__( self : List[str] , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) lowerCAmelCase_ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Any ): if latents is None: lowerCAmelCase_ : Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase_ : Union[str, Any] = latents.to(__snake_case ) lowerCAmelCase_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A ( self : Tuple , UpperCAmelCase : int=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase_ : Any = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase_ : List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def A ( self : Any , UpperCAmelCase : Optional[Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase_ : Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase_ : str = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase_ , lowerCAmelCase_ : Tuple = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. lowerCAmelCase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self : Union[str, Any] ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self : Union[str, Any] , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 1_00 , UpperCAmelCase : float = 4.0 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : str = self._execution_device lowerCAmelCase_ : Any = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): lowerCAmelCase_ : Union[str, Any] = torch.cat(__snake_case , dim=0 ) lowerCAmelCase_ : List[Any] = image_embeds.shape[0] * num_images_per_prompt if isinstance(__snake_case , __snake_case ): lowerCAmelCase_ : Dict = torch.cat(__snake_case , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase_ : Any = image_embeds.repeat_interleave(__snake_case , dim=0 ) lowerCAmelCase_ : Optional[Any] = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) lowerCAmelCase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) lowerCAmelCase_ : Optional[int] = self.scheduler.timesteps lowerCAmelCase_ : str = self.unet.config.in_channels lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) # create initial latent lowerCAmelCase_ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : Tuple = {"""image_embeds""": image_embeds} lowerCAmelCase_ : Optional[int] = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = noise_pred.chunk(2 ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = variance_pred.chunk(2 ) lowerCAmelCase_ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase_ , lowerCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : Tuple = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing lowerCAmelCase_ : List[str] = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase_ : int = image * 0.5 + 0.5 lowerCAmelCase_ : Optional[int] = image.clamp(0 , 1 ) lowerCAmelCase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase_ : Any = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __a ( _SCREAMING_SNAKE_CASE ,unittest.TestCase ): __snake_case : List[Any] = KandinskyVaaControlnetImgaImgPipeline __snake_case : Optional[Any] = ["image_embeds", "negative_image_embeds", "image", "hint"] __snake_case : Any = ["image_embeds", "negative_image_embeds", "image", "hint"] __snake_case : Union[str, Any] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : Optional[int] = False @property def A ( self : List[Any] ): return 32 @property def A ( self : List[str] ): return 32 @property def A ( self : Optional[int] ): return self.time_input_dim @property def A ( self : Any ): return self.time_input_dim * 4 @property def A ( self : List[str] ): return 1_00 @property def A ( self : Union[str, Any] ): torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowerCAmelCase_ : str = UNetaDConditionModel(**A_ ) return model @property def A ( self : Optional[int] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A ( self : List[str] ): torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = self.dummy_unet lowerCAmelCase_ : str = self.dummy_movq lowerCAmelCase_ : int = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowerCAmelCase_ : Optional[Any] = DDIMScheduler(**A_ ) lowerCAmelCase_ : List[str] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=0 ): lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) lowerCAmelCase_ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) lowerCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : int = Image.fromarray(np.uinta(A_ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith("""mps""" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(A_ ) else: lowerCAmelCase_ : Any = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCAmelCase_ : Dict = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def A ( self : Tuple ): lowerCAmelCase_ : Tuple = """cpu""" lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**A_ ) lowerCAmelCase_ : int = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase_ : Optional[Any] = pipe(**self.get_dummy_inputs(A_ ) ) lowerCAmelCase_ : Optional[Any] = output.images lowerCAmelCase_ : Optional[Any] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Any = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __a ( unittest.TestCase ): def A ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) lowerCAmelCase_ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowerCAmelCase_ : Optional[int] = init_image.resize((5_12, 5_12) ) lowerCAmelCase_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) lowerCAmelCase_ : Optional[Any] = torch.from_numpy(np.array(A_ ) ).float() / 255.0 lowerCAmelCase_ : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = """A robot, 4k photo""" lowerCAmelCase_ : str = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) lowerCAmelCase_ : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) lowerCAmelCase_ : List[str] = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) lowerCAmelCase_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = pipe_prior( A_ , image=A_ , strength=0.85 , generator=A_ , negative_prompt="""""" , ).to_tuple() lowerCAmelCase_ : str = pipeline( image=A_ , image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) lowerCAmelCase_ : int = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A_ , A_ )
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """deta""" __snake_case : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Union[str, Any] , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=9_00 , UpperCAmelCase : Tuple=20_48 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=8 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : str=10_24 , UpperCAmelCase : Dict=8 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : int=True , UpperCAmelCase : int="relu" , UpperCAmelCase : str=2_56 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : str=1.0 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]="sine" , UpperCAmelCase : Tuple=5 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=3_00 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=1 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : int=5 , UpperCAmelCase : Dict=2 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Dict=0.25 , **UpperCAmelCase : Any , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCAmelCase_ : Tuple = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Tuple = backbone_config.pop("""model_type""" ) lowerCAmelCase_ : List[str] = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : int = config_class.from_dict(UpperCAmelCase ) lowerCAmelCase_ : Dict = backbone_config lowerCAmelCase_ : List[str] = num_queries lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = d_model lowerCAmelCase_ : int = encoder_ffn_dim lowerCAmelCase_ : Tuple = encoder_layers lowerCAmelCase_ : int = encoder_attention_heads lowerCAmelCase_ : str = decoder_ffn_dim lowerCAmelCase_ : Union[str, Any] = decoder_layers lowerCAmelCase_ : Dict = decoder_attention_heads lowerCAmelCase_ : Tuple = dropout lowerCAmelCase_ : List[str] = attention_dropout lowerCAmelCase_ : Tuple = activation_dropout lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : List[Any] = init_std lowerCAmelCase_ : int = init_xavier_std lowerCAmelCase_ : str = encoder_layerdrop lowerCAmelCase_ : Dict = auxiliary_loss lowerCAmelCase_ : Dict = position_embedding_type # deformable attributes lowerCAmelCase_ : Any = num_feature_levels lowerCAmelCase_ : Optional[int] = encoder_n_points lowerCAmelCase_ : int = decoder_n_points lowerCAmelCase_ : List[str] = two_stage lowerCAmelCase_ : str = two_stage_num_proposals lowerCAmelCase_ : Dict = with_box_refine lowerCAmelCase_ : Union[str, Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCAmelCase_ : int = class_cost lowerCAmelCase_ : int = bbox_cost lowerCAmelCase_ : Any = giou_cost # Loss coefficients lowerCAmelCase_ : int = mask_loss_coefficient lowerCAmelCase_ : Union[str, Any] = dice_loss_coefficient lowerCAmelCase_ : int = bbox_loss_coefficient lowerCAmelCase_ : List[Any] = giou_loss_coefficient lowerCAmelCase_ : Union[str, Any] = eos_coefficient lowerCAmelCase_ : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): return self.encoder_attention_heads @property def A ( self : Union[str, Any] ): return self.d_model def A ( self : str ): lowerCAmelCase_ : Any = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Tuple = self.backbone_config.to_dict() lowerCAmelCase_ : Any = self.__class__.model_type return output
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __UpperCamelCase ( lowercase__ : BertModel , lowercase__ : str , lowercase__ : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowerCAmelCase_ : Optional[Any] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) lowerCAmelCase_ : List[str] = model.state_dict() def to_tf_var_name(lowercase__ : str ): for patt, repl in iter(lowercase__ ): lowerCAmelCase_ : Dict = name.replace(lowercase__ , lowercase__ ) return f'bert/{name}' def create_tf_var(lowercase__ : np.ndarray , lowercase__ : str , lowercase__ : tf.Session ): lowerCAmelCase_ : int = tf.dtypes.as_dtype(tensor.dtype ) lowerCAmelCase_ : int = tf.get_variable(dtype=lowercase__ , shape=tensor.shape , name=lowercase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCAmelCase_ : List[Any] = to_tf_var_name(lowercase__ ) lowerCAmelCase_ : List[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCAmelCase_ : List[Any] = torch_tensor.T lowerCAmelCase_ : Any = create_tf_var(tensor=lowercase__ , name=lowercase__ , session=lowercase__ ) tf.keras.backend.set_value(lowercase__ , lowercase__ ) lowerCAmelCase_ : Dict = session.run(lowercase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowercase__ , lowercase__ )}' ) lowerCAmelCase_ : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase__ , os.path.join(lowercase__ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def __UpperCamelCase ( lowercase__ : List[str]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowercase__ , required=lowercase__ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=lowercase__ , default=lowercase__ , required=lowercase__ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=lowercase__ , required=lowercase__ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=lowercase__ , required=lowercase__ , help="""Directory in which to save tensorflow model""" ) lowerCAmelCase_ : Optional[Any] = parser.parse_args(lowercase__ ) lowerCAmelCase_ : List[str] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCAmelCase = (7_20, 12_80) # Height, Width __UpperCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCAmelCase = 1 / 1_00 __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = 2_50 def __UpperCamelCase ( ) -> None: '''simple docstring''' lowerCAmelCase_ : List[Any] = get_dataset(lowercase__ , lowercase__ ) for index in range(lowercase__ ): lowerCAmelCase_ : str = random.sample(range(len(lowercase__ ) ) , 4 ) lowerCAmelCase_ : List[str] = update_image_and_anno( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , filter_scale=lowercase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase_ : Tuple = random_chars(32 ) lowerCAmelCase_ : Tuple = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCAmelCase_ : Dict = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , lowercase__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) lowerCAmelCase_ : List[Any] = [] for anno in new_annos: lowerCAmelCase_ : Union[str, Any] = anno[3] - anno[1] lowerCAmelCase_ : List[Any] = anno[4] - anno[2] lowerCAmelCase_ : Tuple = anno[1] + width / 2 lowerCAmelCase_ : Union[str, Any] = anno[2] + height / 2 lowerCAmelCase_ : Dict = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(lowercase__ ) with open(f'{file_root}.txt' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> tuple[list, list]: '''simple docstring''' lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : List[str] = [] for label_file in glob.glob(os.path.join(lowercase__ , """*.txt""" ) ): lowerCAmelCase_ : int = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(lowercase__ ) as in_file: lowerCAmelCase_ : List[Any] = in_file.readlines() lowerCAmelCase_ : Dict = os.path.join(lowercase__ , f'{label_name}.jpg' ) lowerCAmelCase_ : Optional[int] = [] for obj_list in obj_lists: lowerCAmelCase_ : Tuple = obj_list.rstrip("""\n""" ).split(""" """ ) lowerCAmelCase_ : Any = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase_ : int = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase_ : List[Any] = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase_ : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase__ ) labels.append(lowercase__ ) return img_paths, labels def __UpperCamelCase ( lowercase__ : list , lowercase__ : list , lowercase__ : list[int] , lowercase__ : tuple[int, int] , lowercase__ : tuple[float, float] , lowercase__ : float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase_ : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ : int = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ : Union[str, Any] = int(scale_x * output_size[1] ) lowerCAmelCase_ : Optional[int] = int(scale_y * output_size[0] ) lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = [] for i, index in enumerate(lowercase__ ): lowerCAmelCase_ : Any = all_img_list[index] path_list.append(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = all_annos[index] lowerCAmelCase_ : List[str] = cva.imread(lowercase__ ) if i == 0: # top-left lowerCAmelCase_ : int = cva.resize(lowercase__ , (divid_point_x, divid_point_y) ) lowerCAmelCase_ : Union[str, Any] = img for bbox in img_annos: lowerCAmelCase_ : Optional[int] = bbox[1] * scale_x lowerCAmelCase_ : Optional[int] = bbox[2] * scale_y lowerCAmelCase_ : int = bbox[3] * scale_x lowerCAmelCase_ : Union[str, Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase_ : Union[str, Any] = cva.resize(lowercase__ , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase_ : str = img for bbox in img_annos: lowerCAmelCase_ : str = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ : Tuple = bbox[2] * scale_y lowerCAmelCase_ : List[Any] = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ : List[str] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase_ : str = cva.resize(lowercase__ , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase_ : List[str] = img for bbox in img_annos: lowerCAmelCase_ : Any = bbox[1] * scale_x lowerCAmelCase_ : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ : List[str] = bbox[3] * scale_x lowerCAmelCase_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase_ : Dict = cva.resize( lowercase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase_ : List[str] = img for bbox in img_annos: lowerCAmelCase_ : Any = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ : Optional[int] = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ : int = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase_ : Any = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase_ : int = ascii_lowercase + digits return "".join(random.choice(lowercase__ ) for _ in range(lowercase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
def __UpperCamelCase ( lowercase__ : bytes ) -> str: '''simple docstring''' return "".join([hex(lowercase__ )[2:].zfill(2 ).upper() for byte in list(lowercase__ )] ) def __UpperCamelCase ( lowercase__ : str ) -> bytes: '''simple docstring''' if (len(lowercase__ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase__ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] , lowercase__ : list[int] , lowercase__ : list[int] , lowercase__ : list[list[str]] , lowercase__ : int , ) -> None: '''simple docstring''' lowerCAmelCase_ : str = len(lowercase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowercase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowercase__ , lowercase__ , ) def __UpperCamelCase ( lowercase__ : int ) -> None: '''simple docstring''' lowerCAmelCase_ : list[list[str]] = [] depth_first_search([] , [] , [] , lowercase__ , lowercase__ ) # Print all the boards for board in boards: for column in board: print(lowercase__ ) print("""""" ) print(len(lowercase__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata __UpperCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class __a ( tr.AbstractTransform ): def __init__( self : Dict , UpperCAmelCase : str = " " ): lowerCAmelCase_ : Tuple = sentence_delimiter def A ( self : Any , UpperCAmelCase : str ): return list(UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Optional[int] = [] for sent_idx, sentence in enumerate(UpperCAmelCase ): chars.extend(self.process_string(UpperCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars __UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __UpperCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' __UpperCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def A ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any]=False ): if concatenate_texts: return jiwer.compute_measures( UpperCAmelCase , UpperCAmelCase , truth_transform=UpperCAmelCase , hypothesis_transform=UpperCAmelCase , )["wer"] lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Dict = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Union[str, Any] = jiwer.compute_measures( UpperCAmelCase , UpperCAmelCase , truth_transform=UpperCAmelCase , hypothesis_transform=UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCamelCase ( lowercase__ : dict ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def __UpperCamelCase ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : np.ndarray ) -> np.ndarray: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowercase__ , lowercase__ ) # Predict target for test data lowerCAmelCase_ : int = xgb.predict(lowercase__ ) lowerCAmelCase_ : Optional[int] = predictions.reshape(len(lowercase__ ) , 1 ) return predictions def __UpperCamelCase ( ) -> None: '''simple docstring''' lowerCAmelCase_ : Any = fetch_california_housing() lowerCAmelCase_ : Union[str, Any] = data_handling(lowercase__ ) lowerCAmelCase_ : int = train_test_split( lowercase__ , lowercase__ , test_size=0.25 , random_state=1 ) lowerCAmelCase_ : Any = xgboost(lowercase__ , lowercase__ , lowercase__ ) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(lowercase__ , lowercase__ )}' ) print(f'Mean Square Error : {mean_squared_error(lowercase__ , lowercase__ )}' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[str] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __UpperCamelCase ( lowercase__ : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Tuple = 1000 lowerCAmelCase_ : List[str] = """huggingface/label-files""" lowerCAmelCase_ : List[Any] = num_labels lowerCAmelCase_ : str = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type="""dataset""" ) ) , """r""" ) ) lowerCAmelCase_ : str = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Dict = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": lowerCAmelCase_ : Dict = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": lowerCAmelCase_ : Tuple = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowerCAmelCase_ : Dict = [2, 2, 20] lowerCAmelCase_ : int = [3, 12, 16] lowerCAmelCase_ : Any = [192, 768, 1024] lowerCAmelCase_ : List[Any] = CvtForImageClassification(lowercase__ ) lowerCAmelCase_ : int = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) lowerCAmelCase_ : Tuple = image_size lowerCAmelCase_ : Optional[Any] = torch.load(lowercase__ , map_location=torch.device("""cpu""" ) ) lowerCAmelCase_ : Tuple = OrderedDict() lowerCAmelCase_ : str = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowerCAmelCase_ : str = list_of_state_dict + cls_token(lowercase__ ) lowerCAmelCase_ : Dict = list_of_state_dict + embeddings(lowercase__ ) for cnt in range(config.depth[idx] ): lowerCAmelCase_ : int = list_of_state_dict + attention(lowercase__ , lowercase__ ) lowerCAmelCase_ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(lowercase__ ) for i in range(len(lowercase__ ) ): lowerCAmelCase_ : int = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_84, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]=13 , UpperCAmelCase : str=32 , UpperCAmelCase : str=3 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] , UpperCAmelCase : Any=[2, 2, 3, 2] , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : List[str]=["stage2", "stage3", "stage4"] , UpperCAmelCase : Union[str, Any]=[2, 3, 4] , UpperCAmelCase : Dict=None , ): lowerCAmelCase_ : str = parent lowerCAmelCase_ : Dict = batch_size lowerCAmelCase_ : Optional[Any] = image_size lowerCAmelCase_ : str = num_channels lowerCAmelCase_ : int = num_stages lowerCAmelCase_ : int = hidden_sizes lowerCAmelCase_ : Dict = depths lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : int = use_labels lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Dict = initializer_range lowerCAmelCase_ : str = out_features lowerCAmelCase_ : Dict = out_indices lowerCAmelCase_ : Optional[int] = scope def A ( self : str ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : str = ConvNextModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Tuple = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Dict = ConvNextForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : int , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Any = ConvNextBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Dict = ConvNextBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase_ : int = config_and_inputs lowerCAmelCase_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : int = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __snake_case : Any = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __snake_case : Optional[Any] = True __snake_case : Optional[int] = False __snake_case : Dict = False __snake_case : List[Any] = False __snake_case : Dict = False def A ( self : str ): lowerCAmelCase_ : List[str] = ConvNextModelTester(self ) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : List[str] ): return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def A ( self : Union[str, Any] ): pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def A ( self : Optional[int] ): pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def A ( self : List[Any] ): pass def A ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(UpperCAmelCase ) lowerCAmelCase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : int = [*signature.parameters.keys()] lowerCAmelCase_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def A ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ): lowerCAmelCase_ : Dict = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCAmelCase_ : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Tuple = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A ( self : Union[str, Any] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = ConvNextModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def A ( self : Optional[Any] ): lowerCAmelCase_ : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(UpperCAmelCase ) lowerCAmelCase_ : str = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Dict = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @require_torch class __a ( unittest.TestCase ,__UpperCamelCase ): __snake_case : Any = (ConvNextBackbone,) if is_torch_available() else () __snake_case : Any = ConvNextConfig __snake_case : Union[str, Any] = False def A ( self : int ): lowerCAmelCase_ : List[Any] = ConvNextModelTester(self )
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCAmelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __a : __snake_case : Optional[Any] = PegasusConfig __snake_case : List[str] = {} __snake_case : Dict = """gelu""" def __init__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : str=20 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=1 , UpperCAmelCase : Union[str, Any]=0 , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : Any = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = eos_token_id lowerCAmelCase_ : List[Any] = pad_token_id lowerCAmelCase_ : Any = bos_token_id def A ( self : int ): lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) lowerCAmelCase_ : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ : List[str] = prepare_pegasus_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, inputs_dict def A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict ): lowerCAmelCase_ : Optional[Any] = 20 lowerCAmelCase_ : int = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : str = model.encode(inputs_dict["""input_ids"""] ) lowerCAmelCase_ : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCAmelCase_ : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model.decode(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = 20 lowerCAmelCase_ : Union[str, Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : List[str] = model.encode(inputs_dict["""input_ids"""] ) lowerCAmelCase_ : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCAmelCase_ : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase_ : List[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , ) lowerCAmelCase_ : str = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase ) lowerCAmelCase_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any , lowercase__ : Union[str, Any]=None , lowercase__ : Any=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: lowerCAmelCase_ : List[Any] = np.not_equal(lowercase__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowerCAmelCase_ : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __snake_case : List[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __snake_case : List[str] = True __snake_case : Tuple = False __snake_case : List[Any] = False __snake_case : str = False def A ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = FlaxPegasusModelTester(self ) lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase ) def A ( self : Optional[int] ): self.config_tester.run_common_tests() def A ( self : str ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase ) @jax.jit def encode_jitted(UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Union[str, Any] ): return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase_ : List[str] = encode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase_ : Optional[int] = encode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : int ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_ : Union[str, Any] = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCAmelCase_ : Union[str, Any] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ): return model.decode( decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): lowerCAmelCase_ : Union[str, Any] = decode_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCAmelCase_ : Tuple = decode_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : List[str] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Dict = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=UpperCAmelCase ) lowerCAmelCase_ : List[str] = np.ones((1, 1) ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @slow def A ( self : int ): lowerCAmelCase_ : Tuple = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) lowerCAmelCase_ : Optional[Any] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) lowerCAmelCase_ : str = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowerCAmelCase_ : int = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowerCAmelCase_ : Any = tokenizer(UpperCAmelCase , return_tensors="""np""" , truncation=UpperCAmelCase , max_length=5_12 , padding=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = model.generate(**UpperCAmelCase , num_beams=2 ).sequences lowerCAmelCase_ : List[str] = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) assert tgt_text == decoded
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : int ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(lowercase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase__ ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = ["""pixel_values"""] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : Tuple , ): super().__init__(**UpperCAmelCase ) lowerCAmelCase_ : Any = size if size is not None else {"""shortest_edge""": 2_24} lowerCAmelCase_ : Any = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowerCAmelCase_ : Any = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowerCAmelCase_ : Optional[int] = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) lowerCAmelCase_ : Any = do_resize lowerCAmelCase_ : Optional[int] = size lowerCAmelCase_ : int = do_center_crop lowerCAmelCase_ : int = crop_size lowerCAmelCase_ : Optional[Any] = resample lowerCAmelCase_ : List[Any] = do_rescale lowerCAmelCase_ : int = rescale_factor lowerCAmelCase_ : Any = do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : List[str] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ): lowerCAmelCase_ : str = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: lowerCAmelCase_ : Tuple = get_resize_output_image_size(UpperCAmelCase , size["""shortest_edge"""] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: lowerCAmelCase_ : Tuple = (size["""height"""], size["""width"""]) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : str , ): lowerCAmelCase_ : List[str] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[str] , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ : List[str] = to_numpy_array(UpperCAmelCase ) if do_resize: lowerCAmelCase_ : str = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: lowerCAmelCase_ : str = self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: lowerCAmelCase_ : List[Any] = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) if do_normalize: lowerCAmelCase_ : str = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) lowerCAmelCase_ : Dict = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def A ( self : List[Any] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Dict , ): lowerCAmelCase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : str = resample if resample is not None else self.resample lowerCAmelCase_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : Union[str, Any] = size if size is not None else self.size lowerCAmelCase_ : Union[str, Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowerCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : Any = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowerCAmelCase_ : str = make_batched(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = [ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] lowerCAmelCase_ : Optional[int] = {"""pixel_values""": videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
def __UpperCamelCase ( lowercase__ : int = 10**9 ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase_ : str = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __UpperCamelCase ( lowercase__ : str , lowercase__ : Dict , lowercase__ : Union[str, Any]=1E-12 ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase__ , axis=1 ) , a_min=lowercase__ ) ).T lowerCAmelCase_ : str = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowercase__ , axis=1 ) , a_min=lowercase__ ) ).T return jnp.matmul(lowercase__ , norm_emb_a.T ) class __a ( nn.Module ): __snake_case : CLIPConfig __snake_case : jnp.dtype = jnp.floataa def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config ) lowerCAmelCase_ : Optional[int] = nn.Dense(self.config.projection_dim , use_bias=UpperCAmelCase , dtype=self.dtype ) lowerCAmelCase_ : Dict = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowerCAmelCase_ : List[Any] = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowerCAmelCase_ : List[Any] = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) lowerCAmelCase_ : Any = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__( self : List[str] , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : Any = self.vision_model(UpperCAmelCase )[1] lowerCAmelCase_ : List[str] = self.visual_projection(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = jax_cosine_distance(UpperCAmelCase , self.special_care_embeds ) lowerCAmelCase_ : int = jax_cosine_distance(UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowerCAmelCase_ : Any = 0.0 lowerCAmelCase_ : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowerCAmelCase_ : Union[str, Any] = jnp.round(UpperCAmelCase , 3 ) lowerCAmelCase_ : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCAmelCase ) # Use a lower threshold if an image has any special care concept lowerCAmelCase_ : Dict = is_special_care * 0.01 lowerCAmelCase_ : Optional[int] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowerCAmelCase_ : Optional[int] = jnp.round(UpperCAmelCase , 3 ) lowerCAmelCase_ : Tuple = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = CLIPConfig __snake_case : Union[str, Any] = """clip_input""" __snake_case : Any = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Any , UpperCAmelCase : CLIPConfig , UpperCAmelCase : Optional[Tuple] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : jnp.dtype = jnp.floataa , UpperCAmelCase : bool = True , **UpperCAmelCase : Dict , ): if input_shape is None: lowerCAmelCase_ : int = (1, 2_24, 2_24, 3) lowerCAmelCase_ : Optional[Any] = self.module_class(config=UpperCAmelCase , dtype=UpperCAmelCase , **UpperCAmelCase ) super().