code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : Dict = len(__magic_name__ ) lowercase : Any = sum(__magic_name__ ) lowercase : Any = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowercase : Optional[Any] = True for i in range(1 , s + 1 ): lowercase : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowercase : str = dp[i][j - 1] if arr[i - 1] <= j: lowercase : str = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowercase : Any = s - 2 * j break return diff
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ = get_tests_dir('fixtures') class _A ( unittest.TestCase ): def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = mock.Mock() lowercase : Dict = 500 lowercase : List[str] = {} lowercase : int = HTTPError lowercase : Union[str, Any] = {} # Download this model to make sure it's in the cache. lowercase : Tuple = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_A ) as mock_head: lowercase : str = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __a ( self : List[str] ) -> str: """simple docstring""" lowercase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _A ( unittest.TestCase ): @classmethod def __a ( cls : int ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] = TOKEN HfFolder.save_token(_A ) @classmethod def __a ( cls : List[str] ) -> str: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained(_A ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _A , repo_id='''test-feature-extractor''' , push_to_hub=_A , use_auth_token=self._token ) lowercase : Dict = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) def __a ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase : str = WavaVecaFeatureExtractor.from_pretrained(_A ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) lowercase : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _A , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_A , use_auth_token=self._token ) lowercase : List[str] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) def __a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() lowercase : Any = CustomFeatureExtractor.from_pretrained(_A ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) lowercase : Any = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_A ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowercase : Union[str, Any] = 0 lowercase : str = 0 lowercase : Any = knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , index + 1 ) if weights[index] <= max_weight: lowercase : Optional[Any] = values[index] + knapsack( __magic_name__ , __magic_name__ , __magic_name__ , max_weight - weights[index] , index + 1 ) return max(__magic_name__ , __magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
308
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( _lowerCamelCase ): def __init__( self : Dict , _A : CLIPSegForImageSegmentation , _A : CLIPSegProcessor , _A : AutoencoderKL , _A : CLIPTextModel , _A : CLIPTokenizer , _A : UNetaDConditionModel , _A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _A : StableDiffusionSafetyChecker , _A : CLIPImageProcessor , ) -> Union[str, Any]: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowercase : int = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _A , standard_warn=_A ) lowercase : str = dict(scheduler.config ) lowercase : int = 1 lowercase : Dict = FrozenDict(_A ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowercase : Tuple = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _A , standard_warn=_A ) lowercase : Optional[Any] = dict(scheduler.config ) lowercase : List[Any] = True lowercase : str = FrozenDict(_A ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_A , segmentation_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , safety_checker=_A , feature_extractor=_A , ) def __a ( self : Optional[Any] , _A : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def __a ( self : Dict ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(_A ) def __a ( self : Dict ) -> Dict: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase : Any = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __a ( self : List[str] ) -> Dict: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_A , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , _A : Union[str, List[str]] , _A : Union[torch.FloatTensor, PIL.Image.Image] , _A : str , _A : int = 512 , _A : int = 512 , _A : int = 50 , _A : float = 7.5 , _A : Optional[Union[str, List[str]]] = None , _A : Optional[int] = 1 , _A : float = 0.0 , _A : Optional[torch.Generator] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , **_A : List[Any] , ) -> List[Any]: """simple docstring""" lowercase : Tuple = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowercase : str = self.segmentation_model(**_A ) lowercase : int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase : List[Any] = self.numpy_to_pil(_A )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase : Union[str, Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_A , image=_A , mask_image=_A , height=_A , width=_A , num_inference_steps=_A , guidance_scale=_A , negative_prompt=_A , num_images_per_prompt=_A , eta=_A , generator=_A , latents=_A , output_type=_A , return_dict=_A , callback=_A , callback_steps=_A , )
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _A : _UpperCamelCase : str _UpperCamelCase : str = None @staticmethod def __a ( ) -> str: """simple docstring""" raise NotImplementedError def __a ( self : int , _A : Optional[int] , _A : int , _A : str , **_A : Optional[Any] ) -> Any: """simple docstring""" raise NotImplementedError def __a ( self : int , _A : Optional[int] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError def __a ( self : int ) -> Dict: """simple docstring""" if not self.is_available(): raise RuntimeError( f"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def __a ( cls : Tuple ) -> Optional[int]: """simple docstring""" return f"""`pip install {cls.pip_package or cls.name}`""" class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''optuna''' @staticmethod def __a ( ) -> List[str]: """simple docstring""" return is_optuna_available() def __a ( self : Tuple , _A : Dict , _A : int , _A : str , **_A : int ) -> Dict: """simple docstring""" return run_hp_search_optuna(_A , _A , _A , **_A ) def __a ( self : str , _A : Tuple ) -> Any: """simple docstring""" return default_hp_space_optuna(_A ) class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = '''ray''' _UpperCamelCase : List[Any] = '''\'ray[tune]\'''' @staticmethod def __a ( ) -> Optional[Any]: """simple docstring""" return is_ray_available() def __a ( self : Optional[int] , _A : Union[str, Any] , _A : int , _A : str , **_A : Optional[int] ) -> List[str]: """simple docstring""" return run_hp_search_ray(_A , _A , _A , **_A ) def __a ( self : List[str] , _A : int ) -> str: """simple docstring""" return default_hp_space_ray(_A ) class _A ( _lowerCamelCase ): _UpperCamelCase : Any = '''sigopt''' @staticmethod def __a ( ) -> Optional[int]: """simple docstring""" return is_sigopt_available() def __a ( self : List[str] , _A : Optional[Any] , _A : int , _A : str , **_A : int ) -> List[str]: """simple docstring""" return run_hp_search_sigopt(_A , _A , _A , **_A ) def __a ( self : List[Any] , _A : Dict ) -> int: """simple docstring""" return default_hp_space_sigopt(_A ) class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''wandb''' @staticmethod def __a ( ) -> Union[str, Any]: """simple docstring""" return is_wandb_available() def __a ( self : Optional[int] , _A : Optional[Any] , _A : int , _A : str , **_A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return run_hp_search_wandb(_A , _A , _A , **_A ) def __a ( self : Any , _A : List[str] ) -> Any: """simple docstring""" return default_hp_space_wandb(_A ) lowerCAmelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def snake_case( ) -> str: '''simple docstring''' lowercase : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__magic_name__ ) > 0: lowercase : Optional[int] = available_backends[0].name if len(__magic_name__ ) > 1: logger.info( F"""{len(__magic_name__ )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
import requests def snake_case( __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' lowercase : str = {'''Content-Type''': '''application/json'''} lowercase : Union[str, Any] = requests.post(__magic_name__ , json={'''text''': message_body} , headers=__magic_name__ ) if response.status_code != 2_00: lowercase : int = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__magic_name__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
import fire from utils import calculate_rouge, save_json def snake_case( __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Dict = [x.strip() for x in open(__magic_name__ ).readlines()] lowercase : List[str] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] lowercase : List[Any] = calculate_rouge(__magic_name__ , __magic_name__ , **__magic_name__ ) if save_path is not None: save_json(__magic_name__ , __magic_name__ , indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''Speech2TextFeatureExtractor''' _UpperCamelCase : Optional[Any] = '''Speech2TextTokenizer''' def __init__( self : Optional[Any] , _A : Optional[int] , _A : int ) -> List[Any]: """simple docstring""" super().__init__(_A , _A ) lowercase : Optional[Any] = self.feature_extractor lowercase : Dict = False def __call__( self : int , *_A : str , **_A : Tuple ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_A , **_A ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowercase : int = kwargs.pop('''raw_speech''' ) else: lowercase : str = kwargs.pop('''audio''' , _A ) lowercase : str = kwargs.pop('''sampling_rate''' , _A ) lowercase : List[str] = kwargs.pop('''text''' , _A ) if len(_A ) > 0: lowercase : Any = args[0] lowercase : Dict = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowercase : str = self.feature_extractor(_A , *_A , sampling_rate=_A , **_A ) if text is not None: lowercase : List[str] = self.tokenizer(_A , **_A ) if text is None: return inputs elif audio is None: return encodings else: lowercase : Tuple = encodings['''input_ids'''] return inputs def __a ( self : int , *_A : List[Any] , **_A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def __a ( self : List[str] , *_A : Tuple , **_A : Any ) -> str: """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @contextmanager def __a ( self : Optional[Any] ) -> int: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowercase : List[str] = True lowercase : List[Any] = self.tokenizer yield lowercase : List[Any] = self.feature_extractor lowercase : Tuple = False
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ChineseCLIPFeatureExtractor'] lowerCAmelCase_ = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1
from __future__ import annotations from collections.abc import Iterator class _A : def __init__( self : Tuple , _A : int ) -> None: """simple docstring""" lowercase : Tuple = value lowercase : Node | None = None lowercase : Node | None = None class _A : def __init__( self : Dict , _A : Node ) -> None: """simple docstring""" lowercase : int = tree def __a ( self : Any , _A : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[str] ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
308
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def snake_case( __magic_name__ ) -> str: '''simple docstring''' def is_in_circle(__magic_name__ , __magic_name__ ) -> bool: lowercase : Any = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase : Any = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__magic_name__ ) ) # The ratio of the area for circle to square is pi/4. lowercase : List[Any] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(__magic_name__ , __magic_name__ ) ) for _ in range(__magic_name__ ) ) * (max_value - min_value) def snake_case( __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 1.0 ) -> None: '''simple docstring''' def identity_function(__magic_name__ ) -> float: return x lowercase : List[str] = area_under_curve_estimator( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase : int = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('''******************''' ) def snake_case( __magic_name__ ) -> None: '''simple docstring''' def function_to_integrate(__magic_name__ ) -> float: return sqrt(4.0 - x * x ) lowercase : Dict = area_under_curve_estimator( __magic_name__ , __magic_name__ , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
308
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
1
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = (UnCLIPScheduler,) def __a ( self : Optional[int] , **_A : str ) -> List[str]: """simple docstring""" lowercase : List[Any] = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_A ) return config def __a ( self : int ) -> Tuple: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def __a ( self : Union[str, Any] ) -> int: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_A ) def __a ( self : Dict ) -> Tuple: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def __a ( self : int ) -> Dict: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_A ) def __a ( self : str ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_A ) def __a ( self : int ) -> Dict: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_A , prev_timestep=_A ) def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : str = self.scheduler_classes[0] lowercase : str = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowercase : Dict = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def __a ( self : Any ) -> int: """simple docstring""" lowercase : str = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config(variance_type='''learned_range''' ) lowercase : Tuple = scheduler_class(**_A ) lowercase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=_A ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=_A ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=_A ) - -0.0_010_011 < 1E-5 def __a ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.scheduler_classes[0] lowercase : int = self.get_scheduler_config() lowercase : List[str] = scheduler_class(**_A ) lowercase : Union[str, Any] = scheduler.timesteps lowercase : Any = self.dummy_model() lowercase : Dict = self.dummy_sample_deter lowercase : Optional[Any] = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual lowercase : Optional[int] = model(_A , _A ) # 2. predict previous mean of sample x_t-1 lowercase : int = scheduler.step(_A , _A , _A , generator=_A ).prev_sample lowercase : Any = pred_prev_sample lowercase : Dict = torch.sum(torch.abs(_A ) ) lowercase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : Any = self.scheduler_classes[0] lowercase : List[Any] = self.get_scheduler_config() lowercase : Optional[Any] = scheduler_class(**_A ) scheduler.set_timesteps(25 ) lowercase : Any = scheduler.timesteps lowercase : int = self.dummy_model() lowercase : Union[str, Any] = self.dummy_sample_deter lowercase : str = torch.manual_seed(0 ) for i, t in enumerate(_A ): # 1. predict noise residual lowercase : Any = model(_A , _A ) if i + 1 == timesteps.shape[0]: lowercase : Union[str, Any] = None else: lowercase : List[str] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase : Union[str, Any] = scheduler.step( _A , _A , _A , prev_timestep=_A , generator=_A ).prev_sample lowercase : Union[str, Any] = pred_prev_sample lowercase : List[str] = torch.sum(torch.abs(_A ) ) lowercase : Optional[Any] = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" pass def __a ( self : int ) -> List[str]: """simple docstring""" pass
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = LayoutLMTokenizer _UpperCamelCase : Optional[int] = LayoutLMTokenizerFast _UpperCamelCase : Any = True _UpperCamelCase : Union[str, Any] = True def __a ( self : str ) -> List[Any]: """simple docstring""" super().setUp() lowercase : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __a ( self : str , **_A : str ) -> List[str]: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def __a ( self : int , _A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] = '''UNwant\u00E9d,running''' lowercase : Dict = '''unwanted, running''' return input_text, output_text def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : Tuple = self.tokenizer_class(self.vocab_file ) lowercase : Dict = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def __a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass
308
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowerCAmelCase_ = {'allegro/herbert-base-cased': 5_14} lowerCAmelCase_ = {} class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = HerbertTokenizer def __init__( self : List[Any] , _A : Optional[int]=None , _A : int=None , _A : Any=None , _A : Any="<s>" , _A : Dict="<unk>" , _A : int="<pad>" , _A : List[str]="<mask>" , _A : Any="</s>" , **_A : str , ) -> Optional[int]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , sep_token=_A , **_A , ) def __a ( self : List[str] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : int = [self.cls_token_id] lowercase : Dict = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def __a ( self : str , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : int = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : str = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
308
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : Union[str, Any] , _A : List[Any] , _A : Optional[int]=13 , _A : Dict=32 , _A : Tuple=3 , _A : Any=4 , _A : Dict=[10, 20, 30, 40] , _A : Union[str, Any]=[2, 2, 3, 2] , _A : str=True , _A : List[str]=True , _A : Union[str, Any]=37 , _A : Union[str, Any]="gelu" , _A : Dict=10 , _A : List[Any]=0.02 , _A : Union[str, Any]=["stage2", "stage3", "stage4"] , _A : Dict=[2, 3, 4] , _A : Tuple=None , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Union[str, Any] = batch_size lowercase : str = image_size lowercase : List[str] = num_channels lowercase : List[Any] = num_stages lowercase : Union[str, Any] = hidden_sizes lowercase : Tuple = depths lowercase : int = is_training lowercase : Any = use_labels lowercase : Union[str, Any] = intermediate_size lowercase : int = hidden_act lowercase : Optional[Any] = num_labels lowercase : int = initializer_range lowercase : Dict = out_features lowercase : Optional[Any] = out_indices lowercase : Optional[int] = scope def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Tuple = None if self.use_labels: lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase : Tuple = self.get_config() return config, pixel_values, labels def __a ( self : List[str] ) -> str: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_A , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self : List[str] , _A : Any , _A : str , _A : Any ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = ConvNextModel(config=_A ) model.to(_A ) model.eval() lowercase : Dict = model(_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self : str , _A : Union[str, Any] , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" lowercase : Any = ConvNextForImageClassification(_A ) model.to(_A ) model.eval() lowercase : Dict = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Union[str, Any] , _A : List[Any] , _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[str] = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase : List[Any] = None lowercase : Tuple = ConvNextBackbone(config=_A ) model.to(_A ) model.eval() lowercase : Optional[int] = model(_A ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase : int = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Optional[Any] = config_and_inputs lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _UpperCamelCase : List[Any] = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Optional[int] = False _UpperCamelCase : List[str] = False _UpperCamelCase : str = False _UpperCamelCase : Union[str, Any] = False def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = ConvNextModelTester(self ) lowercase : str = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def __a ( self : Dict ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : str ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def __a ( self : Any ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def __a ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def __a ( self : Dict ) -> List[Any]: """simple docstring""" pass def __a ( self : int ) -> List[str]: """simple docstring""" lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(_A ) lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Union[str, Any] = [*signature.parameters.keys()] lowercase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def __a ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __a ( self : Tuple ) -> List[str]: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_A ) def __a ( self : str ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(_A : Union[str, Any] , _A : Optional[int] , _A : Union[str, Any] ): lowercase : List[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : List[Any] = model(**self._prepare_for_class(_A , _A ) ) lowercase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : Any = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Tuple = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Any = True check_hidden_states_output(_A , _A , _A ) def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __a ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : str = ConvNextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def snake_case( ) -> Tuple: '''simple docstring''' lowercase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def __a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(_A ) lowercase : List[str] = self.default_image_processor lowercase : Dict = prepare_img() lowercase : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): lowercase : List[Any] = model(**_A ) # verify the logits lowercase : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) lowercase : Optional[Any] = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @require_torch class _A ( unittest.TestCase , _lowerCamelCase ): _UpperCamelCase : List[str] = (ConvNextBackbone,) if is_torch_available() else () _UpperCamelCase : Tuple = ConvNextConfig _UpperCamelCase : List[Any] = False def __a ( self : Dict ) -> List[str]: """simple docstring""" lowercase : Union[str, Any] = ConvNextModelTester(self )
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = BertJapaneseTokenizer _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : str = True def __a ( self : Tuple ) -> str: """simple docstring""" super().setUp() lowercase : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowercase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __a ( self : Union[str, Any] , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : Optional[int] = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase : Union[str, Any] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __a ( self : List[Any] , _A : Optional[int] ) -> str: """simple docstring""" lowercase , lowercase : Optional[Any] = self.get_input_output_texts(_A ) lowercase : Any = tokenizer.encode(_A , add_special_tokens=_A ) lowercase : str = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) return text, ids def __a ( self : Any ) -> Any: """simple docstring""" pass # TODO add if relevant def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass # TODO add if relevant def __a ( self : Tuple ) -> Any: """simple docstring""" pass # TODO add if relevant def __a ( self : int ) -> Optional[int]: """simple docstring""" lowercase : List[Any] = self.tokenizer_class(self.vocab_file ) lowercase : Any = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(_A , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __a ( self : List[str] ) -> str: """simple docstring""" lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' ) self.assertIsNotNone(_A ) lowercase : Any = '''こんにちは、世界。\nこんばんは、世界。''' lowercase : List[Any] = tokenizer.tokenize(_A ) self.assertListEqual(_A , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Union[str, Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_A , '''wb''' ) as handle: pickle.dump(_A , _A ) with open(_A , '''rb''' ) as handle: lowercase : Optional[int] = pickle.load(_A ) lowercase : Dict = tokenizer_new.tokenize(_A ) self.assertListEqual(_A , _A ) def __a ( self : Any ) -> int: """simple docstring""" lowercase : List[str] = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" try: lowercase : Dict = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __a ( self : int ) -> Dict: """simple docstring""" try: lowercase : str = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase : int = MecabTokenizer(do_lower_case=_A , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) def __a ( self : Dict ) -> str: """simple docstring""" try: lowercase : List[str] = MecabTokenizer( do_lower_case=_A , normalize_text=_A , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) def __a ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = MecabTokenizer(normalize_text=_A , mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , ) @require_sudachi def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(_A ) lowercase : List[Any] = '''こんにちは、世界。\nこんばんは、世界。''' lowercase : Optional[int] = tokenizer.tokenize(_A ) self.assertListEqual(_A , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Any = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_A , '''wb''' ) as handle: pickle.dump(_A , _A ) with open(_A , '''rb''' ) as handle: lowercase : str = pickle.load(_A ) lowercase : str = tokenizer_new.tokenize(_A ) self.assertListEqual(_A , _A ) @require_sudachi def __a ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase : Tuple = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : int = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __a ( self : Optional[Any] ) -> str: """simple docstring""" lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] ) @require_sudachi def __a ( self : str ) -> str: """simple docstring""" lowercase : List[Any] = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] ) @require_sudachi def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : Any = SudachiTokenizer(do_lower_case=_A , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : Tuple = SudachiTokenizer(normalize_text=_A , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , ) @require_sudachi def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : List[str] = SudachiTokenizer(trim_whitespace=_A , sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , ) @require_jumanpp def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(_A ) lowercase : Optional[Any] = '''こんにちは、世界。\nこんばんは、世界。''' lowercase : int = tokenizer.tokenize(_A ) self.assertListEqual(_A , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Any = os.path.join(self.tmpdirname , '''tokenizer.bin''' ) with open(_A , '''wb''' ) as handle: pickle.dump(_A , _A ) with open(_A , '''rb''' ) as handle: lowercase : int = pickle.load(_A ) lowercase : Dict = tokenizer_new.tokenize(_A ) self.assertListEqual(_A , _A ) @require_jumanpp def __a ( self : Dict ) -> Dict: """simple docstring""" lowercase : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __a ( self : Tuple ) -> Any: """simple docstring""" lowercase : List[str] = JumanppTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : List[Any] = JumanppTokenizer(normalize_text=_A ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , ) @require_jumanpp def __a ( self : int ) -> List[str]: """simple docstring""" lowercase : List[str] = JumanppTokenizer(trim_whitespace=_A ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , ) @require_jumanpp def __a ( self : str ) -> Any: """simple docstring""" lowercase : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , ) def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowercase : str = {} for i, token in enumerate(_A ): lowercase : Union[str, Any] = i lowercase : Optional[Any] = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : Any = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) lowercase : List[Any] = tokenizer.subword_tokenizer lowercase : List[Any] = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(_A , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) lowercase : List[Any] = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(_A , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : Any = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) lowercase : Dict = tokenizer.encode('''ありがとう。''' , add_special_tokens=_A ) lowercase : List[str] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_A ) lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A ) lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Dict = BertJapaneseTokenizer _UpperCamelCase : Tuple = False def __a ( self : Any ) -> int: """simple docstring""" super().setUp() lowercase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __a ( self : Optional[int] , **_A : Optional[Any] ) -> List[Any]: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_A ) def __a ( self : Tuple , _A : Tuple ) -> List[str]: """simple docstring""" lowercase : List[str] = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase : Optional[Any] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __a ( self : Optional[Any] ) -> int: """simple docstring""" pass # TODO add if relevant def __a ( self : Dict ) -> Tuple: """simple docstring""" pass # TODO add if relevant def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' ) lowercase : str = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( _A , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase : List[Any] = {} for i, token in enumerate(_A ): lowercase : Optional[int] = i lowercase : int = CharacterTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : int = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) lowercase : Any = tokenizer.encode('''ありがとう。''' , add_special_tokens=_A ) lowercase : int = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_A ) lowercase : str = tokenizer.build_inputs_with_special_tokens(_A ) lowercase : str = tokenizer.build_inputs_with_special_tokens(_A , _A ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _A ( unittest.TestCase ): def __a ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] = '''cl-tohoku/bert-base-japanese''' lowercase : List[str] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) class _A ( unittest.TestCase ): def __a ( self : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(_A ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) lowercase : str = '''bert-base-cased''' with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(_A ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase : List[Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" lowercase : List[Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" lowercase : List[str] = max(len(__magic_name__ ) , len(__magic_name__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__magic_name__ ) , b_binary.zfill(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
308
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class _A : _UpperCamelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) _UpperCamelCase : Optional[str] = field( default=_lowerCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) _UpperCamelCase : Optional[str] = field( default=_lowerCamelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) _UpperCamelCase : Optional[str] = field(default=_lowerCamelCase , metadata={'''help''': '''A folder containing the training data.'''} ) _UpperCamelCase : Optional[str] = field(default=_lowerCamelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) _UpperCamelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) _UpperCamelCase : Optional[int] = field( default=_lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=_lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def __a ( self : List[str] ) -> Any: """simple docstring""" lowercase : Union[str, Any] = {} if self.train_dir is not None: lowercase : Any = self.train_dir if self.validation_dir is not None: lowercase : Union[str, Any] = self.validation_dir lowercase : Optional[int] = data_files if data_files else None @dataclass class _A : _UpperCamelCase : str = field( default=_lowerCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) _UpperCamelCase : Optional[str] = field( default=_lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) _UpperCamelCase : Optional[str] = field( default=_lowerCamelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) _UpperCamelCase : Optional[str] = field( default=_lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) _UpperCamelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _UpperCamelCase : str = field(default=_lowerCamelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) _UpperCamelCase : bool = field( default=_lowerCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) _UpperCamelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) _UpperCamelCase : bool = field( default=_lowerCamelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class _A ( _lowerCamelCase ): _UpperCamelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : List[str] = torch.stack([example['''pixel_values'''] for example in examples] ) return {"pixel_values": pixel_values} def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mae''' , __magic_name__ , __magic_name__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowercase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(__magic_name__ ) transformers.utils.logging.set_verbosity(__magic_name__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. lowercase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. lowercase : List[str] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __magic_name__ ) and data_args.train_val_split > 0.0: lowercase : List[str] = ds['''train'''].train_test_split(data_args.train_val_split ) lowercase : Optional[Any] = split['''train'''] lowercase : List[str] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : List[str] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: lowercase : Any = ViTMAEConfig.from_pretrained(model_args.config_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase : Any = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase : Dict = ViTMAEConfig() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # adapt config config.update( { '''mask_ratio''': model_args.mask_ratio, '''norm_pix_loss''': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: lowercase : Any = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **__magic_name__ ) elif model_args.model_name_or_path: lowercase : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **__magic_name__ ) else: lowercase : Any = ViTImageProcessor() # create model if model_args.model_name_or_path: lowercase : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) lowercase : Any = ViTMAEForPreTraining(__magic_name__ ) if training_args.do_train: lowercase : Any = ds['''train'''].column_names else: lowercase : List[str] = ds['''validation'''].column_names if data_args.image_column_name is not None: lowercase : Union[str, Any] = data_args.image_column_name elif "image" in column_names: lowercase : Optional[int] = '''image''' elif "img" in column_names: lowercase : Optional[int] = '''img''' else: lowercase : Any = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: lowercase : Union[str, Any] = image_processor.size['''shortest_edge'''] else: lowercase : List[str] = (image_processor.size['''height'''], image_processor.size['''width''']) lowercase : Union[str, Any] = Compose( [ Lambda(lambda __magic_name__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(__magic_name__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(__magic_name__ ): lowercase : Dict = [transforms(__magic_name__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: lowercase : Optional[int] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__magic_name__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: lowercase : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__magic_name__ ) # Compute absolute learning rate lowercase : List[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: lowercase : Dict = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer lowercase : List[Any] = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: lowercase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: lowercase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase : Union[str, Any] = last_checkpoint lowercase : int = trainer.train(resume_from_checkpoint=__magic_name__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowercase : Dict = trainer.evaluate() trainer.log_metrics('''eval''' , __magic_name__ ) trainer.save_metrics('''eval''' , __magic_name__ ) # Write model card and (optionally) push to hub lowercase : List[str] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**__magic_name__ ) else: trainer.create_model_card(**__magic_name__ ) def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' main() if __name__ == "__main__": main()
308
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
1
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) lowerCAmelCase_ = 'pytorch_model.bin' lowerCAmelCase_ = 'pytorch_model.bin.index.json' lowerCAmelCase_ = 'adapter_config.json' lowerCAmelCase_ = 'adapter_model.bin' lowerCAmelCase_ = 'adapter_model.safetensors' lowerCAmelCase_ = 'tf_model.h5' lowerCAmelCase_ = 'tf_model.h5.index.json' lowerCAmelCase_ = 'model.ckpt' lowerCAmelCase_ = 'flax_model.msgpack' lowerCAmelCase_ = 'flax_model.msgpack.index.json' lowerCAmelCase_ = 'model.safetensors' lowerCAmelCase_ = 'model.safetensors.index.json' lowerCAmelCase_ = 'config.json' lowerCAmelCase_ = 'preprocessor_config.json' lowerCAmelCase_ = FEATURE_EXTRACTOR_NAME lowerCAmelCase_ = 'generation_config.json' lowerCAmelCase_ = 'modelcard.json' lowerCAmelCase_ = '▁' lowerCAmelCase_ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility lowerCAmelCase_ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. lowerCAmelCase_ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] lowerCAmelCase_ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' if version.parse(__magic_name__ ) < version.parse(__magic_name__ ): if "dev" in min_version: lowercase : int = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: lowercase : str = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
308
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''lilt''' def __init__( self : Dict , _A : Optional[int]=30_522 , _A : Any=768 , _A : Union[str, Any]=12 , _A : str=12 , _A : int=3_072 , _A : Optional[Any]="gelu" , _A : Optional[Any]=0.1 , _A : Union[str, Any]=0.1 , _A : str=512 , _A : List[Any]=2 , _A : str=0.02 , _A : Optional[int]=1E-12 , _A : List[Any]=0 , _A : Union[str, Any]="absolute" , _A : Tuple=None , _A : int=4 , _A : str=1_024 , **_A : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=_A , **_A ) lowercase : int = vocab_size lowercase : Optional[Any] = hidden_size lowercase : List[str] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Optional[Any] = hidden_act lowercase : Optional[int] = intermediate_size lowercase : Optional[Any] = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : str = type_vocab_size lowercase : Union[str, Any] = initializer_range lowercase : Tuple = layer_norm_eps lowercase : Any = position_embedding_type lowercase : List[Any] = classifier_dropout lowercase : int = channel_shrink_ratio lowercase : Any = max_ad_position_embeddings
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spiece.model'} lowerCAmelCase_ = { 'vocab_file': { 'AI-Sweden/gpt-sw3-126m': 'https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-350m': 'https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-1.6b': 'https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-6.7b': 'https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model', 'AI-Sweden/gpt-sw3-20b': 'https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model', } } lowerCAmelCase_ = { 'AI-Sweden/gpt-sw3-126m': 20_48, 'AI-Sweden/gpt-sw3-350m': 20_48, 'AI-Sweden/gpt-sw3-1.6b': 20_48, 'AI-Sweden/gpt-sw3-6.7b': 20_48, 'AI-Sweden/gpt-sw3-20b': 20_48, } class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , _A : List[Any] , _A : Optional[int]=False , _A : Any=False , _A : str=False , _A : Optional[Any]=None , _A : int=None , _A : int=None , _A : str=None , _A : Optional[Dict[str, Any]] = None , **_A : Any , ) -> None: """simple docstring""" lowercase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase : Tuple = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowercase : Any = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowercase : int = '''<|endoftext|>''' if eos_token is None else eos_token lowercase : Union[str, Any] = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowercase : Dict = unk_token if pad_token is None else pad_token lowercase : Dict = eos_token if bos_token is None else bos_token else: lowercase : str = '''<pad>''' if pad_token is None else pad_token lowercase : List[Any] = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) lowercase : Tuple = do_lower_case lowercase : Dict = remove_space lowercase : Dict = keep_accents lowercase : Union[str, Any] = vocab_file lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off lowercase : Any = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowercase : Union[str, Any] = re.compile( f"""[{''.join(map(_A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]""" ) def __getstate__( self : List[str] ) -> Any: """simple docstring""" lowercase : Any = self.__dict__.copy() lowercase : str = None return state def __setstate__( self : Tuple , _A : int ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : str = {} lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __a ( self : Optional[int] ) -> int: """simple docstring""" return len(self.sp_model ) def __a ( self : Any , _A : str ) -> str: """simple docstring""" lowercase : Tuple = self.non_printing_characters_re.sub('''''' , _A ) # Normalize whitespaces lowercase : Optional[int] = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowercase : List[str] = unicodedata.normalize('''NFC''' , _A ) return text def __a ( self : List[str] , _A : str , **_A : Any ) -> List[str]: """simple docstring""" lowercase : Dict = self.preprocess_text(_A ) return self.sp_model.encode(_A , out_type=_A ) def __a ( self : Any , _A : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(_A ) def __a ( self : Any , _A : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(_A ) @staticmethod def __a ( _A : str ) -> str: """simple docstring""" return out_string def __a ( self : str , _A : List[str] ) -> str: """simple docstring""" lowercase : Dict = [] lowercase : str = '''''' lowercase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token lowercase : Optional[Any] = True lowercase : Tuple = [] else: current_sub_tokens.append(_A ) lowercase : Any = False out_string += self.sp_model.decode(_A ) return out_string def __a ( self : Optional[int] ) -> Dict[str, int]: """simple docstring""" lowercase : Optional[Any] = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : int , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Any = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: lowercase : str = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __a ( self : int , _A : Union[str, List[str]] , _A : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(_A , _A ): lowercase : Optional[int] = self.preprocess_text(_A ) lowercase : Optional[Any] = self.sp_model.encode(_A ) else: lowercase : Optional[Any] = [self.preprocess_text(_A ) for t in text] lowercase : List[str] = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": lowercase : Optional[Any] = torch.tensor(_A ) return token_ids def __a ( self : List[str] , _A : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(_A ) def __a ( self : Any , _A : "Conversation" ) -> List[int]: """simple docstring""" lowercase : int = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] lowercase : int = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(_A ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=_A )