__init__(UpperCAmelCase , UpperCAmelCase , input_shape=UpperCAmelCase , seed=UpperCAmelCase , dtype=UpperCAmelCase , _do_init=_do_init ) def A ( self : Tuple , UpperCAmelCase : jax.random.KeyArray , UpperCAmelCase : Tuple , UpperCAmelCase : FrozenDict = None ): # init input tensor lowerCAmelCase_ : Optional[Any] = jax.random.normal(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = jax.random.split(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} lowerCAmelCase_ : Dict = self.module.init(UpperCAmelCase , UpperCAmelCase )["""params"""] return random_params def __call__( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : dict = None , ): lowerCAmelCase_ : Dict = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ : Optional[int] = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } lowerCAmelCase_ : Optional[int] = f'{src_lang}-{tgt_lang}' lowerCAmelCase_ : Optional[Any] = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase_ : List[str] = os.path.join(lowercase__ , """README.md""" ) print(f'Generating {path}' ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase__ ) # make sure we are under the root of the project __UpperCAmelCase = Path(__file__).resolve().parent.parent.parent __UpperCAmelCase = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __UpperCAmelCase = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
def __UpperCamelCase ( lowercase__ : int ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) lowerCAmelCase_ : Union[str, Any] = [True] * (num + 1) lowerCAmelCase_ : List[str] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowercase__ ): lowerCAmelCase_ : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[int] = 1 @register_to_config def __init__( self : str , UpperCAmelCase : int = 10_00 , UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowerCAmelCase_ : Tuple = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCAmelCase_ : int = 4 # running values lowerCAmelCase_ : List[Any] = [] def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowerCAmelCase_ : Dict = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCAmelCase_ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowerCAmelCase_ : List[Any] = torch.sin(steps * math.pi / 2 ) ** 2 lowerCAmelCase_ : Optional[Any] = (1.0 - self.betas**2) ** 0.5 lowerCAmelCase_ : List[str] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowerCAmelCase_ : Tuple = timesteps.to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = [] def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase_ : Dict = (self.timesteps == timestep).nonzero().item() lowerCAmelCase_ : Optional[Any] = timestep_index + 1 lowerCAmelCase_ : Optional[int] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowerCAmelCase_ : Optional[Any] = self.ets[-1] elif len(self.ets ) == 2: lowerCAmelCase_ : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCAmelCase_ : List[str] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowerCAmelCase_ : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowerCAmelCase_ : Union[str, Any] = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A ( self : int , UpperCAmelCase : torch.FloatTensor , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ): return sample def A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Any ): lowerCAmelCase_ : Dict = self.alphas[timestep_index] lowerCAmelCase_ : int = self.betas[timestep_index] lowerCAmelCase_ : Tuple = self.alphas[prev_timestep_index] lowerCAmelCase_ : int = self.betas[prev_timestep_index] lowerCAmelCase_ : Optional[int] = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowerCAmelCase_ : Optional[int] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ): return self.config.num_train_timesteps
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __UpperCAmelCase = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def __UpperCamelCase ( lowercase__ : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = list(s_dict.keys() ) for key in keys: lowerCAmelCase_ : Tuple = R""".*/layers_(\d+)""" lowerCAmelCase_ : Tuple = key if re.match(lowercase__ , lowercase__ ): lowerCAmelCase_ : Union[str, Any] = re.sub(R"""layers_(\d+)""" , R"""block/\1/layer""" , lowercase__ ) lowerCAmelCase_ : Any = R"""(encoder|decoder)\/""" if re.match(lowercase__ , lowercase__ ): lowerCAmelCase_ : List[Any] = re.match(lowercase__ , lowercase__ ).groups() if groups[0] == "encoder": lowerCAmelCase_ : Tuple = re.sub(R"""/mlp/""" , R"""/1/mlp/""" , lowercase__ ) lowerCAmelCase_ : Tuple = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/1/layer_norm/""" , lowercase__ ) elif groups[0] == "decoder": lowerCAmelCase_ : List[str] = re.sub(R"""/mlp/""" , R"""/2/mlp/""" , lowercase__ ) lowerCAmelCase_ : Optional[int] = re.sub(R"""/pre_mlp_layer_norm/""" , R"""/2/layer_norm/""" , lowercase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase_ : List[Any] = new_key.replace(lowercase__ , lowercase__ ) print(f'{key} -> {new_key}' ) lowerCAmelCase_ : Dict = s_dict.pop(lowercase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ : int = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ : Any = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase_ : str = s_dict[key].shape[0] lowerCAmelCase_ : List[Any] = s_dict[key] for idx in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowercase__ ) return s_dict __UpperCAmelCase = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict ) -> int: '''simple docstring''' import regex as re with open(lowercase__ , """r""" ) as f: lowerCAmelCase_ : Optional[Any] = f.read() lowerCAmelCase_ : Tuple = re.findall(R"""(.*) = ([0-9.]*)""" , lowercase__ ) lowerCAmelCase_ : Optional[int] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase_ : Any = float(lowercase__ ) if """.""" in value else int(lowercase__ ) lowerCAmelCase_ : Optional[int] = re.findall(R"""(.*activations) = \(\'(.*)\',\)""" , lowercase__ )[0] lowerCAmelCase_ : Optional[Any] = str(activation[1] ) lowerCAmelCase_ : int = num_experts lowerCAmelCase_ : Optional[int] = SwitchTransformersConfig(**lowercase__ ) return config def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Dict=None , lowercase__ : Any="./" , lowercase__ : List[Any]=8 ) -> List[Any]: '''simple docstring''' print(f'Loading flax weights from : {flax_checkpoint_path}' ) lowerCAmelCase_ : Optional[int] = checkpoints.load_tax_checkpoint(lowercase__ ) if gin_file is not None: lowerCAmelCase_ : Any = convert_gin_to_config(lowercase__ , lowercase__ ) else: lowerCAmelCase_ : Any = SwitchTransformersConfig.from_pretrained(lowercase__ ) lowerCAmelCase_ : List[str] = SwitchTransformersForConditionalGeneration(lowercase__ ) lowerCAmelCase_ : str = flax_params["""target"""] lowerCAmelCase_ : int = flatten_dict(lowercase__ , sep="""/""" ) lowerCAmelCase_ : int = rename_keys(lowercase__ ) lowerCAmelCase_ : int = unflatten_dict(lowercase__ , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowercase__ , lowercase__ ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') __UpperCAmelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
from __future__ import annotations class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : list[list[int]] ): lowerCAmelCase_ : Tuple = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(UpperCAmelCase ) != 0: lowerCAmelCase_ : str = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCAmelCase ) != cols: raise error for value in row: if not isinstance(UpperCAmelCase , (int, float) ): raise error lowerCAmelCase_ : Any = rows else: lowerCAmelCase_ : List[str] = [] def A ( self : Dict ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def A ( self : Union[str, Any] ): return len(self.rows ) @property def A ( self : List[Any] ): return len(self.rows[0] ) @property def A ( self : Dict ): return (self.num_rows, self.num_columns) @property def A ( self : Union[str, Any] ): return self.order[0] == self.order[1] def A ( self : Tuple ): lowerCAmelCase_ : str = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCAmelCase ) def A ( self : Dict ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def A ( self : Tuple ): return bool(self.determinant() ) def A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : int ): lowerCAmelCase_ : str = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCAmelCase ).determinant() def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int ): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase , UpperCAmelCase ) return -1 * self.get_minor(UpperCAmelCase , UpperCAmelCase ) def A ( self : Dict ): return Matrix( [ [self.get_minor(UpperCAmelCase , UpperCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def A ( self : Optional[Any] ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def A ( self : Dict ): lowerCAmelCase_ : str = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCAmelCase ) def A ( self : List[str] ): lowerCAmelCase_ : Tuple = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self : Union[str, Any] ): return str(self.rows ) def __str__( self : List[str] ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(UpperCAmelCase ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def A ( self : Optional[int] , UpperCAmelCase : list[int] , UpperCAmelCase : int | None = None ): lowerCAmelCase_ : Optional[int] = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise type_error for value in row: if not isinstance(UpperCAmelCase , (int, float) ): raise type_error if len(UpperCAmelCase ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(UpperCAmelCase ) else: lowerCAmelCase_ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def A ( self : List[Any] , UpperCAmelCase : list[int] , UpperCAmelCase : int | None = None ): lowerCAmelCase_ : List[Any] = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise type_error for value in column: if not isinstance(UpperCAmelCase , (int, float) ): raise type_error if len(UpperCAmelCase ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: lowerCAmelCase_ : Dict = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowerCAmelCase_ : Dict = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : int , UpperCAmelCase : object ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : Tuple , UpperCAmelCase : object ): return not self == other def __neg__( self : Any ): return self * -1 def __add__( self : Union[str, Any] , UpperCAmelCase : Matrix ): if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[int] , UpperCAmelCase : Matrix ): if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : str , UpperCAmelCase : Matrix | int | float ): if isinstance(UpperCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(UpperCAmelCase , UpperCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self : int , UpperCAmelCase : int ): if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) lowerCAmelCase_ : str = self for _ in range(other - 1 ): result *= self return result @classmethod def A ( cls : Optional[int] , UpperCAmelCase : list[int] , UpperCAmelCase : list[int] ): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