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class _A ( unittest.TestCase ): def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def __a ( self : Union[str, Any] , _A : Optional[Any] ) -> Any: """simple docstring""" lowercase : str = f"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowercase : List[Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_A , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_A , py_version='''py36''' , ) def __a ( self : Optional[Any] , _A : List[Any] ) -> List[str]: """simple docstring""" TrainingJobAnalytics(_A ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __a ( self : Optional[Any] , _A : List[str] ) -> Dict: """simple docstring""" lowercase : int = self.create_estimator(_A ) # run training estimator.fit() # result dataframe lowercase : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowercase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
308
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
1
import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase_ = 'src/transformers' # Matches is_xxx_available() lowerCAmelCase_ = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} lowerCAmelCase_ = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase_ = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available lowerCAmelCase_ = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase_ = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase_ = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase_ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase_ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo lowerCAmelCase_ = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: lowerCAmelCase_ = re.compile(R'^\s*try:') # Catches a line with else: lowerCAmelCase_ = re.compile(R'^\s*else:') def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if _re_test_backend.search(__magic_name__ ) is None: return None lowercase : List[str] = [b[0] for b in _re_backend.findall(__magic_name__ )] backends.sort() return "_and_".join(__magic_name__ ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' with open(__magic_name__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase : Union[str, Any] = f.readlines() lowercase : str = 0 while line_index < len(__magic_name__ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__magic_name__ ): return None # First grab the objects without a specific backend in _import_structure lowercase : Optional[int] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowercase : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__magic_name__ ): lowercase : Optional[Any] = _re_one_line_import_struct.search(__magic_name__ ).groups()[0] lowercase : int = re.findall('''\[([^\]]+)\]''' , __magic_name__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowercase : List[str] = _re_import_struct_key_value.search(__magic_name__ ) if single_line_import_search is not None: lowercase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(__magic_name__ ) > 0] objects.extend(__magic_name__ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowercase : Union[str, Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowercase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowercase : List[str] = lines[line_index] if _re_import_struct_add_one.search(__magic_name__ ) is not None: objects.append(_re_import_struct_add_one.search(__magic_name__ ).groups()[0] ) elif _re_import_struct_add_many.search(__magic_name__ ) is not None: lowercase : Tuple = _re_import_struct_add_many.search(__magic_name__ ).groups()[0].split(''', ''' ) lowercase : int = [obj[1:-1] for obj in imports if len(__magic_name__ ) > 0] objects.extend(__magic_name__ ) elif _re_between_brackets.search(__magic_name__ ) is not None: lowercase : int = _re_between_brackets.search(__magic_name__ ).groups()[0].split(''', ''' ) lowercase : int = [obj[1:-1] for obj in imports if len(__magic_name__ ) > 0] objects.extend(__magic_name__ ) elif _re_quote_object.search(__magic_name__ ) is not None: objects.append(_re_quote_object.search(__magic_name__ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowercase : Union[str, Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowercase : Optional[int] = [] while ( line_index < len(__magic_name__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowercase : str = lines[line_index] lowercase : Union[str, Any] = _re_import.search(__magic_name__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowercase : List[Any] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(__magic_name__ ): # If the line is an if is_backend_available, we grab all objects associated. lowercase : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowercase : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowercase : List[Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowercase : Dict = lines[line_index] lowercase : Any = _re_import.search(__magic_name__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowercase : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' def find_duplicates(__magic_name__ ): return [k for k, v in collections.Counter(__magic_name__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowercase : Tuple = [] for key in import_dict_objects.keys(): lowercase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowercase : List[str] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowercase : Union[str, Any] = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : Tuple = [] for root, _, files in os.walk(__magic_name__ ): if "__init__.py" in files: lowercase : Any = os.path.join(__magic_name__ , '''__init__.py''' ) lowercase : List[str] = parse_init(__magic_name__ ) if objects is not None: lowercase : Tuple = analyze_results(*__magic_name__ ) if len(__magic_name__ ) > 0: lowercase : str = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(__magic_name__ ) ) if len(__magic_name__ ) > 0: raise ValueError('''\n\n'''.join(__magic_name__ ) ) def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = [] for path, directories, files in os.walk(__magic_name__ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(__magic_name__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__magic_name__ ) / folder).glob('''*.py''' ) ) ) == 0: continue lowercase : str = str((Path(__magic_name__ ) / folder).relative_to(__magic_name__ ) ) lowercase : Optional[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(__magic_name__ ) for fname in files: if fname == "__init__.py": continue lowercase : str = str((Path(__magic_name__ ) / fname).relative_to(__magic_name__ ) ) lowercase : str = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(__magic_name__ ) return submodules lowerCAmelCase_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(__magic_name__ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowercase : List[str] = spec.loader.load_module() lowercase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__magic_name__ ) > 0: lowercase : int = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' lowercase : Any = tesseract_config if tesseract_config is not None else '''''' # apply OCR lowercase : Dict = to_pil_image(__magic_name__ ) lowercase , lowercase : Union[str, Any] = pil_image.size lowercase : int = pytesseract.image_to_data(__magic_name__ , lang=__magic_name__ , output_type='''dict''' , config=__magic_name__ ) lowercase , lowercase , lowercase , lowercase , lowercase : int = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Union[str, Any] = [idx for idx, word in enumerate(__magic_name__ ) if not word.strip()] lowercase : Tuple = [word for idx, word in enumerate(__magic_name__ ) if idx not in irrelevant_indices] lowercase : Optional[Any] = [coord for idx, coord in enumerate(__magic_name__ ) if idx not in irrelevant_indices] lowercase : Union[str, Any] = [coord for idx, coord in enumerate(__magic_name__ ) if idx not in irrelevant_indices] lowercase : str = [coord for idx, coord in enumerate(__magic_name__ ) if idx not in irrelevant_indices] lowercase : Optional[int] = [coord for idx, coord in enumerate(__magic_name__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : List[Any] = [] for x, y, w, h in zip(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Dict = [x, y, x + w, y + h] actual_boxes.append(__magic_name__ ) # finally, normalize the bounding boxes lowercase : str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__magic_name__ , __magic_name__ , __magic_name__ ) ) assert len(__magic_name__ ) == len(__magic_name__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = ['''pixel_values'''] def __init__( self : int , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Optional[str] = None , _A : Optional[str] = "" , **_A : List[Any] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : Any = size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[int] = get_size_dict(_A ) lowercase : str = do_resize lowercase : Tuple = size lowercase : Any = resample lowercase : List[Any] = apply_ocr lowercase : Optional[int] = ocr_lang lowercase : str = tesseract_config def __a ( self : Tuple , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase : Optional[int] = (size['''height'''], size['''width''']) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Optional[str] = None , _A : Optional[str] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Any , ) -> PIL.Image.Image: """simple docstring""" lowercase : Tuple = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = size if size is not None else self.size lowercase : Optional[Any] = get_size_dict(_A ) lowercase : Tuple = resample if resample is not None else self.resample lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Dict = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : int = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : int = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. lowercase : Any = [to_numpy_array(_A ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : Dict = [] lowercase : Tuple = [] for image in images: lowercase , lowercase : Any = apply_tesseract(_A , _A , _A ) words_batch.append(_A ) boxes_batch.append(_A ) if do_resize: lowercase : Any = [self.resize(image=_A , size=_A , resample=_A ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase : Tuple = [flip_channel_order(_A ) for image in images] lowercase : Optional[Any] = [to_channel_dimension_format(_A , _A ) for image in images] lowercase : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=_A ) if apply_ocr: lowercase : List[str] = words_batch lowercase : int = boxes_batch return data
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class _A ( _lowerCamelCase ): @add_start_docstrings(_A ) def __call__( self : List[str] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : Optional[int] ) -> bool: """simple docstring""" raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class _A ( _lowerCamelCase ): def __init__( self : str , _A : int , _A : Optional[int] = None ) -> int: """simple docstring""" lowercase : Any = max_length lowercase : List[Any] = max_position_embeddings @add_start_docstrings(_A ) def __call__( self : Any , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : Optional[int] ) -> bool: """simple docstring""" lowercase : Union[str, Any] = input_ids.shape[-1] lowercase : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ '''exceptions, performance degradation, or nothing at all.''' ) return is_done class _A ( _lowerCamelCase ): def __init__( self : Optional[Any] , _A : int , _A : int ) -> Union[str, Any]: """simple docstring""" warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ '''with `max_length = start_length + max_new_tokens` instead.''' , _A , ) lowercase : int = start_length lowercase : List[Any] = max_new_tokens lowercase : Optional[int] = start_length + max_new_tokens @add_start_docstrings(_A ) def __call__( self : Optional[int] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : int ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class _A ( _lowerCamelCase ): def __init__( self : Optional[int] , _A : float , _A : Optional[float] = None ) -> int: """simple docstring""" lowercase : List[Any] = max_time lowercase : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_A ) def __call__( self : Optional[int] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : Union[str, Any] ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class _A ( _lowerCamelCase ): @add_start_docstrings(_A ) def __call__( self : Union[str, Any] , _A : torch.LongTensor , _A : torch.FloatTensor , **_A : List[Any] ) -> bool: """simple docstring""" return any(criteria(_A , _A ) for criteria in self ) @property def __a ( self : Tuple ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(_A , _A ): return stopping_criterium.max_length elif isinstance(_A , _A ): return stopping_criterium.max_length return None def snake_case( __magic_name__ , __magic_name__ ) -> StoppingCriteriaList: '''simple docstring''' lowercase : List[str] = stopping_criteria.max_length lowercase : Optional[int] = deepcopy(__magic_name__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __magic_name__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__magic_name__ ) ) return new_stopping_criteria
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[int] = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase : Dict = get_sagemaker_input() else: lowercase : Tuple = get_cluster_input() return config def snake_case( __magic_name__=None ) -> Union[str, Any]: '''simple docstring''' if subparsers is not None: lowercase : List[Any] = subparsers.add_parser('''config''' , description=__magic_name__ ) else: lowercase : int = argparse.ArgumentParser('''Accelerate config command''' , description=__magic_name__ ) parser.add_argument( '''--config_file''' , default=__magic_name__ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__magic_name__ ) return parser def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : Dict = get_user_input() if args.config_file is not None: lowercase : List[Any] = args.config_file else: if not os.path.isdir(__magic_name__ ): os.makedirs(__magic_name__ ) lowercase : List[Any] = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(__magic_name__ ) else: config.to_yaml_file(__magic_name__ ) print(F"""accelerate configuration saved at {config_file}""" ) def snake_case( ) -> str: '''simple docstring''' lowercase : List[str] = config_command_parser() lowercase : Optional[Any] = parser.parse_args() config_command(__magic_name__ ) if __name__ == "__main__": main()
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
from __future__ import annotations def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = len(__magic_name__ ) // 2 # choose the middle 3 elements lowercase : Tuple = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): def __init__( self : Dict , *_A : Optional[Any] , **_A : Optional[Any] ) -> None: """simple docstring""" warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self : Any , _A : bool , _A : Optional[int] = None , _A : Optional[int] = None ) -> Tuple: """simple docstring""" super().__init__() lowercase : Tuple = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" lowercase : Tuple = torch.zeros(_A , _A ) else: lowercase : Any = None lowercase : int = torch.nn.Parameter(_A ) class _A ( _lowerCamelCase ): _UpperCamelCase : VQModel _UpperCamelCase : CLIPTextModel _UpperCamelCase : CLIPTokenizer _UpperCamelCase : TransformeraDModel _UpperCamelCase : LearnedClassifierFreeSamplingEmbeddings _UpperCamelCase : VQDiffusionScheduler def __init__( self : List[Any] , _A : VQModel , _A : CLIPTextModel , _A : CLIPTokenizer , _A : TransformeraDModel , _A : VQDiffusionScheduler , _A : LearnedClassifierFreeSamplingEmbeddings , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def __a ( self : str , _A : Any , _A : Optional[Any] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings lowercase : Dict = self.tokenizer( _A , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) lowercase : Union[str, Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase : Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase : Dict = text_input_ids[:, : self.tokenizer.model_max_length] lowercase : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 lowercase : Dict = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt lowercase : Union[str, Any] = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: lowercase : Optional[int] = self.learned_classifier_free_sampling_embeddings.embeddings lowercase : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: lowercase : Optional[Any] = [''''''] * batch_size lowercase : Dict = text_input_ids.shape[-1] lowercase : str = self.tokenizer( _A , padding='''max_length''' , max_length=_A , truncation=_A , return_tensors='''pt''' , ) lowercase : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings lowercase : Tuple = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase : Tuple = negative_prompt_embeds.shape[1] lowercase : List[str] = negative_prompt_embeds.repeat(1 , _A , 1 ) lowercase : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Tuple , _A : Union[str, List[str]] , _A : int = 100 , _A : float = 5.0 , _A : float = 1.0 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[torch.FloatTensor] = None , _A : Optional[str] = "pil" , _A : bool = True , _A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _A : int = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(_A , _A ): lowercase : List[Any] = 1 elif isinstance(_A , _A ): lowercase : Union[str, Any] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) lowercase : List[str] = batch_size * num_images_per_prompt lowercase : Tuple = guidance_scale > 1.0 lowercase : Tuple = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get the initial completely masked latents unless the user supplied it lowercase : Dict = (batch_size, self.transformer.num_latent_pixels) if latents is None: lowercase : int = self.transformer.num_vector_embeds - 1 lowercase : Optional[Any] = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) lowercase : str = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) lowercase : Any = self.scheduler.timesteps.to(self.device ) lowercase : List[Any] = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance lowercase : List[str] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` lowercase : List[str] = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: lowercase , lowercase : Optional[Any] = model_output.chunk(2 ) lowercase : Optional[Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) lowercase : Optional[Any] = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) lowercase : Dict = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 lowercase : Any = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) lowercase : Optional[Any] = self.vqvae.config.vq_embed_dim lowercase : Optional[int] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) lowercase : Optional[int] = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) lowercase : Dict = self.vqvae.decode(_A , force_not_quantize=_A ).sample lowercase : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowercase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Dict = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def __a ( self : Dict , _A : torch.FloatTensor , _A : float ) -> torch.FloatTensor: """simple docstring""" lowercase , lowercase : Tuple = torch.sort(_A , 1 , descending=_A ) lowercase : int = torch.exp(_A ) lowercase : Any = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out lowercase : Tuple = torch.full_like(keep_mask[:, 0:1, :] , _A ) lowercase : Optional[Any] = torch.cat((all_true, keep_mask) , dim=1 ) lowercase : Any = keep_mask[:, :-1, :] lowercase : Union[str, Any] = keep_mask.gather(1 , indices.argsort(1 ) ) lowercase : str = log_p_x_0.clone() lowercase : Optional[int] = -torch.inf # -inf = log(0) return rv
308
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
1
from math import isqrt def snake_case( __magic_name__ ) -> bool: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(__magic_name__ ) + 1 ) ) def snake_case( __magic_name__ = 10**6 ) -> int: '''simple docstring''' lowercase : List[Any] = 0 lowercase : Optional[Any] = 1 lowercase : Optional[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(__magic_name__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
308
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''align_text_model''' def __init__( self : int , _A : List[Any]=30_522 , _A : Any=768 , _A : Optional[Any]=12 , _A : Any=12 , _A : Dict=3_072 , _A : List[str]="gelu" , _A : str=0.1 , _A : Any=0.1 , _A : List[str]=512 , _A : Any=2 , _A : str=0.02 , _A : Tuple=1E-12 , _A : List[Any]=0 , _A : Optional[Any]="absolute" , _A : str=True , **_A : Optional[Any] , ) -> Any: """simple docstring""" super().__init__(**_A ) lowercase : int = vocab_size lowercase : Dict = hidden_size lowercase : Tuple = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : Optional[int] = hidden_act lowercase : Dict = intermediate_size lowercase : List[Any] = hidden_dropout_prob lowercase : Optional[int] = attention_probs_dropout_prob lowercase : str = max_position_embeddings lowercase : Optional[Any] = type_vocab_size lowercase : Tuple = initializer_range lowercase : Any = layer_norm_eps lowercase : List[str] = position_embedding_type lowercase : str = use_cache lowercase : List[str] = pad_token_id @classmethod def __a ( cls : List[str] , _A : Union[str, os.PathLike] , **_A : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_A ) lowercase , lowercase : Optional[int] = cls.get_config_dict(_A , **_A ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": lowercase : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''align_vision_model''' def __init__( self : Optional[Any] , _A : int = 3 , _A : int = 600 , _A : float = 2.0 , _A : float = 3.1 , _A : int = 8 , _A : List[int] = [3, 3, 5, 3, 5, 5, 3] , _A : List[int] = [32, 16, 24, 40, 80, 112, 192] , _A : List[int] = [16, 24, 40, 80, 112, 192, 320] , _A : List[int] = [] , _A : List[int] = [1, 2, 2, 2, 1, 2, 1] , _A : List[int] = [1, 2, 2, 3, 3, 4, 1] , _A : List[int] = [1, 6, 6, 6, 6, 6, 6] , _A : float = 0.25 , _A : str = "swish" , _A : int = 2_560 , _A : str = "mean" , _A : float = 0.02 , _A : float = 0.001 , _A : float = 0.99 , _A : float = 0.2 , **_A : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**_A ) lowercase : List[str] = num_channels lowercase : Union[str, Any] = image_size lowercase : Optional[Any] = width_coefficient lowercase : List[str] = depth_coefficient lowercase : List[str] = depth_divisor lowercase : List[Any] = kernel_sizes lowercase : Any = in_channels lowercase : List[str] = out_channels lowercase : List[Any] = depthwise_padding lowercase : int = strides lowercase : Tuple = num_block_repeats lowercase : str = expand_ratios lowercase : Any = squeeze_expansion_ratio lowercase : List[str] = hidden_act lowercase : List[str] = hidden_dim lowercase : Dict = pooling_type lowercase : str = initializer_range lowercase : int = batch_norm_eps lowercase : List[str] = batch_norm_momentum lowercase : Optional[int] = drop_connect_rate lowercase : int = sum(_A ) * 4 @classmethod def __a ( cls : Union[str, Any] , _A : Union[str, os.PathLike] , **_A : Optional[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_A ) lowercase , lowercase : Union[str, Any] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": lowercase : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = '''align''' _UpperCamelCase : Dict = True def __init__( self : Tuple , _A : Tuple=None , _A : Any=None , _A : List[Any]=640 , _A : int=1.0 , _A : Any=0.02 , **_A : Optional[int] , ) -> int: """simple docstring""" super().__init__(**_A ) if text_config is None: lowercase : Dict = {} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: lowercase : str = {} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) lowercase : Dict = AlignTextConfig(**_A ) lowercase : Union[str, Any] = AlignVisionConfig(**_A ) lowercase : Optional[int] = projection_dim lowercase : Tuple = temperature_init_value lowercase : List[str] = initializer_range @classmethod def __a ( cls : Union[str, Any] , _A : AlignTextConfig , _A : AlignVisionConfig , **_A : Optional[Any] ) -> Tuple: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_A ) def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase : List[Any] = self.text_config.to_dict() lowercase : Union[str, Any] = self.vision_config.to_dict() lowercase : Optional[int] = self.__class__.model_type return output
308
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): lowercase : Any = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): lowercase : List[Any] = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowercase : Optional[int] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] lowercase : Tuple = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(__magic_name__ )-1}""" ) if "norm" in key: lowercase : Tuple = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowercase : Dict = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] lowercase : Dict = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(__magic_name__ )-1}""" ) if "layer_norm1" in key: lowercase : Dict = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: lowercase : List[str] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 lowercase : List[Any] = key[key.find('''block''' ) + len('''block''' )] lowercase : Optional[int] = key.replace(F"""block{idx}""" , F"""block.{int(__magic_name__ )-1}""" ) if "attn.q" in key: lowercase : List[Any] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: lowercase : List[str] = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: lowercase : Union[str, Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: lowercase : Union[str, Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: lowercase : str = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: lowercase : List[Any] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: lowercase : str = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) lowercase : List[str] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowercase : Any = key[key.find('''linear_c''' ) + len('''linear_c''' )] lowercase : List[str] = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(__magic_name__ )-1}""" ) if key.startswith('''head''' ): lowercase : List[Any] = key.replace('''head''' , '''classifier''' ) lowercase : int = value return new_state_dict def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowercase : int = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowercase : Optional[int] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowercase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] lowercase : str = kv_bias[: config.hidden_sizes[i]] lowercase : List[Any] = kv_weight[ config.hidden_sizes[i] :, : ] lowercase : Optional[Any] = kv_bias[ config.hidden_sizes[i] : ] def snake_case( ) -> List[str]: '''simple docstring''' lowercase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : List[str] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return image @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[str] = SegformerConfig() lowercase : int = False # set attributes based on model_name lowercase : int = '''huggingface/label-files''' if "segformer" in model_name: lowercase : Tuple = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: lowercase : Union[str, Any] = 1_50 lowercase : Union[str, Any] = '''ade20k-id2label.json''' lowercase : int = (1, 1_50, 1_28, 1_28) elif "city" in model_name: lowercase : Any = 19 lowercase : List[str] = '''cityscapes-id2label.json''' lowercase : Optional[Any] = (1, 19, 1_28, 1_28) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: lowercase : List[str] = True lowercase : Union[str, Any] = model_name[4:6] lowercase : Optional[Any] = 10_00 lowercase : str = '''imagenet-1k-id2label.json''' lowercase : List[Any] = (1, 10_00) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes lowercase : List[str] = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Any = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : int = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowercase : List[Any] = [64, 1_28, 3_20, 5_12] lowercase : Optional[int] = 2_56 elif size == "b2": lowercase : List[Any] = [64, 1_28, 3_20, 5_12] lowercase : Union[str, Any] = 7_68 lowercase : int = [3, 4, 6, 3] elif size == "b3": lowercase : List[Any] = [64, 1_28, 3_20, 5_12] lowercase : List[Any] = 7_68 lowercase : List[str] = [3, 4, 18, 3] elif size == "b4": lowercase : int = [64, 1_28, 3_20, 5_12] lowercase : Optional[int] = 7_68 lowercase : int = [3, 8, 27, 3] elif size == "b5": lowercase : Optional[int] = [64, 1_28, 3_20, 5_12] lowercase : Optional[int] = 7_68 lowercase : int = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) lowercase : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__magic_name__ , align=__magic_name__ , do_random_crop=__magic_name__ ) # prepare image lowercase : Optional[Any] = prepare_img() lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: lowercase : Dict = torch.load(__magic_name__ , map_location=torch.device('''cpu''' ) ) else: lowercase : Optional[Any] = torch.load(__magic_name__ , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys lowercase : Dict = rename_keys(__magic_name__ , encoder_only=__magic_name__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__magic_name__ , __magic_name__ ) # create HuggingFace model and load state dict if encoder_only: lowercase : str = False lowercase : Union[str, Any] = SegformerForImageClassification(__magic_name__ ) else: lowercase : List[Any] = SegformerForSemanticSegmentation(__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() # forward pass lowercase : Any = model(__magic_name__ ) lowercase : Optional[int] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowercase : Optional[int] = torch.tensor( [ [[-4.6_3_1_0, -5.5_2_3_2, -6.2_3_5_6], [-5.1_9_2_1, -6.1_4_4_4, -6.5_9_9_6], [-5.4_4_2_4, -6.2_7_9_0, -6.7_5_7_4]], [[-1_2.1_3_9_1, -1_3.3_1_2_2, -1_3.9_5_5_4], [-1_2.8_7_3_2, -1_3.9_3_5_2, -1_4.3_5_6_3], [-1_2.9_4_3_8, -1_3.8_2_2_6, -1_4.2_5_1_3]], [[-1_2.5_1_3_4, -1_3.4_6_8_6, -1_4.4_9_1_5], [-1_2.8_6_6_9, -1_4.4_3_4_3, -1_4.7_7_5_8], [-1_3.2_5_2_3, -1_4.5_8_1_9, -1_5.0_6_9_4]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowercase : Dict = torch.tensor( [ [[-7.5_8_2_0, -8.7_2_3_1, -8.3_2_1_5], [-8.0_6_0_0, -1_0.3_5_2_9, -1_0.0_3_0_4], [-7.5_2_0_8, -9.4_1_0_3, -9.6_2_3_9]], [[-1_2.6_9_1_8, -1_3.8_9_9_4, -1_3.7_1_3_7], [-1_3.3_1_9_6, -1_5.7_5_2_3, -1_5.4_7_8_9], [-1_2.9_3_4_3, -1_4.8_7_5_7, -1_4.9_6_8_9]], [[-1_1.1_9_1_1, -1_1.9_4_2_1, -1_1.3_2_4_3], [-1_1.3_3_4_2, -1_3.6_8_3_9, -1_3.3_5_8_1], [-1_0.3_9_0_9, -1_2.1_8_3_2, -1_2.4_8_5_8]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowercase : int = torch.tensor( [ [[-1_1.8_1_7_3, -1_4.3_8_5_0, -1_6.3_1_2_8], [-1_4.5_6_4_8, -1_6.5_8_0_4, -1_8.6_5_6_8], [-1_4.7_2_2_3, -1_5.7_3_8_7, -1_8.4_2_1_8]], [[-1_5.7_2_9_0, -1_7.9_1_7_1, -1_9.4_4_2_3], [-1_8.3_1_0_5, -1_9.9_4_4_8, -2_1.4_6_6_1], [-1_7.9_2_9_6, -1_8.6_4_9_7, -2_0.7_9_1_0]], [[-1_5.0_7_8_3, -1_7.0_3_3_6, -1_8.2_7_8_9], [-1_6.8_7_7_1, -1_8.6_8_7_0, -2_0.1_6_1_2], [-1_6.2_4_5_4, -1_7.1_4_2_6, -1_9.5_0_5_5]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowercase : Union[str, Any] = torch.tensor( [ [[-9.0_8_7_8, -1_0.2_0_8_1, -1_0.1_8_9_1], [-9.3_1_4_4, -1_0.7_9_4_1, -1_0.9_8_4_3], [-9.2_2_9_4, -1_0.3_8_5_5, -1_0.5_7_0_4]], [[-1_2.2_3_1_6, -1_3.9_0_6_8, -1_3.6_1_0_2], [-1_2.9_1_6_1, -1_4.3_7_0_2, -1_4.3_2_3_5], [-1_2.5_2_3_3, -1_3.7_1_7_4, -1_3.7_9_3_2]], [[-1_4.6_2_7_5, -1_5.2_4_9_0, -1_4.9_7_2_7], [-1_4.3_4_0_0, -1_5.9_6_8_7, -1_6.2_8_2_7], [-1_4.1_4_8_4, -1_5.4_0_3_3, -1_5.8_9_3_7]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowercase : List[Any] = torch.tensor( [ [[-1_2.3_1_4_4, -1_3.2_4_4_7, -1_4.0_8_0_2], [-1_3.3_6_1_4, -1_4.5_8_1_6, -1_5.6_1_1_7], [-1_3.3_3_4_0, -1_4.4_4_3_3, -1_6.2_2_1_9]], [[-1_9.2_7_8_1, -2_0.4_1_2_8, -2_0.7_5_0_6], [-2_0.6_1_5_3, -2_1.6_5_6_6, -2_2.0_9_9_8], [-1_9.9_8_0_0, -2_1.0_4_3_0, -2_2.1_4_9_4]], [[-1_8.8_7_3_9, -1_9.7_8_0_4, -2_1.1_8_3_4], [-2_0.1_2_3_3, -2_1.6_7_6_5, -2_3.2_9_4_4], [-2_0.0_3_1_5, -2_1.2_6_4_1, -2_3.6_9_4_4]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowercase : Optional[Any] = torch.tensor( [ [[-9.5_5_2_4, -1_2.0_8_3_5, -1_1.7_3_4_8], [-1_0.5_2_2_9, -1_3.6_4_4_6, -1_4.5_6_6_2], [-9.5_8_4_2, -1_2.8_8_5_1, -1_3.9_4_1_4]], [[-1_5.3_4_3_2, -1_7.5_3_2_3, -1_7.0_8_1_8], [-1_6.3_3_3_0, -1_8.9_2_5_5, -1_9.2_1_0_1], [-1_5.1_3_4_0, -1_7.7_8_4_8, -1_8.3_9_7_1]], [[-1_2.6_0_7_2, -1_4.9_4_8_6, -1_4.6_6_3_1], [-1_3.7_6_2_9, -1_7.0_9_0_7, -1_7.7_7_4_5], [-1_2.7_8_9_9, -1_6.1_6_9_5, -1_7.1_6_7_1]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowercase : Optional[Any] = torch.tensor( [ [[-1_1.9_2_9_5, -1_3.4_0_5_7, -1_4.8_1_0_6], [-1_3.3_4_3_1, -1_4.8_1_7_9, -1_5.3_7_8_1], [-1_4.2_8_3_6, -1_5.5_9_4_2, -1_6.1_5_8_8]], [[-1_1.4_9_0_6, -1_2.8_0_6_7, -1_3.6_5_6_4], [-1_3.1_1_8_9, -1_4.0_5_0_0, -1_4.1_5_4_3], [-1_3.8_7_4_8, -1_4.5_1_3_6, -1_4.8_7_8_9]], [[0.5_3_7_4, 0.1_0_6_7, -0.4_7_4_2], [0.1_1_4_1, -0.2_2_5_5, -0.7_0_9_9], [-0.3_0_0_0, -0.5_9_2_4, -1.3_1_0_5]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowercase : Dict = torch.tensor( [ [[-7.8_2_1_7, -9.8_7_6_7, -1_0.1_7_1_7], [-9.4_4_3_8, -1_0.9_0_5_8, -1_1.4_0_4_7], [-9.7_9_3_9, -1_2.3_4_9_5, -1_2.1_0_7_9]], [[-7.1_5_1_4, -9.5_3_3_6, -1_0.0_8_6_0], [-9.7_7_7_6, -1_1.6_8_2_2, -1_1.8_4_3_9], [-1_0.1_4_1_1, -1_2.7_6_5_5, -1_2.8_9_7_2]], [[0.3_0_2_1, 0.0_8_0_5, -0.2_3_1_0], [-0.0_3_2_8, -0.1_6_0_5, -0.2_7_1_4], [-0.1_4_0_8, -0.5_4_7_7, -0.6_9_7_6]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowercase : List[str] = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowercase : Any = torch.tensor( [ [[-9.4_9_5_9, -1_1.3_0_8_7, -1_1.7_4_7_9], [-1_1.0_0_2_5, -1_2.6_5_4_0, -1_2.3_3_1_9], [-1_1.4_0_6_4, -1_3.0_4_8_7, -1_2.9_9_0_5]], [[-9.8_9_0_5, -1_1.3_0_8_4, -1_2.0_8_5_4], [-1_1.1_7_2_6, -1_2.7_6_9_8, -1_2.9_5_8_3], [-1_1.5_9_8_5, -1_3.3_2_7_8, -1_4.1_7_7_4]], [[0.2_2_1_3, 0.0_1_9_2, -0.2_4_6_6], [-0.1_7_3_1, -0.4_2_1_3, -0.4_8_7_4], [-0.3_1_2_6, -0.6_5_4_1, -1.1_3_8_9]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowercase : List[str] = torch.tensor( [ [[-1_3.5_7_4_8, -1_3.9_1_1_1, -1_2.6_5_0_0], [-1_4.3_5_0_0, -1_5.3_6_8_3, -1_4.2_3_2_8], [-1_4.7_5_3_2, -1_6.0_4_2_4, -1_5.6_0_8_7]], [[-1_7.1_6_5_1, -1_5.8_7_2_5, -1_2.9_6_5_3], [-1_7.2_5_8_0, -1_7.3_7_1_8, -1_4.8_2_2_3], [-1_6.6_0_5_8, -1_6.8_7_8_3, -1_6.7_4_5_2]], [[-3.6_4_5_6, -3.0_2_0_9, -1.4_2_0_3], [-3.0_7_9_7, -3.1_9_5_9, -2.0_0_0_0], [-1.8_7_5_7, -1.9_2_1_7, -1.6_9_9_7]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowercase : Optional[int] = torch.tensor( [ [[-1_6.0_9_7_6, -1_6.4_8_5_6, -1_7.3_9_6_2], [-1_6.6_2_3_4, -1_9.0_3_4_2, -1_9.7_6_8_5], [-1_6.0_9_0_0, -1_8.0_6_6_1, -1_9.1_1_8_0]], [[-1_8.4_7_5_0, -1_8.8_4_8_8, -1_9.5_0_7_4], [-1_9.4_0_3_0, -2_2.1_5_7_0, -2_2.5_9_7_7], [-1_9.1_1_9_1, -2_0.8_4_8_6, -2_2.3_7_8_3]], [[-4.5_1_7_8, -5.5_0_3_7, -6.5_1_0_9], [-5.0_8_8_4, -7.2_1_7_4, -8.0_3_3_4], [-4.4_1_5_6, -5.8_1_1_7, -7.2_9_7_0]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowercase : List[Any] = torch.tensor( [ [[-1_4.2_0_8_1, -1_4.4_7_3_2, -1_4.1_9_7_7], [-1_4.5_8_6_7, -1_6.4_4_2_3, -1_6.6_3_5_6], [-1_3.4_4_4_1, -1_4.9_6_8_5, -1_6.8_6_9_6]], [[-1_4.4_5_7_6, -1_4.7_0_7_3, -1_5.0_4_5_1], [-1_5.0_8_1_6, -1_7.6_2_3_7, -1_7.9_8_7_3], [-1_4.4_2_1_3, -1_6.0_1_9_9, -1_8.5_9_9_2]], [[-4.7_3_4_9, -4.9_5_8_8, -5.0_9_6_6], [-4.3_2_1_0, -6.9_3_2_5, -7.2_5_9_1], [-3.4_3_1_2, -4.7_4_8_4, -7.1_9_1_7]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowercase : List[Any] = torch.tensor( [ [[-1_1.7_7_3_7, -1_1.9_5_2_6, -1_1.3_2_7_3], [-1_3.6_6_9_2, -1_4.4_5_7_4, -1_3.8_8_7_8], [-1_3.8_9_3_7, -1_4.6_9_2_4, -1_5.9_3_4_5]], [[-1_4.6_7_0_6, -1_4.5_3_3_0, -1_4.1_3_0_6], [-1_6.1_5_0_2, -1_6.8_1_8_0, -1_6.4_2_6_9], [-1_6.8_3_3_8, -1_7.8_9_3_9, -2_0.1_7_4_6]], [[1.0_4_9_1, 0.8_2_8_9, 1.0_3_1_0], [1.1_0_4_4, 0.5_2_1_9, 0.8_0_5_5], [1.0_8_9_9, 0.6_9_2_6, 0.5_5_9_0]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowercase : Dict = torch.tensor( [ [[-1_2.5_6_4_1, -1_3.4_7_7_7, -1_3.0_6_8_4], [-1_3.9_5_8_7, -1_5.8_9_8_3, -1_6.6_5_5_7], [-1_3.3_1_0_9, -1_5.7_3_5_0, -1_6.3_1_4_1]], [[-1_4.7_0_7_4, -1_5.4_3_5_2, -1_4.5_9_4_4], [-1_6.6_3_5_3, -1_8.1_6_6_3, -1_8.6_1_2_0], [-1_5.1_7_0_2, -1_8.0_3_2_9, -1_8.1_5_4_7]], [[-1.7_9_9_0, -2.0_9_5_1, -1.7_7_8_4], [-2.6_3_9_7, -3.8_2_4_5, -3.9_6_8_6], [-1.5_2_6_4, -2.8_1_2_6, -2.9_3_1_6]], ] ) else: lowercase : Union[str, Any] = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = model.config lowercase : List[Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) lowercase : Optional[Any] = MBartConfig( is_decoder=__magic_name__ , is_encoder_decoder=__magic_name__ , add_cross_attention=__magic_name__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__magic_name__ , add_final_layer_norm=__magic_name__ , ) return encoder_config, decoder_config def snake_case( __magic_name__ ) -> int: '''simple docstring''' if "encoder.model" in name: lowercase : List[Any] = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: lowercase : Any = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: lowercase : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase : Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: lowercase : Any = '''encoder.''' + name if "attn.proj" in name: lowercase : str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: lowercase : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase : List[str] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": lowercase : Any = '''encoder.layernorm.bias''' return name def snake_case( __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase : List[str] = orig_state_dict.pop(__magic_name__ ) if "qkv" in key: lowercase : int = key.split('''.''' ) lowercase : Optional[int] = int(key_split[3] ) lowercase : Tuple = int(key_split[5] ) lowercase : Dict = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase : Optional[int] = val[:dim, :] lowercase : List[Any] = val[dim : dim * 2, :] lowercase : Union[str, Any] = val[-dim:, :] else: lowercase : int = val[:dim] lowercase : List[str] = val[dim : dim * 2] lowercase : List[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowercase : List[Any] = val return orig_state_dict def snake_case( __magic_name__ , __magic_name__=None , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : Optional[int] = DonutModel.from_pretrained(__magic_name__ ).eval() # load HuggingFace model lowercase , lowercase : Dict = get_configs(__magic_name__ ) lowercase : Optional[int] = DonutSwinModel(__magic_name__ ) lowercase : Union[str, Any] = MBartForCausalLM(__magic_name__ ) lowercase : Dict = VisionEncoderDecoderModel(encoder=__magic_name__ , decoder=__magic_name__ ) model.eval() lowercase : List[Any] = original_model.state_dict() lowercase : Any = convert_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify results on scanned document lowercase : str = load_dataset('''hf-internal-testing/example-documents''' ) lowercase : Dict = dataset['''test'''][0]['''image'''].convert('''RGB''' ) lowercase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(__magic_name__ , from_slow=__magic_name__ ) lowercase : Dict = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowercase : str = DonutProcessor(__magic_name__ , __magic_name__ ) lowercase : List[Any] = processor(__magic_name__ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowercase : Optional[int] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' lowercase : Tuple = '''When is the coffee break?''' lowercase : Tuple = task_prompt.replace('''{user_input}''' , __magic_name__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowercase : Dict = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowercase : Optional[int] = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowercase : Tuple = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowercase : Optional[int] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowercase : Dict = '''hello world''' else: raise ValueError('''Model name not supported''' ) lowercase : Optional[Any] = original_model.decoder.tokenizer(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors='''pt''' )[ '''input_ids''' ] lowercase : List[str] = original_model.encoder.model.patch_embed(__magic_name__ ) lowercase , lowercase : Optional[Any] = model.encoder.embeddings(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) # verify encoder hidden states lowercase : Optional[int] = original_model.encoder(__magic_name__ ) lowercase : Union[str, Any] = model.encoder(__magic_name__ ).last_hidden_state assert torch.allclose(__magic_name__ , __magic_name__ , atol=1e-2 ) # verify decoder hidden states lowercase : int = original_model(__magic_name__ , __magic_name__ , __magic_name__ ).logits lowercase : Union[str, Any] = model(__magic_name__ , decoder_input_ids=__magic_name__ ).logits assert torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowerCAmelCase_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase_ = 5_00_03 lowerCAmelCase_ = 5_00_02 @require_sentencepiece @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = PLBartTokenizer _UpperCamelCase : Any = None _UpperCamelCase : List[str] = False def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase : Any = PLBartTokenizer(_A , language_codes='''base''' , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase : Optional[int] = PLBartTokenizer(_A , language_codes='''base''' , keep_accents=_A ) lowercase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : int = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase : Dict = tokenizer.vocab_size lowercase : str = [tokenizer.convert_ids_to_tokens(_A ) for x in range(end - 4 , _A )] self.assertListEqual(_A , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) lowercase : Optional[int] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase : Optional[int] = tokenizer(_A ).input_ids self.assertEqual( tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) , _A , ) def __a ( self : List[str] ) -> List[str]: """simple docstring""" lowercase : int = PLBartTokenizer(_A , language_codes='''multi''' , keep_accents=_A ) lowercase : str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase : str = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowercase : Optional[Any] = tokenizer.vocab_size lowercase : List[Any] = [tokenizer.convert_ids_to_tokens(_A ) for x in range(end - 7 , _A )] self.assertListEqual( _A , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) lowercase : Union[str, Any] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowercase : Any = tokenizer(_A ).input_ids self.assertEqual( tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) , _A , ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): _UpperCamelCase : Optional[Any] = '''uclanlp/plbart-python-en_XX''' _UpperCamelCase : Union[str, Any] = [ '''def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])''', '''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''', ] _UpperCamelCase : Dict = [ '''Returns the maximum value of a b c.''', '''Sums the values of a b c.''', ] _UpperCamelCase : Optional[int] = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def __a ( cls : List[str] ) -> Optional[Any]: """simple docstring""" lowercase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) lowercase : int = 1 return cls def __a ( self : int ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" self.assertIn(_A , self.tokenizer.all_special_ids ) lowercase : Any = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] lowercase : int = self.tokenizer.decode(_A , skip_special_tokens=_A ) lowercase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __a ( self : int ) -> Dict: """simple docstring""" lowercase : Any = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , _A ) lowercase : Optional[Any] = 10 lowercase : str = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def __a ( self : str ) -> Tuple: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) lowercase : int = PLBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def __a ( self : int ) -> Any: """simple docstring""" lowercase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='''pt''' ) lowercase : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _A ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase : Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowercase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase : List[str] = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='''pt''' ) lowercase : Dict = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors='''pt''' ) lowercase : int = targets['''input_ids'''] lowercase : Optional[Any] = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