import math import random from typing import Any from .hill_climbing import SearchProblem def __UpperCamelCase ( lowercase__ : Any , lowercase__ : bool = True , lowercase__ : float = math.inf , lowercase__ : float = -math.inf , lowercase__ : float = math.inf , lowercase__ : float = -math.inf , lowercase__ : bool = False , lowercase__ : float = 100 , lowercase__ : float = 0.01 , lowercase__ : float = 1 , ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = False lowerCAmelCase_ : Optional[Any] = search_prob lowerCAmelCase_ : Optional[Any] = start_temperate lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None while not search_end: lowerCAmelCase_ : Tuple = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase_ : Union[str, Any] = current_state scores.append(lowercase__ ) iterations += 1 lowerCAmelCase_ : str = None lowerCAmelCase_ : List[Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase_ : List[str] = random.randint(0 , len(lowercase__ ) - 1 ) # picking a random neighbor lowerCAmelCase_ : str = neighbors.pop(lowercase__ ) lowerCAmelCase_ : Dict = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase_ : Tuple = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase_ : List[str] = picked_neighbor else: lowerCAmelCase_ : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase_ : Optional[Any] = picked_neighbor lowerCAmelCase_ : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase_ : Union[str, Any] = True else: lowerCAmelCase_ : Tuple = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase__ ) , lowercase__ ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : int ) -> int: '''simple docstring''' return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( 'The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ' f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : List[Any] ) -> str: '''simple docstring''' return (3 * x**2) - (6 * y) __UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( 'The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" ) __UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( 'The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ' f"""{local_min.score()}""" )
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
from __future__ import annotations __UpperCAmelCase = [True] * 1_00_00_01 __UpperCAmelCase = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): __UpperCAmelCase = False i += 1 def __UpperCamelCase ( lowercase__ : int ) -> bool: '''simple docstring''' return seive[n] def __UpperCamelCase ( lowercase__ : int ) -> bool: '''simple docstring''' return any(digit in """02468""" for digit in str(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : int = 1000000 ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : int = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(lowercase__ ) and not contains_an_even_digit(lowercase__ ): lowerCAmelCase_ : Tuple = str(lowercase__ ) lowerCAmelCase_ : List[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase__ ) )] if all(is_prime(lowercase__ ) for i in list_nums ): result.append(lowercase__ ) return result def __UpperCamelCase ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : str=99 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : int=5 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Union[str, Any]=36 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[Any]=5_12 , UpperCAmelCase : Dict=16 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : str=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Any=None , ): lowerCAmelCase_ : Union[str, Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : int = seq_length lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : Optional[Any] = use_input_mask lowerCAmelCase_ : Tuple = use_token_type_ids lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Any = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : List[Any] = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Dict = attention_probs_dropout_prob lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : List[str] = type_sequence_label_size lowerCAmelCase_ : Tuple = initializer_range lowerCAmelCase_ : List[str] = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Optional[int] = scope def A ( self : List[str] ): lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Dict = None if self.use_input_mask: lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[str] = None if self.use_token_type_ids: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Any = None lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : str ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def A ( self : List[Any] ): lowerCAmelCase_ : Any = self.get_config() lowerCAmelCase_ : List[str] = 3_00 return config def A ( self : Tuple ): ( lowerCAmelCase_ ) : int = self.prepare_config_and_inputs() lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : str = MraModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCAmelCase_ : int = model(UpperCAmelCase , token_type_ids=UpperCAmelCase ) lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Tuple , ): lowerCAmelCase_ : Any = True lowerCAmelCase_ : Optional[Any] = MraModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) lowerCAmelCase_ : str = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Union[str, Any] = MraForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ): lowerCAmelCase_ : List[str] = MraForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = self.num_labels lowerCAmelCase_ : List[Any] = MraForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : Any = self.num_labels lowerCAmelCase_ : Tuple = MraForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Dict = model(UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ): lowerCAmelCase_ : int = self.num_choices lowerCAmelCase_ : int = MraForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Union[str, Any] = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ): lowerCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) : str = config_and_inputs lowerCAmelCase_ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __snake_case : List[Any] = False __snake_case : List[Any] = False __snake_case : Optional[Any] = False __snake_case : Union[str, Any] = False __snake_case : Optional[Any] = () def A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = MraModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A ( self : int ): self.config_tester.run_common_tests() def A ( self : Tuple ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : Optional[int] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : Dict = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A ( self : List[str] ): lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A ( self : Optional[Any] ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A ( self : Tuple ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A ( self : List[str] ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Tuple = MraModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def A ( self : Any ): return @require_torch class __a ( unittest.TestCase ): @slow def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) lowerCAmelCase_ : Optional[Any] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase_ : int = model(UpperCAmelCase )[0] lowerCAmelCase_ : str = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def A ( self : Optional[Any] ): lowerCAmelCase_ : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) lowerCAmelCase_ : Union[str, Any] = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase_ : Tuple = model(UpperCAmelCase )[0] lowerCAmelCase_ : int = 5_02_65 lowerCAmelCase_ : int = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) lowerCAmelCase_ : List[str] = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(UpperCAmelCase )[0] lowerCAmelCase_ : List[Any] = 5_02_65 lowerCAmelCase_ : Dict = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
from __future__ import annotations from decimal import Decimal from numpy import array def __UpperCamelCase ( lowercase__ : list[list[float]] ) -> list[list[float]]: '''simple docstring''' lowerCAmelCase_ : Any = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase_ : Any = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase_ : Tuple = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase_ : Dict = matrix[1][1], matrix[0][0] lowerCAmelCase_ : Optional[int] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase_ : int = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix lowerCAmelCase_ : Union[str, Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase_ : Any = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase_ : List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase_ : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase_ : Tuple = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase_ : Dict = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase_ : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase_ : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase_ : List[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase_ : List[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase_ : List[Any] = array(lowercase__ ) for i in range(3 ): for j in range(3 ): lowerCAmelCase_ : Optional[int] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase_ : int = array(lowercase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase__ ) # Calculate the inverse of the matrix return [[float(d(lowercase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[float] ) -> float: '''simple docstring''' lowerCAmelCase_ : Tuple = 0.00 lowerCAmelCase_ : List[Any] = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase_ : str = f'Resistor at index {index} has a negative or zero value!' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def __UpperCamelCase ( lowercase__ : list[float] ) -> float: '''simple docstring''' lowerCAmelCase_ : int = 0.00 lowerCAmelCase_ : Dict = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase_ : Tuple = f'Resistor at index {index} has a negative value!' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} __UpperCAmelCase = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } __UpperCAmelCase = { 'camembert-base': 5_12, } __UpperCAmelCase = '▁' class __a ( __UpperCamelCase ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : List[Any]="</s>" , UpperCAmelCase : Union[str, Any]="<s>" , UpperCAmelCase : int="<unk>" , UpperCAmelCase : Any="<pad>" , UpperCAmelCase : Optional[Any]="<mask>" , UpperCAmelCase : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : str , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : Optional[int] = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token lowerCAmelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , ) lowerCAmelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase ) ) lowerCAmelCase_ : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCAmelCase_ : int = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} lowerCAmelCase_ : int = len(self.fairseq_tokens_to_ids ) lowerCAmelCase_ : str = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCAmelCase_ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : List[Any] = [self.cls_token_id] lowerCAmelCase_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : int ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Any , UpperCAmelCase : str ): return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : Optional[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(UpperCAmelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : Optional[int] , UpperCAmelCase : int ): lowerCAmelCase_ : Dict = [] lowerCAmelCase_ : Union[str, Any] = """""" lowerCAmelCase_ : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase ) + token lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : List[Any] = [] else: current_sub_tokens.append(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = False out_string += self.sp_model.decode(UpperCAmelCase ) return out_string.strip() def __getstate__( self : Any ): lowerCAmelCase_ : int = self.__dict__.copy() lowerCAmelCase_ : int = None return state def __setstate__( self : str , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : List[Any] = {} lowerCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : str = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase , """wb""" ) as fi: lowerCAmelCase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase ) return (out_vocab_file,)
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCAmelCase = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __UpperCAmelCase = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __UpperCAmelCase = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __UpperCAmelCase = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __UpperCAmelCase = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __UpperCAmelCase = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __UpperCAmelCase = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def __UpperCamelCase ( ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) lowerCAmelCase_ : Tuple = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] lowerCAmelCase_ : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __UpperCamelCase ( lowercase__ : int = 100 ) -> Optional[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize("""hand, expected""" , lowercase__ ) def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Union[str, Any] ) -> Dict: '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase__ ) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : int ) -> Any: '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase__ ) def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Any ) -> Any: '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase__ ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str ) -> Optional[Any]: '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Any ) -> Any: '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Tuple , lowercase__ : Any ) -> str: '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = [PokerHand(lowercase__ ) for hand in SORTED_HANDS] lowerCAmelCase_ : Optional[Any] = poker_hands.copy() shuffle(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Any = PokerHand("""2C 4S AS 3D 5C""" ) lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : List[Any] = os.path.abspath(os.path.dirname(lowercase__ ) ) lowerCAmelCase_ : int = os.path.join(lowercase__ , """poker_hands.txt""" ) with open(lowercase__ ) as file_hand: for line in file_hand: lowerCAmelCase_ : Any = line[:14].strip() lowerCAmelCase_ : Tuple = line[15:].strip() lowerCAmelCase_ : List[str] = PokerHand(lowercase__ ), PokerHand(lowercase__ ) lowerCAmelCase_ : List[Any] = player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 376
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowerCAmelCase_ : str = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __a ( __UpperCamelCase ): __snake_case : str = """roberta-prelayernorm""" def __init__( self : Any , UpperCAmelCase : Any=5_02_65 , UpperCAmelCase : int=7_68 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[Any]=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[Any]="absolute" , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : str , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Any = classifier_dropout class __a ( __UpperCamelCase ): @property def A ( self : Optional[int] ): if self.task == "multiple-choice": lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
import os def __UpperCamelCase ( lowercase__ : str = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(lowercase__ ) , lowercase__ ) ) as input_file: lowerCAmelCase_ : Optional[Any] = [ [int(lowercase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : Dict = len(matrix[0] ) lowerCAmelCase_ : List[Any] = [[-1 for _ in range(lowercase__ )] for _ in range(lowercase__ )] for i in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = matrix[i][0] for j in range(1 , lowercase__ ): for i in range(lowercase__ ): lowerCAmelCase_ : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowercase__ ): lowerCAmelCase_ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCAmelCase_ : Optional[Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __UpperCamelCase ( lowercase__ : List[str] ) -> Optional[int]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __UpperCamelCase ( lowercase__ : List[str] ) -> str: '''simple docstring''' lowerCAmelCase_ : str = create_tensor(lowercase__ ) lowerCAmelCase_ : int = gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __UpperCamelCase ( lowercase__ : Optional[int] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [state.process_index] lowerCAmelCase_ : Optional[int] = gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, f'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def __UpperCamelCase ( lowercase__ : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : int = create_tensor(lowercase__ ) lowerCAmelCase_ : Any = broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __UpperCamelCase ( lowercase__ : Tuple ) -> List[str]: '''simple docstring''' if state.is_main_process: lowerCAmelCase_ : Dict = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCAmelCase_ : int = torch.arange(state.num_processes ).to(state.device ) lowerCAmelCase_ : Optional[Any] = pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __UpperCamelCase ( lowercase__ : Tuple ) -> Tuple: '''simple docstring''' if state.num_processes != 2: return lowerCAmelCase_ : Union[str, Any] = create_tensor(lowercase__ ) lowerCAmelCase_ : Optional[int] = reduce(lowercase__ , """sum""" ) lowerCAmelCase_ : int = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), f'{reduced_tensor} != {truth_tensor}' def __UpperCamelCase ( lowercase__ : int ) -> Optional[int]: '''simple docstring''' if state.num_processes != 2: return lowerCAmelCase_ : Tuple = create_tensor(lowercase__ ) lowerCAmelCase_ : str = reduce(lowercase__ , """mean""" ) lowerCAmelCase_ : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), f'{reduced_tensor} != {truth_tensor}' def __UpperCamelCase ( lowercase__ : Dict ) -> Optional[Any]: '''simple docstring''' main() def __UpperCamelCase ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Tuple = PartialState() state.print(f'State: {state}' ) state.print("""testing gather""" ) test_gather(lowercase__ ) state.print("""testing gather_object""" ) test_gather_object(lowercase__ ) state.print("""testing broadcast""" ) test_broadcast(lowercase__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(lowercase__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(lowercase__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __UpperCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : int , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[str] ) -> List[Any]: '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase_ : List[Any] = getattr(lowercase__ , lowercase__ ) if weight_type is not None: lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , lowercase__ ).shape else: lowerCAmelCase_ : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase_ : Union[str, Any] = value elif weight_type == "weight_g": lowerCAmelCase_ : Dict = value elif weight_type == "weight_v": lowerCAmelCase_ : List[Any] = value elif weight_type == "bias": lowerCAmelCase_ : Dict = value else: lowerCAmelCase_ : List[Any] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[int] = fairseq_model.state_dict() lowerCAmelCase_ : Union[str, Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCAmelCase_ : List[Any] = None for name, value in fairseq_dict.items(): lowerCAmelCase_ : List[str] = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase_ : Any = True elif name.split(""".""" )[0] == "proj": lowerCAmelCase_ : List[str] = fairseq_model.proj lowerCAmelCase_ : List[str] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase_ : Dict = True if "*" in mapped_key: lowerCAmelCase_ : Optional[int] = name.split(lowercase__ )[0].split(""".""" )[-2] lowerCAmelCase_ : List[Any] = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: lowerCAmelCase_ : List[Any] = """weight_g""" elif "weight_v" in name: lowerCAmelCase_ : Any = """weight_v""" elif "bias" in name: lowerCAmelCase_ : Union[str, Any] = """bias""" elif "weight" in name: lowerCAmelCase_ : str = """weight""" else: lowerCAmelCase_ : List[Any] = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f'Unused weights: {unused_weights}' ) return proj_weight def __UpperCamelCase ( lowercase__ : str , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase_ : Optional[Any] = name.split(""".""" ) lowerCAmelCase_ : Optional[int] = int(items[0] ) lowerCAmelCase_ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase_ : List[str] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase_ : Union[str, Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase_ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase__ ) def __UpperCamelCase ( lowercase__ : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = emb.weight.shape lowerCAmelCase_ : Optional[Any] = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ ) lowerCAmelCase_ : Optional[int] = emb.weight.data return lin_layer def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : int = f.readlines() lowerCAmelCase_ : Dict = [line.split(""" """ )[0] for line in lines] lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) lowerCAmelCase_ : Dict = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(lowercase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[str] , lowercase__ : int , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = WavaVecaConfig.from_pretrained(lowercase__ ) lowerCAmelCase_ : List[Any] = SpeechaTextaConfig.from_pretrained( lowercase__ , vocab_size=lowercase__ , decoder_layers=lowercase__ , do_stable_layer_norm=lowercase__ ) lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase__ , return_attention_mask=lowercase__ , ) lowerCAmelCase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowerCAmelCase_ : Optional[Any] = model[0].eval() # set weights for wav2vec2 encoder lowerCAmelCase_ : int = WavaVecaModel(lowercase__ ) lowerCAmelCase_ : List[Any] = recursively_load_weights_wavaveca(model.encoder , lowercase__ ) lowerCAmelCase_ : Dict = SpeechaTextaForCausalLM(lowercase__ ) lowerCAmelCase_ : Any = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowercase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) lowerCAmelCase_ : str = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=lowercase__ , decoder=lowercase__ ) lowerCAmelCase_ : Dict = False # add projection layer lowerCAmelCase_ : List[Any] = nn.Parameter(projection_layer.weight ) lowerCAmelCase_ : Optional[int] = nn.Parameter(projection_layer.bias ) lowerCAmelCase_ : Union[str, Any] = create_vocab_dict(lowercase__ ) with open(os.path.join(lowercase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(lowercase__ , lowercase__ ) lowerCAmelCase_ : int = SpeechaTextaTokenizer(os.path.join(lowercase__ , """vocab.json""" ) ) tokenizer.save_pretrained(lowercase__ ) lowerCAmelCase_ : Optional[Any] = hf_wavavec.config.to_dict() lowerCAmelCase_ : Union[str, Any] = tokenizer.pad_token_id lowerCAmelCase_ : List[str] = tokenizer.bos_token_id lowerCAmelCase_ : List[Any] = tokenizer.eos_token_id lowerCAmelCase_ : Optional[int] = """speech_to_text_2""" lowerCAmelCase_ : Union[str, Any] = """wav2vec2""" lowerCAmelCase_ : Any = SpeechEncoderDecoderConfig.from_dict(lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) feature_extractor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=1_02_24, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') __UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
__UpperCAmelCase = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def __UpperCamelCase ( lowercase__ : str ) -> str: '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __UpperCamelCase ( lowercase__ : str ) -> str: '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def __UpperCamelCase ( ) -> None: '''simple docstring''' lowerCAmelCase_ : Dict = """Morse code here!""" print(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = encrypt(lowercase__ ) print(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = decrypt(lowercase__ ) print(lowercase__ ) if __name__ == "__main__": main()
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowerCAmelCase_ : str = str(bin(lowercase__ ) )[2:] # remove the leading "0b" lowerCAmelCase_ : Union[str, Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" lowerCAmelCase_ : str = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def __UpperCamelCase ( lowercase__ : Optional[int]=2 , lowercase__ : Optional[Any]=3 , lowercase__ : List[Any]=16 , lowercase__ : int = 10 , lowercase__ : int = 2 ) -> int: '''simple docstring''' def get_dataset(lowercase__ : Optional[int] ): lowerCAmelCase_ : str = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowercase__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowerCAmelCase_ : Any = get_dataset(lowercase__ ) lowerCAmelCase_ : Optional[int] = get_dataset(lowercase__ ) lowerCAmelCase_ : List[Any] = DataLoader(lowercase__ , shuffle=lowercase__ , batch_size=lowercase__ , num_workers=4 ) lowerCAmelCase_ : List[str] = DataLoader(lowercase__ , shuffle=lowercase__ , batch_size=lowercase__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : str=None ) -> Any: '''simple docstring''' lowerCAmelCase_ : Dict = [] for epoch in range(lowercase__ ): # Train quickly model.train() for batch in dataloader: lowerCAmelCase_ : str = batch lowerCAmelCase_ : int = model(lowercase__ ) lowerCAmelCase_ : Any = torch.nn.functional.mse_loss(lowercase__ , lowercase__ ) accelerator.backward(lowercase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __a ( nn.Module ): def __init__( self : str ): super().__init__() lowerCAmelCase_ : List[str] = nn.Parameter(torch.randn(1 ) ) lowerCAmelCase_ : str = nn.Parameter(torch.randn(1 ) ) def A ( self : str , UpperCAmelCase : int ): return x * self.a + self.b class __a ( unittest.TestCase ): def A ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase_ : Tuple = DummyModel() lowerCAmelCase_ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCAmelCase_ : List[Any] = dummy_dataloaders() lowerCAmelCase_ : int = ProjectConfiguration(total_limit=1 , project_dir=UpperCAmelCase , automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowerCAmelCase_ : Union[str, Any] = Accelerator(project_config=UpperCAmelCase ) lowerCAmelCase_ : int = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase_ : Any = DummyModel() lowerCAmelCase_ : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCAmelCase_ : Union[str, Any] = dummy_dataloaders() # Train baseline lowerCAmelCase_ : Optional[Any] = Accelerator() lowerCAmelCase_ : Optional[Any] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial lowerCAmelCase_ : str = os.path.join(UpperCAmelCase , """initial""" ) accelerator.save_state(UpperCAmelCase ) (lowerCAmelCase_) : Any = model.a.item(), model.b.item() lowerCAmelCase_ : Tuple = optimizer.state_dict() lowerCAmelCase_ : Dict = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) (lowerCAmelCase_) : Optional[Any] = model.a.item(), model.b.item() lowerCAmelCase_ : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase_ : List[str] = DummyModel() lowerCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCAmelCase_ : int = dummy_dataloaders() lowerCAmelCase_ : Tuple = Accelerator() lowerCAmelCase_ : Optional[int] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(UpperCAmelCase ) (lowerCAmelCase_) : Dict = model.a.item(), model.b.item() lowerCAmelCase_ : Tuple = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything lowerCAmelCase_ : Union[str, Any] = os.path.join(UpperCAmelCase , """checkpoint""" ) accelerator.save_state(UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(UpperCAmelCase ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) (lowerCAmelCase_) : Optional[int] = model.a.item(), model.b.item() lowerCAmelCase_ : Any = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase_ : Optional[Any] = DummyModel() lowerCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCAmelCase_ : Dict = dummy_dataloaders() lowerCAmelCase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowerCAmelCase_ : Tuple = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowerCAmelCase_ : List[str] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() (lowerCAmelCase_) : Optional[Any] = model.a.item(), model.b.item() lowerCAmelCase_ : int = optimizer.state_dict() lowerCAmelCase_ : Union[str, Any] = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) (lowerCAmelCase_) : Any = model.a.item(), model.b.item() lowerCAmelCase_ : Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase_ : List[Any] = DummyModel() lowerCAmelCase_ : str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCAmelCase_ : Optional[int] = dummy_dataloaders() lowerCAmelCase_ : str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCAmelCase ) lowerCAmelCase_ : Any = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowerCAmelCase_ : str = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(os.path.join(UpperCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) (lowerCAmelCase_) : Optional[int] = model.a.item(), model.b.item() lowerCAmelCase_ : List[str] = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) (lowerCAmelCase_) : Optional[Any] = model.a.item(), model.b.item() lowerCAmelCase_ : Any = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A ( self : Any ): lowerCAmelCase_ : Tuple = torch.tensor([1, 2, 3] ) lowerCAmelCase_ : int = torch.tensor([2, 3, 4] ) lowerCAmelCase_ : Optional[int] = DummyModel() lowerCAmelCase_ : Optional[Any] = torch.optim.Adam(net.parameters() ) lowerCAmelCase_ : Optional[Any] = Accelerator() with self.assertRaises(UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def A ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase_ : Any = DummyModel() lowerCAmelCase_ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowerCAmelCase_ : Tuple = torch.optim.lr_scheduler.StepLR(UpperCAmelCase , step_size=1 , gamma=0.99 ) lowerCAmelCase_ : Tuple = dummy_dataloaders() lowerCAmelCase_ : int = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowerCAmelCase_ : str = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowerCAmelCase_ : Dict = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() lowerCAmelCase_ : Optional[Any] = scheduler.state_dict() train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(UpperCAmelCase , scheduler.state_dict() ) def A ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase_ : Union[str, Any] = DummyModel() lowerCAmelCase_ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase , total_limit=2 ) # Train baseline lowerCAmelCase_ : Optional[Any] = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowerCAmelCase_ : List[str] = accelerator.prepare(UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def A ( self : Dict ): lowerCAmelCase_ : Optional[Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '/tmp/accelerate/state_checkpointing' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1e-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __UpperCAmelCase = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __a ( __UpperCamelCase ): __snake_case : Optional[int] = ["""image_processor"""] __snake_case : Union[str, Any] = """SamImageProcessor""" def __init__( self : Tuple , UpperCAmelCase : List[Any] ): super().