UpperCAmelCase__ = 256 # Modulus to hash a string UpperCAmelCase__ = 1000003 def _a ( a :str , a :str ) -> bool: a = len(a ) a = len(a ) if p_len > t_len: return False a = 0 a = 0 a = 1 # Calculating the hash of pattern and substring of text for i in range(a ): a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _a ( ) -> None: a = '''abc1abc12''' a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(a , a ) and not rabin_karp(a , a ) # Test 2) a = '''ABABX''' a = '''ABABZABABYABABX''' assert rabin_karp(a , a ) # Test 3) a = '''AAAB''' a = '''ABAAAAAB''' assert rabin_karp(a , a ) # Test 4) a = '''abcdabcy''' a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(a , a ) # Test 5) a = '''Lü''' a = '''Lüsai''' assert rabin_karp(a , a ) a = '''Lue''' assert not rabin_karp(a , a ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
0
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
'''simple docstring''' from math import sqrt def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 for i in range(1 , int(sqrt(snake_case_ ) + 1 ) ): if n % i == 0 and i != sqrt(snake_case_ ): total += i + n // i elif i == sqrt(snake_case_ ): total += i return total - n def lowerCAmelCase_ ( snake_case_ : int = 1_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = sum( i for i in range(1 , snake_case_ ) if sum_of_divisors(sum_of_divisors(snake_case_ ) ) == i and sum_of_divisors(snake_case_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Any = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[str] = """lxmert""" lowerCAmelCase__ : Tuple = {} def __init__(self : Union[str, Any] , UpperCamelCase : int=30522 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : Optional[int]=12 , UpperCamelCase : List[Any]=9500 , UpperCamelCase : Tuple=1600 , UpperCamelCase : List[Any]=400 , UpperCamelCase : Dict=3072 , UpperCamelCase : Tuple="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : Any=0.1 , UpperCamelCase : str=512 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : int=0.02 , UpperCamelCase : str=1E-12 , UpperCamelCase : List[str]=9 , UpperCamelCase : Dict=5 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : str=2048 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Optional[int]=6.67 , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=True , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[Any]=True , UpperCamelCase : str=True , UpperCamelCase : List[str]=True , **UpperCamelCase : int , ): '''simple docstring''' lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = num_qa_labels lowercase__ = num_object_labels lowercase__ = num_attr_labels lowercase__ = l_layers lowercase__ = x_layers lowercase__ = r_layers lowercase__ = visual_feat_dim lowercase__ = visual_pos_dim lowercase__ = visual_loss_normalizer lowercase__ = task_matched lowercase__ = task_mask_lm lowercase__ = task_obj_predict lowercase__ = task_qa lowercase__ = visual_obj_loss lowercase__ = visual_attr_loss lowercase__ = visual_feat_loss lowercase__ = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**UpperCamelCase )
2
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : int = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase : str = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } lowercase : Optional[Any] = { 'gpt-neox-20b': 20_48, } class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<|endoftext|>" , SCREAMING_SNAKE_CASE="<|endoftext|>" , SCREAMING_SNAKE_CASE="<|endoftext|>" , SCREAMING_SNAKE_CASE=False , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) A : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE ) != add_prefix_space: A : Optional[int] = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) A : Dict = add_prefix_space A : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE ) A : List[str] = add_prefix_space def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" A : Tuple = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[int]: """simple docstring""" A : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: A : List[str] = input_ids[-self.model_max_length :] return input_ids
3
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __snake_case =8 def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=BITS ): lowerCAmelCase = x.device lowerCAmelCase = (x * 255).int().clamp(0 , 255 ) lowerCAmelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase ) lowerCAmelCase = rearrange(lowerCamelCase , 'd -> d 1 1' ) lowerCAmelCase = rearrange(lowerCamelCase , 'b c h w -> b c 1 h w' ) lowerCAmelCase = ((x & mask) != 0).float() lowerCAmelCase = rearrange(lowerCamelCase , 'b c d h w -> b (c d) h w' ) lowerCAmelCase = bits * 2 - 1 return bits def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : List[str]=BITS ): lowerCAmelCase = x.device lowerCAmelCase = (x > 0).int() lowerCAmelCase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase , dtype=torch.intaa ) lowerCAmelCase = rearrange(lowerCamelCase , 'd -> d 1 1' ) lowerCAmelCase = rearrange(lowerCamelCase , 'b (c d) h w -> b c d h w' , d=8 ) lowerCAmelCase = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def a_ ( self : Optional[int] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor , lowerCamelCase : float = 0.0 , lowerCamelCase : bool = True , lowerCamelCase : Any=None , lowerCamelCase : bool = True , ): if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCAmelCase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCAmelCase = self.alphas_cumprod[timestep] lowerCAmelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCAmelCase = self.bit_scale if self.config.clip_sample: lowerCAmelCase = torch.clamp(lowerCamelCase , -scale , lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCAmelCase = self._get_variance(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCAmelCase = model_output.device if torch.is_tensor(lowerCamelCase ) else 'cpu' lowerCAmelCase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase ).to(lowerCamelCase ) lowerCAmelCase = self._get_variance(lowerCamelCase , lowerCamelCase ) ** 0.5 * eta * noise lowerCAmelCase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def a_ ( self : List[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor , lowerCamelCase : List[Any]="epsilon" , lowerCamelCase : Optional[Any]=None , lowerCamelCase : bool = True , ): lowerCAmelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase = torch.split(lowerCamelCase , sample.shape[1] , dim=1 ) else: lowerCAmelCase = None # 1. compute alphas, betas lowerCAmelCase = self.alphas_cumprod[t] lowerCAmelCase = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCAmelCase = 1 - alpha_prod_t lowerCAmelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCAmelCase = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCAmelCase = self.bit_scale if self.config.clip_sample: lowerCAmelCase = torch.clamp(lowerCamelCase , -scale , lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCAmelCase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase = 0 if t > 0: lowerCAmelCase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCamelCase ).to(model_output.device ) lowerCAmelCase = (self._get_variance(lowerCamelCase , predicted_variance=lowerCamelCase ) ** 0.5) * noise lowerCAmelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : int , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, DDPMScheduler] , UpperCAmelCase__ : Optional[float] = 1.0 , ) -> int: super().__init__() lowerCAmelCase = bit_scale lowerCAmelCase = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ ) @torch.no_grad() def __call__( self : Tuple , UpperCAmelCase__ : Optional[int] = 2_5_6 , UpperCAmelCase__ : Optional[int] = 2_5_6 , UpperCAmelCase__ : Optional[int] = 5_0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : str , ) -> Union[Tuple, ImagePipelineOutput]: lowerCAmelCase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase__ , ) lowerCAmelCase = decimal_to_bits(UpperCAmelCase__ ) * self.bit_scale lowerCAmelCase = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCAmelCase = self.unet(UpperCAmelCase__ , UpperCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).prev_sample lowerCAmelCase = bits_to_decimal(UpperCAmelCase__ ) if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__ )
4
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''BlipImageProcessor''' snake_case_ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , _snake_case , _snake_case ) -> Dict: '''simple docstring''' __a = False super().__init__(_snake_case , _snake_case ) __a = self.image_processor def __call__( self , _snake_case = None , _snake_case = None , _snake_case = True , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = 0 , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = True , _snake_case = None , **_snake_case , ) -> BatchEncoding: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: __a = self.tokenizer __a = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) return text_encoding # add pixel_values __a = self.image_processor(_snake_case , return_tensors=_snake_case ) if text is not None: __a = self.tokenizer( text=_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , stride=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , return_overflowing_tokens=_snake_case , return_special_tokens_mask=_snake_case , return_offsets_mapping=_snake_case , return_token_type_ids=_snake_case , return_length=_snake_case , verbose=_snake_case , return_tensors=_snake_case , **_snake_case , ) else: __a = None if text_encoding is not None: encoding_image_processor.update(_snake_case ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
6
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or number < 0: raise ValueError('Input must be a non-negative integer' ) A__ = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
7
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ = get_tests_dir('''fixtures''') class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Dict: # A mock response for an HTTP head request to emulate server down snake_case_ = mock.Mock() snake_case_ = 5_0_0 snake_case_ = {} snake_case_ = HTTPError snake_case_ = {} # Download this model to make sure it's in the cache. snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head: snake_case_ = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case__( self : List[str] ) ->Optional[int]: # This test is for deprecated behavior and can be removed in v5 snake_case_ = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def snake_case__( self : Any ) ->List[str]: with self.assertRaises(_UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder snake_case_ = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) snake_case_ = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_UpperCamelCase ) @is_staging_test class snake_case_ ( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case__( cls : List[Any] ) ->Dict: snake_case_ = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def snake_case__( cls : List[Any] ) ->Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def snake_case__( self : Any ) ->List[Any]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''test-image-processor''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : str ) ->List[str]: snake_case_ = ViTImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _UpperCamelCase , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) snake_case_ = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def snake_case__( self : List[str] ) ->Tuple: CustomImageProcessor.register_for_auto_class() snake_case_ = CustomImageProcessor.from_pretrained(_UpperCamelCase ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) snake_case_ = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=_UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
8
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __lowerCAmelCase : List[Any] =re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : str SCREAMING_SNAKE_CASE__ : Optional[str] = None SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None SCREAMING_SNAKE_CASE__ : Optional[Union[str, int]] = None def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self :Optional[Any] ) -> Optional[Any]: return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __magic_name__( self :str ) -> str: return self.major, self.minor, self.patch def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> List[Any]: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return Version(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return other raise TypeError(f'''{other} (type {type(lowerCAmelCase__ )}) cannot be compared to version.''' ) def __eq__( self :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> Union[str, Any]: try: __SCREAMING_SNAKE_CASE : int = self._validate_operand(lowerCAmelCase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self :Tuple , lowerCAmelCase__ :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : str = self._validate_operand(lowerCAmelCase__ ) return self.tuple < other.tuple def __hash__( self :Any ) -> List[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __magic_name__( cls :Any , lowerCAmelCase__ :Dict ) -> str: __SCREAMING_SNAKE_CASE : Union[str, Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __magic_name__( self :List[Any] ) -> str: return self.version_str def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = _VERSION_REG.match(lowercase__ ) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(lowercase__ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] ) def _UpperCamelCase ( lowercase__ ): return ".".join(str(lowercase__ ) for v in version_tuple )
9
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
def lowerCAmelCase_ ( __a ) -> list: """simple docstring""" if any(not isinstance(__a , __a ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__a ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__a , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
10
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "Speech2TextFeatureExtractor" __SCREAMING_SNAKE_CASE = "Speech2TextTokenizer" def __init__( self , __lowerCamelCase , __lowerCamelCase) -> int: super().__init__(__lowerCamelCase , __lowerCamelCase) _A : Any = self.feature_extractor _A : int = False def __call__( self , *__lowerCamelCase , **__lowerCamelCase) -> Union[str, Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") _A : Optional[int] = kwargs.pop("raw_speech") else: _A : Optional[int] = kwargs.pop("audio" , __lowerCamelCase) _A : Optional[Any] = kwargs.pop("sampling_rate" , __lowerCamelCase) _A : List[Any] = kwargs.pop("text" , __lowerCamelCase) if len(__lowerCamelCase) > 0: _A : int = args[0] _A : Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: _A : int = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase) if text is not None: _A : int = self.tokenizer(__lowerCamelCase , **__lowerCamelCase) if text is None: return inputs elif audio is None: return encodings else: _A : Tuple = encodings["input_ids"] return inputs def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Any: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def _lowerCamelCase ( self , *__lowerCamelCase , **__lowerCamelCase) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase) @contextmanager def _lowerCamelCase ( self) -> str: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") _A : Optional[int] = True _A : str = self.tokenizer yield _A : Union[str, Any] = self.feature_extractor _A : List[Any] = False
11
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
import functools def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = len(A__ ) __lowerCamelCase = len(A__ ) @functools.cache def min_distance(A__ : int , A__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowerCamelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A__ ) , 1 + min_distance(A__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
12
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase : Any = Mapping[str, np.ndarray] lowerCAmelCase : int = Mapping[str, Any] # Is a nested dict. lowerCAmelCase : Optional[Any] = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase_ ) class __lowercase : """simple docstring""" _UpperCAmelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _UpperCAmelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _UpperCAmelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _UpperCAmelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _UpperCAmelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _UpperCAmelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _UpperCAmelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) _UpperCAmelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent _UpperCAmelCase : Optional[Sequence[int]] = None def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = R"(\[[A-Z]+\]\n)" SCREAMING_SNAKE_CASE_: List[str] = [tag.strip() for tag in re.split(_UpperCAmelCase , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0] SCREAMING_SNAKE_CASE_: Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) SCREAMING_SNAKE_CASE_: List[str] = ["N", "CA", "C"] SCREAMING_SNAKE_CASE_: Any = None SCREAMING_SNAKE_CASE_: Optional[Any] = None SCREAMING_SNAKE_CASE_: List[str] = None for g in groups: if "[PRIMARY]" == g[0]: SCREAMING_SNAKE_CASE_: Optional[int] = g[1][0].strip() for i in range(len(_UpperCAmelCase ) ): if seq[i] not in residue_constants.restypes: SCREAMING_SNAKE_CASE_: Union[str, Any] = "X" # FIXME: strings are immutable SCREAMING_SNAKE_CASE_: Tuple = np.array( [residue_constants.restype_order.get(_UpperCAmelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: SCREAMING_SNAKE_CASE_: List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_UpperCAmelCase , g[1][axis].split() ) ) ) SCREAMING_SNAKE_CASE_: List[Any] = np.array(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: int = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: SCREAMING_SNAKE_CASE_: Optional[int] = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) SCREAMING_SNAKE_CASE_: Any = np.zeros( ( len(_UpperCAmelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_UpperCAmelCase , atom_mask=_UpperCAmelCase , aatype=_UpperCAmelCase , residue_index=np.arange(len(_UpperCAmelCase ) ) , b_factors=_UpperCAmelCase , ) def A_ ( _UpperCAmelCase , _UpperCAmelCase = 0 ): SCREAMING_SNAKE_CASE_: List[str] = [] SCREAMING_SNAKE_CASE_: Any = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) SCREAMING_SNAKE_CASE_: Any = prot.parents SCREAMING_SNAKE_CASE_: Dict = prot.parents_chain_index if parents is not None and parents_chain_index is not None: SCREAMING_SNAKE_CASE_: Optional[int] = [p for i, p in zip(_UpperCAmelCase , _UpperCAmelCase ) if i == chain_id] if parents is None or len(_UpperCAmelCase ) == 0: SCREAMING_SNAKE_CASE_: Optional[int] = ["N/A"] pdb_headers.append(f"PARENT {' '.join(_UpperCAmelCase )}" ) return pdb_headers def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = [] SCREAMING_SNAKE_CASE_: List[str] = pdb_str.split("\n" ) SCREAMING_SNAKE_CASE_: Optional[int] = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) SCREAMING_SNAKE_CASE_: List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: SCREAMING_SNAKE_CASE_: Optional[int] = [] if prot.parents_chain_index is not None: SCREAMING_SNAKE_CASE_: Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_UpperCAmelCase ) , [] ) parent_dict[str(_UpperCAmelCase )].append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = max([int(_UpperCAmelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): SCREAMING_SNAKE_CASE_: List[str] = parent_dict.get(str(_UpperCAmelCase ) , ["N/A"] ) parents_per_chain.append(_UpperCAmelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: SCREAMING_SNAKE_CASE_: List[Any] = [["N/A"]] def make_parent_line(_UpperCAmelCase ) -> str: return f"PARENT {' '.join(_UpperCAmelCase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) SCREAMING_SNAKE_CASE_: Union[str, Any] = 0 for i, l in enumerate(_UpperCAmelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_UpperCAmelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = parents_per_chain[chain_counter] else: SCREAMING_SNAKE_CASE_: Union[str, Any] = ["N/A"] out_pdb_lines.append(make_parent_line(_UpperCAmelCase ) ) return "\n".join(_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = residue_constants.restypes + ["X"] def res_atoa(_UpperCAmelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) SCREAMING_SNAKE_CASE_: int = residue_constants.atom_types SCREAMING_SNAKE_CASE_: List[str] = [] SCREAMING_SNAKE_CASE_: Optional[int] = prot.atom_mask SCREAMING_SNAKE_CASE_: Optional[Any] = prot.aatype SCREAMING_SNAKE_CASE_: Optional[Any] = prot.atom_positions SCREAMING_SNAKE_CASE_: int = prot.residue_index.astype(np.intaa ) SCREAMING_SNAKE_CASE_: Dict = prot.b_factors SCREAMING_SNAKE_CASE_: str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) SCREAMING_SNAKE_CASE_: Optional[int] = get_pdb_headers(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: pdb_lines.extend(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = aatype.shape[0] SCREAMING_SNAKE_CASE_: str = 1 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: List[Any] = string.ascii_uppercase SCREAMING_SNAKE_CASE_: int = None # Add all atom sites. for i in range(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_UpperCAmelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue SCREAMING_SNAKE_CASE_: List[Any] = "ATOM" SCREAMING_SNAKE_CASE_: Optional[Any] = atom_name if len(_UpperCAmelCase ) == 4 else f" {atom_name}" SCREAMING_SNAKE_CASE_: List[str] = "" SCREAMING_SNAKE_CASE_: Optional[int] = "" SCREAMING_SNAKE_CASE_: List[str] = 1.0_0 SCREAMING_SNAKE_CASE_: int = atom_name[0] # Protein supports only C, N, O, S, this works. SCREAMING_SNAKE_CASE_: Optional[Any] = "" SCREAMING_SNAKE_CASE_: Dict = "A" if chain_index is not None: SCREAMING_SNAKE_CASE_: int = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! SCREAMING_SNAKE_CASE_: Tuple = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(_UpperCAmelCase ) atom_index += 1 SCREAMING_SNAKE_CASE_: Optional[Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: SCREAMING_SNAKE_CASE_: Dict = True SCREAMING_SNAKE_CASE_: List[str] = chain_index[i + 1] if should_terminate: # Close the chain. SCREAMING_SNAKE_CASE_: int = "TER" SCREAMING_SNAKE_CASE_: int = ( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_UpperCAmelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_UpperCAmelCase , _UpperCAmelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_UpperCAmelCase , remark=_UpperCAmelCase , parents=_UpperCAmelCase , parents_chain_index=_UpperCAmelCase , )
13
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : int , *, UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 768 , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , ) ->Any: '''simple docstring''' super().__init__() A__ = nn.Parameter(torch.zeros(UpperCAmelCase__)) # parameters for additional clip time embeddings A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__) A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__) # parameters for encoder hidden states A__ = clip_extra_context_tokens A__ = nn.Linear( UpperCAmelCase__ , self.clip_extra_context_tokens * cross_attention_dim) A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__) A__ = nn.LayerNorm(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int , *, UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any]) ->Any: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings A__ = image_embeddings.shape[0] A__ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) A__ = classifier_free_guidance_embeddings.expand( UpperCAmelCase__ , -1) A__ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] A__ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... A__ = self.embedding_proj(UpperCAmelCase__) A__ = self.clip_image_embeddings_project_to_time_embeddings(UpperCAmelCase__) A__ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" A__ = self.clip_extra_context_tokens_proj(UpperCAmelCase__) A__ = clip_extra_context_tokens.reshape(UpperCAmelCase__ , -1 , self.clip_extra_context_tokens) A__ = clip_extra_context_tokens.permute(0 , 2 , 1) A__ = self.encoder_hidden_states_proj(UpperCAmelCase__) A__ = self.text_encoder_hidden_states_norm(UpperCAmelCase__) A__ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
14
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : str ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"embed_dim" ) ) self.parent.assertTrue(hasattr(A ,"num_heads" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : Tuple ,A : Dict=13 ,A : Optional[int]=64 ,A : Optional[Any]=3 ,A : List[Any]=[16, 48, 96] ,A : Union[str, Any]=[1, 3, 6] ,A : str=[1, 2, 10] ,A : Optional[int]=[7, 3, 3] ,A : List[Any]=[4, 2, 2] ,A : int=[2, 1, 1] ,A : Tuple=[2, 2, 2] ,A : Any=[False, False, True] ,A : Any=[0.0, 0.0, 0.0] ,A : Optional[int]=0.02 ,A : Optional[Any]=1E-12 ,A : List[str]=True ,A : Union[str, Any]=True ,A : List[Any]=2 ,): __A = parent __A = batch_size __A = image_size __A = patch_sizes __A = patch_stride __A = patch_padding __A = is_training __A = use_labels __A = num_labels __A = num_channels __A = embed_dim __A = num_heads __A = stride_kv __A = depth __A = cls_token __A = attention_drop_rate __A = initializer_range __A = layer_norm_eps def UpperCamelCase_ ( self : Dict ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_labels: # create a random int32 tensor of given shape __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : str ): return CvtConfig( image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : Tuple ,A : Any ): __A = TFCvtModel(config=A ) __A = model(A ,training=A ) __A = (self.image_size, self.image_size) __A , __A = image_size[0], image_size[1] for i in range(len(self.depth ) ): __A = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __A = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) ) def UpperCamelCase_ ( self : Union[str, Any] ,A : int ,A : Tuple ,A : List[Any] ): __A = self.num_labels __A = TFCvtForImageClassification(A ) __A = model(A ,labels=A ,training=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.prepare_config_and_inputs() __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () snake_case_ = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : str ): __A = TFCvtModelTester(self ) __A = TFCvtConfigTester(self ,config_class=A ,has_text_modality=A ,hidden_size=37 ) def UpperCamelCase_ ( self : str ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def UpperCamelCase_ ( self : int ): pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def UpperCamelCase_ ( self : Optional[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 ,reason="TF does not support backprop for grouped convolutions on CPU." ,) def UpperCamelCase_ ( self : Any ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 ,reason="TF does not support backprop for grouped convolutions on CPU." ,) @slow def UpperCamelCase_ ( self : List[str] ): super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def UpperCamelCase_ ( self : List[str] ): __A = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(A ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def UpperCamelCase_ ( self : Union[str, Any] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[str] ): def check_hidden_states_output(A : Union[str, Any] ,A : int ,A : List[Any] ): __A = model_class(A ) __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = len(self.model_tester.depth ) self.assertEqual(len(A ) ,A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Any ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Optional[Any] ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFCvtModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCamelCase_ ( self : str ): __A = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="tf" ) # forward pass __A = model(**A ) # verify the logits __A = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,A ) __A = tf.constant([0.92_85, 0.90_15, -0.31_50] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,A ,atol=1E-4 ) )
15
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
"""simple docstring""" from functools import lru_cache def __UpperCAmelCase ( __lowerCamelCase ) -> set: lowercase__ : Optional[Any] = 2 lowercase__ : Any = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCamelCase ) if n > 1: factors.add(__lowerCamelCase ) return factors @lru_cache def __UpperCAmelCase ( __lowerCamelCase ) -> int: return len(unique_prime_factors(__lowerCamelCase ) ) def __UpperCAmelCase ( __lowerCamelCase ) -> bool: return len(set(__lowerCamelCase ) ) in (0, 1) def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : str = 2 while True: # Increment each value of a generated range lowercase__ : Any = [base + i for i in range(__lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ : List[Any] = [upf_len(__lowerCamelCase ) for x in group] checker.append(__lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def __UpperCAmelCase ( __lowerCamelCase = 4 ) -> int: lowercase__ : Dict = run(__lowerCamelCase ) return results[0] if len(__lowerCamelCase ) else None if __name__ == "__main__": print(solution())
16
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0
"""simple docstring""" def _A ( UpperCamelCase_ : Optional[int]) -> int: '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _A ( UpperCamelCase_ : dict[int, list[int]]) -> list[tuple[int, int]]: '''simple docstring''' __lowercase = 0 __lowercase = len(UpperCamelCase_) # No of vertices in graph __lowercase = [0] * n __lowercase = [False] * n def dfs(UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Optional[int], UpperCamelCase_ : Any, UpperCamelCase_ : Optional[Any]): __lowercase = True __lowercase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, id_) __lowercase = min(low[at], low[to]) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at)) else: # This edge is a back edge and cannot be a bridge __lowercase = min(low[at], low[to]) __lowercase = [] for i in range(UpperCamelCase_): if not visited[i]: dfs(UpperCamelCase_, -1, UpperCamelCase_, id_) return bridges if __name__ == "__main__": import doctest doctest.testmod()
17
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[Any] = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : List[str] = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TextDatasetReader(lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase , split=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" if issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_path elif issubclass(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [text_path] SCREAMING_SNAKE_CASE_ : int = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Optional[int] = {"text": "string"} SCREAMING_SNAKE_CASE_ : List[str] = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_dataset(lowerCAmelCase , lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase , lowerCAmelCase ) for split in splits: SCREAMING_SNAKE_CASE_ : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Tuple = {"text": "string"} SCREAMING_SNAKE_CASE_ : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Dict = ( Features({feature: Value(lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : str = TextDatasetReader({"train": text_path} , features=lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict ): """simple docstring""" if split: SCREAMING_SNAKE_CASE_ : Optional[int] = {split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] = "train" SCREAMING_SNAKE_CASE_ : Tuple = {"train": text_path, "test": text_path} SCREAMING_SNAKE_CASE_ : Any = tmp_path / "cache" SCREAMING_SNAKE_CASE_ : List[str] = {"text": "string"} SCREAMING_SNAKE_CASE_ : str = TextDatasetReader(lowerCAmelCase , cache_dir=lowerCAmelCase ).read() _check_text_datasetdict(lowerCAmelCase , lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __A =re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __A =1_0 __A =2_5_6 def lowerCamelCase_ ( lowerCamelCase__ ): if len(lowerCamelCase__ ) < MIN_NUM_TOKENS: return None lowerCamelCase_ = MinHash(num_perm=lowerCamelCase__ ) for token in set(lowerCamelCase__ ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase_ ( lowerCamelCase__ ): return {t for t in NON_ALPHA.split(lowerCamelCase__ ) if len(t.strip() ) > 0} class _SCREAMING_SNAKE_CASE : def __init__( self , *, lowercase = 0.8_5 , ) -> int: lowerCamelCase_ = duplication_jaccard_threshold lowerCamelCase_ = NUM_PERM lowerCamelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) lowerCamelCase_ = defaultdict(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> None: lowerCamelCase_ = self._index.query(lowercase ) if code_key in self._index.keys: print(f'Duplicate key {code_key}' ) return self._index.insert(lowercase , lowercase ) if len(lowercase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowercase ) break else: self._duplicate_clusters[close_duplicates[0]].add(lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[List[Dict]]: lowerCamelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCamelCase_ = [base] + list(lowercase ) # reformat the cluster to be a list of dict lowerCamelCase_ = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(lowercase ) return duplicate_clusters def SCREAMING_SNAKE_CASE_( self , lowercase ) -> None: lowerCamelCase_ = self.get_duplicate_clusters() with open(lowercase , "w" ) as f: json.dump(lowercase , lowercase ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ = element lowerCamelCase_ = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase_ ( lowerCamelCase__ ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCamelCase__ , max_queue_size=1_0_0_0_0 ) , chunksize=1_0_0 , ): if data is not None: yield data def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = DuplicationIndex(duplication_jaccard_threshold=lowerCamelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCamelCase__ ) ) , max_queue_size=1_0_0 ) ): di.add(lowerCamelCase__ , lowerCamelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = get_tokens(lowerCamelCase__ ) lowerCamelCase_ = get_tokens(lowerCamelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __A =None def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [] for elementa in cluster: lowerCamelCase_ = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: lowerCamelCase_ = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(lowerCamelCase__ , lowerCamelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCamelCase_ = 1 extremes.append(lowerCamelCase__ ) return extremes def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): global _shared_dataset lowerCamelCase_ = dataset lowerCamelCase_ = [] lowerCamelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCamelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCamelCase__ , lowerCamelCase__ , ) , total=len(lowerCamelCase__ ) , ): extremes_list.append(lowerCamelCase__ ) return extremes_list def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 0.85 ): lowerCamelCase_ = make_duplicate_clusters(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = {x["base_index"] for cluster in duplicate_clusters for x in cluster} lowerCamelCase_ = {} lowerCamelCase_ = find_extremes(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) for extremes in extremes_clusters: for element in extremes: lowerCamelCase_ = element lowerCamelCase_ = duplicate_indices - set(extreme_dict.keys() ) lowerCamelCase_ = dataset.filter(lambda lowerCamelCase__ , lowerCamelCase__ : idx not in remove_indices , with_indices=lowerCamelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCamelCase_ = element["base_index"] in extreme_dict if element["is_extreme"]: lowerCamelCase_ = extreme_dict[element["base_index"]]["copies"] print(F'Original dataset size: {len(lowerCamelCase__ )}' ) print(F'Number of duplicate clusters: {len(lowerCamelCase__ )}' ) print(F'Files in duplicate cluster: {len(lowerCamelCase__ )}' ) print(F'Unique files in duplicate cluster: {len(lowerCamelCase__ )}' ) print(F'Filtered dataset size: {len(lowerCamelCase__ )}' ) return ds_filter, duplicate_clusters
19
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
from __future__ import annotations import time lowercase : Optional[int] = list[tuple[int, int]] lowercase : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase : Optional[int] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __snake_case : def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Tuple = pos_x lowercase : str = pos_y lowercase : Any = (pos_y, pos_x) lowercase : int = goal_x lowercase : int = goal_y lowercase : Dict = parent class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : List[Any] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,snake_case ) lowercase : Optional[Any] = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,snake_case ) lowercase : Union[str, Any] = [self.start] lowercase : Any = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' while self.node_queue: lowercase : int = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowercase : Dict = True return self.retrace_path(snake_case ) lowercase : List[str] = self.get_successors(snake_case ) for node in successors: self.node_queue.append(snake_case ) if not self.reached: return [self.start.pos] return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = [] for action in delta: lowercase : Any = parent.pos_x + action[1] lowercase : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(snake_case ,snake_case ,self.target.pos_y ,self.target.pos_x ,snake_case ) ) return successors def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Tuple = node lowercase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase : Tuple = current_node.parent path.reverse() return path class __snake_case : def __init__( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : int = BreadthFirstSearch(snake_case ,snake_case ) lowercase : Any = BreadthFirstSearch(snake_case ,snake_case ) lowercase : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase : Any = self.fwd_bfs.node_queue.pop(0 ) lowercase : Optional[int] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowercase : int = True return self.retrace_bidirectional_path( snake_case ,snake_case ) lowercase : Dict = current_bwd_node lowercase : List[Any] = current_fwd_node lowercase : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(snake_case ), self.bwd_bfs: self.bwd_bfs.get_successors(snake_case ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(snake_case ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.fwd_bfs.retrace_path(snake_case ) lowercase : Union[str, Any] = self.bwd_bfs.retrace_path(snake_case ) bwd_path.pop() bwd_path.reverse() lowercase : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase : Tuple = (0, 0) lowercase : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase : Dict = time.time() lowercase : Optional[int] = BreadthFirstSearch(init, goal) lowercase : Dict = bfs.search() lowercase : Dict = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) lowercase : List[str] = time.time() lowercase : int = BidirectionalBreadthFirstSearch(init, goal) lowercase : Any = bd_bfs.search() lowercase : Dict = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
20
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): _lowercase : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): _lowercase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : str = np.concatenate(lowerCamelCase_ , axis=0 ) _lowercase : Dict = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_55.0 _lowercase : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) _lowercase : str = 2.0 * image - 1.0 _lowercase : Tuple = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): _lowercase : Any = torch.cat(lowerCamelCase_ , dim=0 ) return image def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.99_95 ) -> Tuple: if not isinstance(lowerCamelCase_ , np.ndarray ): _lowercase : List[Any] = True _lowercase : Any = va.device _lowercase : Union[str, Any] = va.cpu().numpy() _lowercase : int = va.cpu().numpy() _lowercase : int = np.sum(va * va / (np.linalg.norm(lowerCamelCase_ ) * np.linalg.norm(lowerCamelCase_ )) ) if np.abs(lowerCamelCase_ ) > DOT_THRESHOLD: _lowercase : Any = (1 - t) * va + t * va else: _lowercase : Dict = np.arccos(lowerCamelCase_ ) _lowercase : str = np.sin(lowerCamelCase_ ) _lowercase : int = theta_a * t _lowercase : Dict = np.sin(lowerCamelCase_ ) _lowercase : Any = np.sin(theta_a - theta_t ) / sin_theta_a _lowercase : List[Any] = sin_theta_t / sin_theta_a _lowercase : Dict = sa * va + sa * va if inputs_are_torch: _lowercase : Optional[Any] = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) return va def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) _lowercase : Tuple = F.normalize(lowerCamelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: for param in model.parameters(): _lowercase : Any = value class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=lowerCamelCase, text_encoder=lowerCamelCase, clip_model=lowerCamelCase, tokenizer=lowerCamelCase, unet=lowerCamelCase, scheduler=lowerCamelCase, feature_extractor=lowerCamelCase, coca_model=lowerCamelCase, coca_tokenizer=lowerCamelCase, coca_transform=lowerCamelCase, ) _lowercase : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size, lowerCamelCase) else feature_extractor.size['shortest_edge'] ) _lowercase : Union[str, Any] = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, lowerCamelCase) set_requires_grad(self.clip_model, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase = "auto") -> Any: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowercase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" set_requires_grad(self.vae, lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" set_requires_grad(self.unet, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = min(int(num_inference_steps * strength), lowerCamelCase) _lowercase : List[Any] = max(num_inference_steps - init_timestep, 0) _lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase, torch.Tensor): raise ValueError(F'''`image` has to be of type `torch.Tensor` but is {type(lowerCamelCase)}''') _lowercase : Any = image.to(device=lowerCamelCase, dtype=lowerCamelCase) if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(lowerCamelCase) ] _lowercase : int = torch.cat(lowerCamelCase, dim=0) else: _lowercase : int = self.vae.encode(lowerCamelCase).latent_dist.sample(lowerCamelCase) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : str = 0.1_8_2_1_5 * init_latents _lowercase : List[str] = init_latents.repeat_interleave(lowerCamelCase, dim=0) _lowercase : List[str] = randn_tensor(init_latents.shape, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase) # get latents _lowercase : Any = self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : str = init_latents return latents def UpperCamelCase ( self, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : str = self.coca_transform(lowerCamelCase).