__init__(UpperCAmelCase ) lowerCAmelCase_ : Any = self.image_processor lowerCAmelCase_ : Tuple = -10 lowerCAmelCase_ : Tuple = self.image_processor.size["""longest_edge"""] def __call__( self : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : List[Any] = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase_ : Tuple = encoding_image_processor["""original_sizes"""] if hasattr(UpperCAmelCase , """numpy""" ): # Checks if Torch or TF tensor lowerCAmelCase_ : Union[str, Any] = original_sizes.numpy() lowerCAmelCase_ : List[str] = self._check_and_preprocess_points( input_points=UpperCAmelCase , input_labels=UpperCAmelCase , input_boxes=UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = self._normalize_and_convert( UpperCAmelCase , UpperCAmelCase , input_points=UpperCAmelCase , input_labels=UpperCAmelCase , input_boxes=UpperCAmelCase , return_tensors=UpperCAmelCase , ) return encoding_image_processor def A ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple="pt" , ): if input_points is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): lowerCAmelCase_ : List[Any] = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: lowerCAmelCase_ : Tuple = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , UpperCAmelCase ) for point, original_size in zip(UpperCAmelCase , UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowerCAmelCase_ : Union[str, Any] = self._pad_points_and_labels(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = np.array(UpperCAmelCase ) if input_labels is not None: lowerCAmelCase_ : Tuple = np.array(UpperCAmelCase ) if input_boxes is not None: if len(UpperCAmelCase ) != len(UpperCAmelCase ): lowerCAmelCase_ : int = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , original_sizes[0] , is_bounding_box=UpperCAmelCase ) for box in input_boxes ] else: lowerCAmelCase_ : Tuple = [ self._normalize_coordinates(self.target_size , UpperCAmelCase , UpperCAmelCase , is_bounding_box=UpperCAmelCase ) for box, original_size in zip(UpperCAmelCase , UpperCAmelCase ) ] lowerCAmelCase_ : List[Any] = np.array(UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase_ : Optional[int] = torch.from_numpy(UpperCAmelCase ) # boxes batch size of 1 by default lowerCAmelCase_ : List[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase_ : str = tf.convert_to_tensor(UpperCAmelCase ) # boxes batch size of 1 by default lowerCAmelCase_ : Tuple = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": lowerCAmelCase_ : Union[str, Any] = torch.from_numpy(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : List[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase_ : str = tf.convert_to_tensor(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : Any = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase_ : Dict = torch.from_numpy(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : List[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase_ : int = tf.convert_to_tensor(UpperCAmelCase ) # point batch size of 1 by default lowerCAmelCase_ : Dict = tf.expand_dims(UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int ): lowerCAmelCase_ : List[Any] = max([point.shape[0] for point in input_points] ) lowerCAmelCase_ : List[str] = [] for i, point in enumerate(UpperCAmelCase ): if point.shape[0] != expected_nb_points: lowerCAmelCase_ : Tuple = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowerCAmelCase_ : Union[str, Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(UpperCAmelCase ) lowerCAmelCase_ : int = processed_input_points return input_points, input_labels def A ( self : str , UpperCAmelCase : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=False ): lowerCAmelCase_ : List[Any] = original_size lowerCAmelCase_ : Optional[int] = self.image_processor._get_preprocess_shape(UpperCAmelCase , longest_edge=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = deepcopy(UpperCAmelCase ).astype(UpperCAmelCase ) if is_bounding_box: lowerCAmelCase_ : Optional[int] = coords.reshape(-1 , 2 , 2 ) lowerCAmelCase_ : List[str] = coords[..., 0] * (new_w / old_w) lowerCAmelCase_ : str = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase_ : List[str] = coords.reshape(-1 , 4 ) return coords def A ( self : Any , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[int]=None , ): if input_points is not None: if hasattr(UpperCAmelCase , """numpy""" ): # Checks for TF or Torch tensor lowerCAmelCase_ : Optional[int] = input_points.numpy().tolist() if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_points[0] , UpperCAmelCase ): raise ValueError("""Input points must be a list of list of floating points.""" ) lowerCAmelCase_ : List[str] = [np.array(UpperCAmelCase ) for input_point in input_points] else: lowerCAmelCase_ : Optional[int] = None if input_labels is not None: if hasattr(UpperCAmelCase , """numpy""" ): lowerCAmelCase_ : List[str] = input_labels.numpy().tolist() if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_labels[0] , UpperCAmelCase ): raise ValueError("""Input labels must be a list of list integers.""" ) lowerCAmelCase_ : Optional[Any] = [np.array(UpperCAmelCase ) for label in input_labels] else: lowerCAmelCase_ : List[str] = None if input_boxes is not None: if hasattr(UpperCAmelCase , """numpy""" ): lowerCAmelCase_ : str = input_boxes.numpy().tolist() if ( not isinstance(UpperCAmelCase , UpperCAmelCase ) or not isinstance(input_boxes[0] , UpperCAmelCase ) or not isinstance(input_boxes[0][0] , UpperCAmelCase ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) lowerCAmelCase_ : int = [np.array(UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: lowerCAmelCase_ : Union[str, Any] = None return input_points, input_labels, input_boxes @property def A ( self : Tuple ): lowerCAmelCase_ : str = self.image_processor.model_input_names return list(dict.fromkeys(UpperCAmelCase ) ) def A ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : List[str] ): return self.image_processor.post_process_masks(*UpperCAmelCase , **UpperCAmelCase )
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __a ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : List[Any] = parent def A ( self : int ): return {} def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[Any] = """<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR=\"FFFFFF\"> <HR> <a href=\"http://google.com\">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style=\"color:#0000FF\"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>""" lowerCAmelCase_ : int = """ <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> """ return [html_string_a, html_string_a] @require_bsa class __a ( __UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = MarkupLMFeatureExtractor if is_bsa_available() else None def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = MarkupLMFeatureExtractionTester(self ) @property def A ( self : List[str] ): return self.feature_extract_tester.prepare_feat_extract_dict() def A ( self : Union[str, Any] ): # Initialize feature_extractor lowerCAmelCase_ : Optional[Any] = self.feature_extraction_class() # Test not batched input lowerCAmelCase_ : List[Any] = get_html_strings()[0] lowerCAmelCase_ : Any = feature_extractor(UpperCAmelCase ) # fmt: off lowerCAmelCase_ : Optional[Any] = [["""sample document""", """Goog""", """This is one header""", """This is a another Header""", """Travel from""", """SFO to JFK""", """on May 2, 2015 at 2:00 pm. For details go to confirm.com""", """Traveler""", """name""", """is""", """John Doe"""]] lowerCAmelCase_ : Dict = [["""/html/head/title""", """/html/body/a""", """/html/body/h1""", """/html/body/h2""", """/html/body/p""", """/html/body/p/p/b[1]""", """/html/body/p/p/b[2]/i""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/b""", """/html/body/p/p/div/h3""", """/html/body/p/p/div/h3/p"""]] # fmt: on self.assertEqual(encoding.nodes , UpperCAmelCase ) self.assertEqual(encoding.xpaths , UpperCAmelCase ) # Test batched lowerCAmelCase_ : int = get_html_strings() lowerCAmelCase_ : Tuple = feature_extractor(UpperCAmelCase ) # fmt: off lowerCAmelCase_ : Any = expected_nodes + [["""My First Heading""", """My first paragraph."""]] lowerCAmelCase_ : Any = expected_xpaths + [["""/html/body/h1""", """/html/body/p"""]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCAmelCase ) self.assertEqual(encoding.xpaths , UpperCAmelCase )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
def __UpperCamelCase ( lowercase__ : int ) -> bool: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ : Dict = f'Input value of [number={number}] must be an integer' raise TypeError(lowercase__ ) if number < 0: return False lowerCAmelCase_ : Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
from typing import Dict from .base import GenericTensor, Pipeline class __a ( __UpperCamelCase ): def A ( self : str , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : str=None , **UpperCAmelCase : int ): if tokenize_kwargs is None: lowerCAmelCase_ : Dict = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) lowerCAmelCase_ : Union[str, Any] = truncation lowerCAmelCase_ : List[str] = tokenize_kwargs lowerCAmelCase_ : str = {} if return_tensors is not None: lowerCAmelCase_ : Any = return_tensors return preprocess_params, {}, postprocess_params def A ( self : List[str] , UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): lowerCAmelCase_ : List[str] = self.framework lowerCAmelCase_ : List[Any] = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) return model_inputs def A ( self : Any , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : str = self.model(**UpperCAmelCase ) return model_outputs def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=False ): # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : List[Any] ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __a ( __UpperCamelCase ): __snake_case : Optional[int] = """gptsan-japanese""" __snake_case : Optional[Any] = [ """past_key_values""", ] __snake_case : int = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Union[str, Any] , UpperCAmelCase : Any=3_60_00 , UpperCAmelCase : List[str]=12_80 , UpperCAmelCase : List[Any]=10_24 , UpperCAmelCase : Optional[int]=81_92 , UpperCAmelCase : List[Any]=40_96 , UpperCAmelCase : Dict=1_28 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : int=0 , UpperCAmelCase : Any=16 , UpperCAmelCase : str=16 , UpperCAmelCase : int=1_28 , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : int=False , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : str="float32" , UpperCAmelCase : str=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : int=False , UpperCAmelCase : str=0.002 , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=3_59_98 , UpperCAmelCase : int=3_59_95 , UpperCAmelCase : Union[str, Any]=3_59_99 , **UpperCAmelCase : Tuple , ): lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : Dict = d_model lowerCAmelCase_ : Optional[Any] = d_ff lowerCAmelCase_ : Dict = d_ext lowerCAmelCase_ : Union[str, Any] = d_spout lowerCAmelCase_ : Dict = num_switch_layers lowerCAmelCase_ : Dict = num_ext_layers lowerCAmelCase_ : Union[str, Any] = num_switch_layers + num_ext_layers lowerCAmelCase_ : Union[str, Any] = num_heads lowerCAmelCase_ : Optional[Any] = num_experts lowerCAmelCase_ : Dict = expert_capacity lowerCAmelCase_ : Any = dropout_rate lowerCAmelCase_ : List[str] = layer_norm_epsilon lowerCAmelCase_ : Union[str, Any] = router_bias lowerCAmelCase_ : Union[str, Any] = router_jitter_noise lowerCAmelCase_ : Any = router_dtype lowerCAmelCase_ : Dict = router_ignore_padding_tokens lowerCAmelCase_ : List[Any] = output_hidden_states lowerCAmelCase_ : Dict = output_attentions lowerCAmelCase_ : Any = initializer_factor lowerCAmelCase_ : Union[str, Any] = output_router_logits lowerCAmelCase_ : Tuple = use_cache super().__init__( separator_token_id=UpperCAmelCase , pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase , )
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0