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _lowercase : List[str] = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) _lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>', '').rstrip(' .,') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Tuple = self.feature_extractor.preprocess(lowerCamelCase) _lowercase : List[str] = torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _lowercase : int = self.clip_model.get_image_features(lowerCamelCase) _lowercase : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : int = image_embeddings_clip.repeat_interleave(lowerCamelCase, dim=0) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : List[Any] = latents.detach().requires_grad_() _lowercase : Union[str, Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Tuple = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _lowercase : Any = self.scheduler.alphas_cumprod[timestep] _lowercase : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : List[Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _lowercase : List[str] = torch.sqrt(lowerCamelCase) _lowercase : Dict = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, lowerCamelCase): _lowercase : Dict = self.scheduler.sigmas[index] _lowercase : List[Any] = latents - sigma * noise_pred else: raise ValueError(F'''scheduler type {type(self.scheduler)} not supported''') # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Dict = 1 / 0.1_8_2_1_5 * sample _lowercase : Optional[Any] = self.vae.decode(lowerCamelCase).sample _lowercase : int = (image / 2 + 0.5).clamp(0, 1) _lowercase : Any = transforms.Resize(self.feature_extractor_size)(lowerCamelCase) _lowercase : Optional[Any] = self.normalize(lowerCamelCase).to(latents.dtype) _lowercase : List[str] = self.clip_model.get_image_features(lowerCamelCase) _lowercase : List[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=lowerCamelCase) _lowercase : Optional[Any] = spherical_dist_loss(lowerCamelCase, lowerCamelCase).mean() * clip_guidance_scale _lowercase : str = -torch.autograd.grad(lowerCamelCase, lowerCamelCase)[0] if isinstance(self.scheduler, lowerCamelCase): _lowercase : Union[str, Any] = latents.detach() + grads * (sigma**2) _lowercase : List[str] = noise_pred_original else: _lowercase : List[Any] = noise_pred_original - torch.sqrt(lowerCamelCase) * grads return noise_pred, latents @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = 5_12, lowerCamelCase = 5_12, lowerCamelCase = 0.6, lowerCamelCase = 50, lowerCamelCase = 7.5, lowerCamelCase = 1, lowerCamelCase = 0.0, lowerCamelCase = 1_00, lowerCamelCase = None, lowerCamelCase = "pil", lowerCamelCase = True, lowerCamelCase = 0.8, lowerCamelCase = 0.1, lowerCamelCase = 0.1, ) -> int: """simple docstring""" if isinstance(lowerCamelCase, lowerCamelCase) and len(lowerCamelCase) != batch_size: raise ValueError(F'''You have passed {batch_size} batch_size, but only {len(lowerCamelCase)} generators.''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if isinstance(lowerCamelCase, torch.Generator) and batch_size > 1: _lowercase : Dict = [generator] + [None] * (batch_size - 1) _lowercase : Optional[int] = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] _lowercase : str = ', '.join(lowerCamelCase) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' F'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : List[Any] = self.get_image_description(lowerCamelCase) if style_prompt is None: if len(lowerCamelCase): raise ValueError( F'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' F''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''') _lowercase : Dict = self.get_image_description(lowerCamelCase) # get prompt text embeddings for content and style _lowercase : Optional[int] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : Optional[int] = self.text_encoder(content_text_input.input_ids.to(self.device))[0] _lowercase : Union[str, Any] = self.tokenizer( lowerCamelCase, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='pt', ) _lowercase : List[Any] = self.text_encoder(style_text_input.input_ids.to(self.device))[0] _lowercase : Any = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) # duplicate text embeddings for each generation per prompt _lowercase : Dict = text_embeddings.repeat_interleave(lowerCamelCase, dim=0) # set timesteps _lowercase : Dict = 'offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_offset: _lowercase : Any = 1 self.scheduler.set_timesteps(lowerCamelCase, **lowerCamelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _lowercase , _lowercase : List[Any] = self.get_timesteps(lowerCamelCase, lowerCamelCase, self.device) _lowercase : str = timesteps[:1].repeat(lowerCamelCase) # Preprocess image _lowercase : str = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : int = preprocess(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[str] = self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, text_embeddings.dtype, self.device, lowerCamelCase) _lowercase : Optional[int] = slerp(lowerCamelCase, lowerCamelCase, lowerCamelCase) if clip_guidance_scale > 0: _lowercase : Optional[int] = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Dict = self.get_clip_image_embeddings(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = slerp( lowerCamelCase, lowerCamelCase, lowerCamelCase) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowercase : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowercase : Tuple = content_text_input.input_ids.shape[-1] _lowercase : Union[str, Any] = self.tokenizer([''], padding='max_length', max_length=lowerCamelCase, return_tensors='pt') _lowercase : int = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _lowercase : Union[str, Any] = uncond_embeddings.repeat_interleave(lowerCamelCase, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _lowercase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _lowercase : List[Any] = torch.randn(lowerCamelCase, generator=lowerCamelCase, device='cpu', dtype=lowerCamelCase).to( self.device) else: _lowercase : Any = torch.randn(lowerCamelCase, generator=lowerCamelCase, device=self.device, dtype=lowerCamelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') _lowercase : Tuple = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _lowercase : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowercase : Dict = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _lowercase : Optional[Any] = {} if accepts_eta: _lowercase : List[Any] = eta # check if the scheduler accepts generator _lowercase : Dict = 'generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _lowercase : str = generator with self.progress_bar(total=lowerCamelCase): for i, t in enumerate(lowerCamelCase): # expand the latents if we are doing classifier free guidance _lowercase : List[str] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _lowercase : List[Any] = self.scheduler.scale_model_input(lowerCamelCase, lowerCamelCase) # predict the noise residual _lowercase : Dict = self.unet(lowerCamelCase, lowerCamelCase, encoder_hidden_states=lowerCamelCase).sample # perform classifier free guidance if do_classifier_free_guidance: _lowercase , _lowercase : Optional[Any] = noise_pred.chunk(2) _lowercase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _lowercase : Tuple = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _lowercase , _lowercase : List[Any] = self.cond_fn( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : Optional[Any] = self.scheduler.step(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _lowercase : Any = 1 / 0.1_8_2_1_5 * latents _lowercase : List[str] = self.vae.decode(lowerCamelCase).sample _lowercase : Tuple = (image / 2 + 0.5).clamp(0, 1) _lowercase : List[Any] = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(lowerCamelCase) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCamelCase, nsfw_content_detected=lowerCamelCase)
21
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def UpperCAmelCase_ ( __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(__lowercase ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(__lowercase ) return 2.0 * image - 1.0 class A_ ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , snake_case_ : VQModel , snake_case_ : UNetaDModel , snake_case_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self : Any , snake_case_ : Union[torch.Tensor, PIL.Image.Image] = None , snake_case_ : Optional[int] = 1 , snake_case_ : Optional[int] = 1_0_0 , snake_case_ : Optional[float] = 0.0 , snake_case_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case_ : Optional[str] = "pil" , snake_case_ : bool = True , ): if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(f'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}' ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
22
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ) -> Any: UpperCAmelCase : int = HfArgumentParser(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase : List[Any] = TensorFlowBenchmark(args=_lowerCAmelCase ) try: UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase : Any = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase : Union[str, Any] = ''' '''.join(str(_lowerCAmelCase ).split(''' ''' )[:-1] ) UpperCAmelCase : str = '''''' UpperCAmelCase : Optional[int] = eval(str(_lowerCAmelCase ).split(''' ''' )[-1] ) UpperCAmelCase : Optional[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCAmelCase : int = full_error_msg + begin_error_msg + str(_lowerCAmelCase ) raise ValueError(_lowerCAmelCase ) benchmark.run() if __name__ == "__main__": main()
23
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
from collections import defaultdict from math import gcd def lowerCamelCase__ ( snake_case_ : int = 150_0000 ) -> int: __snake_case = defaultdict(snake_case_ ) __snake_case = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , snake_case_ , 2 ): if gcd(snake_case_ , snake_case_ ) > 1: continue __snake_case = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(snake_case_ , limit + 1 , snake_case_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
24
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : int = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Optional[Any] = '''mctct''' def __init__(self , SCREAMING_SNAKE_CASE__=80_65 , SCREAMING_SNAKE_CASE__=15_36 , SCREAMING_SNAKE_CASE__=36 , SCREAMING_SNAKE_CASE__=61_44 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=3_84 , SCREAMING_SNAKE_CASE__=9_20 , SCREAMING_SNAKE_CASE__=1E-5 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0.3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=(7,) , SCREAMING_SNAKE_CASE__=(3,) , SCREAMING_SNAKE_CASE__=80 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="sum" , SCREAMING_SNAKE_CASE__=False , **SCREAMING_SNAKE_CASE__ , ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = attention_head_dim SCREAMING_SNAKE_CASE__ : str = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[str] = layerdrop SCREAMING_SNAKE_CASE__ : Any = hidden_act SCREAMING_SNAKE_CASE__ : str = initializer_range SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = bos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : Any = conv_glu_dim SCREAMING_SNAKE_CASE__ : Tuple = conv_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_conv_layers SCREAMING_SNAKE_CASE__ : Tuple = input_feat_per_channel SCREAMING_SNAKE_CASE__ : Dict = input_channels SCREAMING_SNAKE_CASE__ : Optional[int] = conv_channels SCREAMING_SNAKE_CASE__ : List[str] = ctc_loss_reduction SCREAMING_SNAKE_CASE__ : Any = ctc_zero_infinity # prevents config testing fail with exporting to json SCREAMING_SNAKE_CASE__ : int = list(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
25
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : List[str] = model_type_to_module_name(snake_case_ ) _A : List[Any] = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : List[Any] = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> List[Any]: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> Any: _A : Tuple = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : List[Any] = True _A , _A : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : Tuple = config_dict.get("""feature_extractor_type""" , _a ) _A : int = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Optional[int] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : int = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Optional[int] = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : Optional[Any] = feature_extractor_class_from_name(_a ) _A : List[Any] = feature_extractor_auto_map is not None _A : Union[str, Any] = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : Dict = get_class_from_dynamic_module( _a , _a , **_a ) _A : str = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Optional[int]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
26
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Dict = logging.get_logger(__name__) __lowercase : int = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "altclip_text_model" def __init__( self , __a=25_0002 , __a=1024 , __a=24 , __a=16 , __a=4096 , __a="gelu" , __a=0.1 , __a=0.1 , __a=514 , __a=1 , __a=0.02 , __a=0.02 , __a=1E-0_5 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=768 , **__a , ): '''simple docstring''' super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __a : Dict = vocab_size __a : List[Any] = hidden_size __a : Optional[Any] = num_hidden_layers __a : Dict = num_attention_heads __a : List[Any] = hidden_act __a : Tuple = intermediate_size __a : Optional[int] = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : Tuple = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : Tuple = initializer_range __a : List[str] = initializer_factor __a : Optional[Any] = layer_norm_eps __a : List[str] = position_embedding_type __a : int = use_cache __a : Any = project_dim class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "altclip_vision_model" def __init__( self , __a=768 , __a=3072 , __a=512 , __a=12 , __a=12 , __a=3 , __a=224 , __a=32 , __a="quick_gelu" , __a=1E-5 , __a=0.0 , __a=0.02 , __a=1.0 , **__a , ): '''simple docstring''' super().__init__(**__a ) __a : str = hidden_size __a : Dict = intermediate_size __a : str = projection_dim __a : Optional[int] = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : Dict = num_channels __a : Union[str, Any] = patch_size __a : List[Any] = image_size __a : Any = initializer_range __a : Tuple = initializer_factor __a : str = attention_dropout __a : Union[str, Any] = layer_norm_eps __a : Union[str, Any] = hidden_act @classmethod def __UpperCAmelCase ( cls , __a , **__a ): '''simple docstring''' cls._set_token_in_kwargs(__a ) __a , __a : List[str] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('model_type' ) == "altclip": __a : List[str] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__a , **__a ) class __UpperCamelCase ( lowerCAmelCase_ ): A_ = "altclip" A_ = True def __init__( self , __a=None , __a=None , __a=768 , __a=2.6592 , **__a ): '''simple docstring''' __a : str = kwargs.pop('text_config_dict' , __a ) __a : List[str] = kwargs.pop('vision_config_dict' , __a ) super().__init__(**__a ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __a : Dict = {} # This is the complete result when using `text_config_dict`. __a : Any = AltCLIPTextConfig(**__a ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __a : Tuple = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: __a : List[Any] = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(__a ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __a : Optional[int] = {} # This is the complete result when using `vision_config_dict`. __a : Union[str, Any] = AltCLIPVisionConfig(**__a ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __a : Dict = { str(__a ): value for key, value in _vision_config_dict['id2label'].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __a : Optional[Any] = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: __a : Any = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(__a ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __a : int = {} logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.' ) if vision_config is None: __a : Tuple = {} logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.' ) __a : int = AltCLIPTextConfig(**__a ) __a : Union[str, Any] = AltCLIPVisionConfig(**__a ) __a : Optional[int] = projection_dim __a : List[Any] = logit_scale_init_value __a : Any = 1.0 @classmethod def __UpperCAmelCase ( cls , __a , __a , **__a ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = copy.deepcopy(self.__dict__ ) __a : Optional[Any] = self.text_config.to_dict() __a : Optional[Any] = self.vision_config.to_dict() __a : Dict = self.__class__.model_type return output
27
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _lowerCamelCase : List[str] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _lowerCamelCase : Optional[int] = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _lowerCamelCase : str = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def A ( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False ): """simple docstring""" if rouge_types is None: UpperCamelCase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase__ , use_stemmer=UpperCamelCase__ ) if use_aggregator: UpperCamelCase = scoring.BootstrapAggregator() else: UpperCamelCase = [] for ref, pred in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = scorer.score(UpperCamelCase__ , UpperCamelCase__ ) if use_aggregator: aggregator.add_scores(UpperCamelCase__ ) else: scores.append(UpperCamelCase__ ) if use_aggregator: UpperCamelCase = aggregator.aggregate() else: UpperCamelCase = {} for key in scores[0]: UpperCamelCase = [score[key] for score in scores] return result
28
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : int = 0 @slow def __UpperCAmelCase ( self ) -> List[Any]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_UpperCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_UpperCamelCase ) , 0 ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = AutoConfig.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) # Check that tokenizer_type ≠ model_type UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase , config=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def __UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCamelCase , 'vocab.txt' ) ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_UpperCamelCase , tokenizer_type='bert' , use_fast=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCamelCase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCamelCase , 'merges.txt' ) ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCamelCase , tokenizer_type='gpt2' , use_fast=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) @require_tokenizers def __UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_UpperCamelCase , 'vocab.txt' ) ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_UpperCamelCase , tokenizer_type='bert' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_UpperCamelCase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_UpperCamelCase , 'merges.txt' ) ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_UpperCamelCase , tokenizer_type='gpt2' ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: with pytest.raises(_UpperCamelCase ): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx' ) @require_tokenizers def __UpperCAmelCase ( self ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase_ : Tuple = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(_UpperCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(_UpperCamelCase , _UpperCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _UpperCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , _UpperCamelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def __UpperCAmelCase ( self ) -> Any: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _UpperCamelCase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): UpperCAmelCase_ : Tuple = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def __UpperCAmelCase ( self ) -> int: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai UpperCAmelCase_ : Dict = TOKENIZER_MAPPING.values() UpperCAmelCase_ : Union[str, Any] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_UpperCamelCase ) @require_tokenizers def __UpperCAmelCase ( self ) -> List[str]: self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCamelCase ) , _UpperCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) , _UpperCamelCase ) @require_tokenizers def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_UpperCamelCase ) UpperCAmelCase_ : Tuple = 'Hello, world. How are you?' UpperCAmelCase_ : Optional[int] = tokenizer.tokenize(_UpperCamelCase ) self.assertEqual('[UNK]' , tokens[0] ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_UpperCamelCase ) UpperCAmelCase_ : int = tokenizer.tokenize(_UpperCamelCase ) self.assertEqual('[UNK]' , tokens[0] ) @require_tokenizers def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , '[UNK]' ) self.assertEqual(tokenizer.padding_side , 'right' ) self.assertEqual(tokenizer.truncation_side , 'right' ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: # Check we can load the tokenizer config of an online model. UpperCAmelCase_ : int = get_tokenizer_config('bert-base-cased' ) UpperCAmelCase_ : Optional[Any] = config.pop('_commit_hash' , _UpperCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_UpperCamelCase , {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase_ : Optional[int] = get_tokenizer_config(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Tuple = get_tokenizer_config(_UpperCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer' ) def __UpperCAmelCase ( self ) -> Union[str, Any]: try: AutoConfig.register('custom' , _UpperCamelCase ) AutoTokenizer.register(_UpperCamelCase , slow_tokenizer_class=_UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): AutoTokenizer.register(_UpperCamelCase , slow_tokenizer_class=_UpperCamelCase ) UpperCAmelCase_ : int = CustomTokenizer.from_pretrained(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __UpperCAmelCase ( self ) -> Any: try: AutoConfig.register('custom' , _UpperCamelCase ) # Can register in two steps AutoTokenizer.register(_UpperCamelCase , slow_tokenizer_class=_UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_UpperCamelCase , fast_tokenizer_class=_UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _UpperCamelCase , slow_tokenizer_class=_UpperCamelCase , fast_tokenizer_class=_UpperCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCamelCase ): AutoTokenizer.register(_UpperCamelCase , fast_tokenizer_class=_UpperCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = BertTokenizerFast.from_pretrained(_UpperCamelCase ) bert_tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Dict = CustomTokenizerFast.from_pretrained(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(_UpperCamelCase , use_fast=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase ) UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(_UpperCamelCase , trust_remote_code=_UpperCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version UpperCAmelCase_ : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase , use_fast=_UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(_UpperCamelCase , trust_remote_code=_UpperCamelCase , use_fast=_UpperCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) @require_tokenizers def __UpperCAmelCase ( self ) -> Optional[Any]: class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Any = False class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Tuple = NewTokenizer _snake_case : int = False try: AutoConfig.register('custom' , _UpperCamelCase ) AutoTokenizer.register(_UpperCamelCase , slow_tokenizer_class=_UpperCamelCase ) AutoTokenizer.register(_UpperCamelCase , fast_tokenizer_class=_UpperCamelCase ) # If remote code is not set, the default is to use local UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase_ : str = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase , use_fast=_UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase_ : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_UpperCamelCase , use_fast=_UpperCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version UpperCAmelCase_ : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_UpperCamelCase , use_fast=_UpperCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def __UpperCAmelCase ( self ) -> Dict: with self.assertRaisesRegex( _UpperCamelCase , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained('bert-base' ) def __UpperCAmelCase ( self ) -> str: with self.assertRaisesRegex( _UpperCamelCase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(_UpperCamelCase , revision='aaaaaa' ) def __UpperCAmelCase ( self ) -> Tuple: # Make sure we have cached the tokenizer. UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
29
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __a = logging.get_logger(__name__) __a = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class lowercase__( UpperCAmelCase ): """simple docstring""" a :str = 'van' def __init__( self : int , SCREAMING_SNAKE_CASE_ : int=2_2_4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : List[str]=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE_ : Optional[Any]=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=[3, 3, 1_2, 3] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=[8, 8, 4, 4] , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Optional[int]=1e-6 , SCREAMING_SNAKE_CASE_ : Any=1e-2 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , **SCREAMING_SNAKE_CASE_ : int , ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = image_size lowercase_ = num_channels lowercase_ = patch_sizes lowercase_ = strides lowercase_ = hidden_sizes lowercase_ = depths lowercase_ = mlp_ratios lowercase_ = hidden_act lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = layer_scale_init_value lowercase_ = drop_path_rate lowercase_ = dropout_rate
30
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> float: """simple docstring""" def get_matched_characters(_UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Dict = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase : int = int(max(0 , i - limit ) ) _UpperCAmelCase : Any = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCAmelCase ) _UpperCAmelCase : List[Any] = F"""{_stra[0:_stra.index(_UpperCAmelCase )]} {_stra[_stra.index(_UpperCAmelCase ) + 1:]}""" return "".join(_UpperCAmelCase ) # matching characters _UpperCAmelCase : Union[str, Any] = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = get_matched_characters(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = len(_UpperCAmelCase ) # transposition _UpperCAmelCase : Optional[Any] = ( len([(ca, ca) for ca, ca in zip(_UpperCAmelCase , _UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase : Dict = 0.0 else: _UpperCAmelCase : Optional[int] = ( 1 / 3 * ( match_count / len(_UpperCAmelCase ) + match_count / len(_UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase : str = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
31
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Union[str, Any] = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
32
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCAmelCase : def __init__( self : List[str] , A : Any , ) -> Dict: lowercase_ : Tuple = parent lowercase_ : str = 13 lowercase_ : Optional[Any] = 7 lowercase_ : Any = True lowercase_ : str = True lowercase_ : List[str] = True lowercase_ : int = True lowercase_ : Dict = True lowercase_ : int = False lowercase_ : Dict = False lowercase_ : Union[str, Any] = False lowercase_ : List[Any] = 2 lowercase_ : Optional[int] = 99 lowercase_ : List[Any] = 0 lowercase_ : Dict = 32 lowercase_ : List[Any] = 2 lowercase_ : Tuple = 4 lowercase_ : List[Any] = 0.1 lowercase_ : List[Any] = 0.1 lowercase_ : Optional[Any] = 5_12 lowercase_ : Optional[Any] = 16 lowercase_ : List[str] = 2 lowercase_ : str = 0.02 lowercase_ : Any = 3 lowercase_ : List[str] = 4 lowercase_ : Dict = '''last''' lowercase_ : int = True lowercase_ : str = None lowercase_ : Dict = 0 def A ( self : List[str] ) -> List[Any]: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowercase_ : Any = None if self.use_input_lengths: lowercase_ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : Optional[Any] = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[int] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Any = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self : int , A : Dict , A : Dict , A : str , A : Tuple , A : Optional[Any] , A : str , A : Union[str, Any] , A : Dict , A : Optional[int] , ) -> int: lowercase_ : str = TFFlaubertModel(config=A ) lowercase_ : int = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} lowercase_ : int = model(A ) lowercase_ : Any = [input_ids, input_mask] lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , A : int , A : List[str] , A : Dict , A : int , A : int , A : Dict , A : Optional[int] , A : Dict , A : int , ) -> Optional[Any]: lowercase_ : int = TFFlaubertWithLMHeadModel(A ) lowercase_ : List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , A : Optional[int] , A : Tuple , A : Dict , A : List[Any] , A : Dict , A : Any , A : List[Any] , A : List[Any] , A : str , ) -> Union[str, Any]: lowercase_ : List[Any] = TFFlaubertForQuestionAnsweringSimple(A ) lowercase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int , A : Optional[Any] , A : int , A : List[str] , A : Optional[Any] , A : Tuple , A : Dict , A : Any , A : Any , A : str , ) -> Optional[int]: lowercase_ : str = TFFlaubertForSequenceClassification(A ) lowercase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths} lowercase_ : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : List[Any] , A : Tuple , A : int , A : Dict , A : Any , A : int , A : Optional[int] , A : str , A : str , A : int , ) -> Optional[int]: lowercase_ : Optional[Any] = self.num_labels lowercase_ : List[Any] = TFFlaubertForTokenClassification(config=A ) lowercase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[str] , A : str , A : Any , A : int , A : Dict , A : Tuple , A : List[Any] , A : Optional[Any] , A : List[Any] , A : Optional[int] , ) -> Union[str, Any]: lowercase_ : Union[str, Any] = self.num_choices lowercase_ : Union[str, Any] = TFFlaubertForMultipleChoice(config=A ) lowercase_ : Union[str, Any] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Any = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Dict = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase_ : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] ) -> str: lowercase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Dict = config_and_inputs lowercase_ : Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False def A ( self : Any , A : Any , A : Union[str, Any] , A : Optional[int] , A : int , A : str ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self : Any ) -> Optional[int]: lowercase_ : Dict = TFFlaubertModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=A , emb_dim=37 ) def A ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def A ( self : List[str] ) -> int: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def A ( self : List[str] ) -> int: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def A ( self : List[str] ) -> int: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def A ( self : Any ) -> List[Any]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def A ( self : Optional[int] ) -> str: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A ) def A ( self : Optional[Any] ) -> Tuple: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A ) @slow def A ( self : List[Any] ) -> Optional[Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = TFFlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : str ) -> int: lowercase_ : Any = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) lowercase_ : Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowercase_ : int = model(A )[0] lowercase_ : str = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , A ) # compare the actual values for a slice. lowercase_ : int = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
33
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : Optional[Any] , lowercase : int , lowercase : str=13 , lowercase : Any=7 , lowercase : str=True , lowercase : int=True , lowercase : int=True , lowercase : Any=True , lowercase : Any=99 , lowercase : Any=32 , lowercase : Dict=5 , lowercase : Optional[int]=4 , lowercase : Dict=37 , lowercase : int="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : str=512 , lowercase : Tuple=16 , lowercase : List[str]=2 , lowercase : str=0.02 , lowercase : str=3 , lowercase : Dict=4 , lowercase : int=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Tuple ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Tuple , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = NystromformerModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase , token_type_ids=lowercase ) UpperCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , lowercase : Optional[int] , lowercase : Any , lowercase : str , lowercase : int , lowercase : int , lowercase : Dict , lowercase : int ): '''simple docstring''' UpperCAmelCase = NystromformerForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Union[str, Any] , lowercase : Optional[Any] , lowercase : Dict , lowercase : Tuple , lowercase : int , lowercase : Optional[Any] , lowercase : List[Any] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = NystromformerForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[str] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : str , lowercase : Optional[int] , lowercase : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Any , lowercase : str , lowercase : List[Any] , lowercase : str , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Tuple , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[int] , lowercase : int , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Any , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = NystromformerForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : Optional[int] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __a : List[Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __a : Optional[int] = False __a : int = False def A ( self : int ): '''simple docstring''' UpperCAmelCase = NystromformerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def A ( self : int ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = NystromformerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class _a ( unittest.TestCase ): @slow def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCAmelCase = model(lowercase )[0] UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) UpperCAmelCase = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = '''the [MASK] of Belgium is Brussels''' UpperCAmelCase = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) UpperCAmelCase = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) UpperCAmelCase = tokenizer(lowercase , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase = model(encoding.input_ids ).logits UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(lowercase ) , '''capital''' )
34
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase ) -> Any: snake_case__ : int = torch.load(_lowerCAmelCase , map_location="""cpu""" ) if "model" in sd.keys(): snake_case__ : Union[str, Any] = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case__ : Dict = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCAmelCase ) snake_case__ : Optional[int] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case__ : Tuple = sd.pop(_lowerCAmelCase ) snake_case__ : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case__ : str = sd[key] # We split QKV in separate Q,K,V snake_case__ : str = key.replace(""".qkv_proj.""" , """.q_proj.""" ) snake_case__ : Any = key.replace(""".qkv_proj.""" , """.k_proj.""" ) snake_case__ : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) snake_case__ : str = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case__ , snake_case__ , snake_case__ : Dict = torch.split(_lowerCAmelCase , depth // 3 , dim=0 ) snake_case__ : int = q snake_case__ : List[Any] = k snake_case__ : Any = v del sd[key] return sd @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> Any: snake_case__ : Any = load_checkpoint(_lowerCAmelCase ) if config is not None: snake_case__ : Any = OPTConfig.from_pretrained(_lowerCAmelCase ) else: snake_case__ : Union[str, Any] = OPTConfig() snake_case__ : List[Any] = OPTModel(_lowerCAmelCase ).half().eval() model.load_state_dict(_lowerCAmelCase ) # Check results Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __a = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
35
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class UpperCAmelCase_ ( a): lowerCamelCase__ = 'swinv2' lowerCamelCase__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, __a=224, __a=4, __a=3, __a=96, __a=[2, 2, 6, 2], __a=[3, 6, 12, 24], __a=7, __a=4.0, __a=True, __a=0.0, __a=0.0, __a=0.1, __a="gelu", __a=False, __a=0.02, __a=1E-5, __a=32, **__a, ): '''simple docstring''' super().__init__(**__a) _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Union[str, Any] = embed_dim _lowerCAmelCase : Union[str, Any] = depths _lowerCAmelCase : Tuple = len(__a) _lowerCAmelCase : Union[str, Any] = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : str = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : str = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = drop_path_rate _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Union[str, Any] = use_absolute_embeddings _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Tuple = int(embed_dim * 2 ** (len(__a) - 1)) _lowerCAmelCase : Optional[int] = (0, 0, 0, 0)
36
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCAmelCase = HfArgumentParser(InitializationArguments) _lowerCAmelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCAmelCase = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) _lowerCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCAmelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
37
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase_ : str = datasets.utils.logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): snake_case__ : Optional[datasets.Features] = None snake_case__ : str = "utf-8" snake_case__ : Optional[str] = None snake_case__ : Optional[str] = None snake_case__ : bool = True # deprecated snake_case__ : Optional[int] = None # deprecated snake_case__ : int = 1_0 << 2_0 # 10MB snake_case__ : Optional[bool] = None class _SCREAMING_SNAKE_CASE ( datasets.ArrowBasedBuilder ): snake_case__ : int = JsonConfig def _A ( self : List[Any] ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCamelCase :Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def _A ( self : int , __lowerCamelCase : Tuple ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCamelCase :List[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): UpperCamelCase :Optional[int] = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :Optional[int] = [files] UpperCamelCase :Optional[Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase :Tuple = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :Dict = [files] UpperCamelCase :List[Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"""files""": files} ) ) return splits def _A ( self : List[str] , __lowerCamelCase : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase :List[str] = self.config.features.arrow_schema.field(__lowerCamelCase ).type UpperCamelCase :Union[str, Any] = pa_table.append_column(__lowerCamelCase , pa.array([None] * len(__lowerCamelCase ) , type=__lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase :Any = table_cast(__lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _A ( self : Tuple , __lowerCamelCase : int ): for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase :Dict = json.load(__lowerCamelCase ) # We keep only the field we are interested in UpperCamelCase :int = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCamelCase , (list, tuple) ): UpperCamelCase :Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase :Any = {col: [row.get(__lowerCamelCase ) for row in dataset] for col in keys} else: UpperCamelCase :Optional[int] = dataset UpperCamelCase :Optional[Any] = pa.Table.from_pydict(__lowerCamelCase ) yield file_idx, self._cast_table(__lowerCamelCase ) # If the file has one json object per line else: with open(__lowerCamelCase , """rb""" ) as f: UpperCamelCase :List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase :str = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase :Optional[int] = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: UpperCamelCase :int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase :List[str] = batch.decode(self.config.encoding , errors=__lowerCamelCase ).encode("""utf-8""" ) try: while True: try: UpperCamelCase :int = paj.read_json( io.BytesIO(__lowerCamelCase ) , read_options=paj.ReadOptions(block_size=__lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCamelCase ) or block_size > len(__lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__lowerCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase :Optional[Any] = json.load(__lowerCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCamelCase , __lowerCamelCase ): # list is the only sequence type supported in JSON try: UpperCamelCase :Tuple = set().union(*[row.keys() for row in dataset] ) UpperCamelCase :Dict = {col: [row.get(__lowerCamelCase ) for row in dataset] for col in keys} UpperCamelCase :Any = pa.Table.from_pydict(__lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__lowerCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) batch_idx += 1
38
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0
def __A ( __lowerCAmelCase )-> str: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" _UpperCAmelCase = False if num < 0: _UpperCAmelCase = True _UpperCAmelCase = -num _UpperCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(__lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
39
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
"""simple docstring""" import re from filelock import FileLock try: import nltk __lowercase = True except (ImportError, ModuleNotFoundError): __lowercase = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def lowercase ( A_ )-> str: '''simple docstring''' re.sub("<n>" , "" , A_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A_ ) )
40
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
'''simple docstring''' from __future__ import annotations _A : List[Any] ='''Muhammad Umer Farooq''' _A : Union[str, Any] ='''MIT''' _A : List[Any] ='''1.0.0''' _A : List[str] ='''Muhammad Umer Farooq''' _A : str ='''contact@muhammadumerfarooq.me''' _A : List[Any] ='''Alpha''' import re from html.parser import HTMLParser from urllib import parse import requests class _lowercase ( _lowercase ): def __init__( self: Tuple , UpperCamelCase__: str ): super().__init__() lowerCamelCase__ : list[str] = [] lowerCamelCase__ : int = domain def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str , UpperCamelCase__: list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: lowerCamelCase__ : str = parse.urljoin(self.domain , UpperCamelCase__ ) self.urls.append(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return ".".join(get_sub_domain_name(UpperCamelCase ).split(""".""" )[-2:] ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: return parse.urlparse(UpperCamelCase ).netloc def SCREAMING_SNAKE_CASE_ (UpperCamelCase = "https://github.com" ) -> list[str]: lowerCamelCase__ : List[Any] = get_domain_name(UpperCamelCase ) # Initialize the parser lowerCamelCase__ : Optional[int] = Parser(UpperCamelCase ) try: # Open URL lowerCamelCase__ : Union[str, Any] = requests.get(UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through lowerCamelCase__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: lowerCamelCase__ : Optional[Any] = requests.get(UpperCamelCase ) # Get the valid email. lowerCamelCase__ : Union[str, Any] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(UpperCamelCase ) if __name__ == "__main__": _A : List[str] =emails_from_url('''https://github.com''') print(F'{len(emails)} emails found:') print('''\n'''.join(sorted(emails)))
41
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = GPTSanJapaneseTokenizer __lowercase = False __lowercase = {"""do_clean_text""": False, """add_prefix_space""": False} def lowerCamelCase ( self ): """simple docstring""" super().setUp() # fmt: off _snake_case = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on _snake_case = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase_ ) ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = 'こんにちは、世界。 \nこんばんは、㔺界。😀' _snake_case = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case , _snake_case = self.get_input_output_texts(lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" pass # TODO add if relevant def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizer() # Testing tokenization _snake_case = 'こんにちは、世界。 こんばんは、㔺界。' _snake_case = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids without special tokens _snake_case = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _snake_case = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Testing conversion to ids with special tokens _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _snake_case = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizer() # Testing tokenization _snake_case = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' _snake_case = 'こんにちは、、、、世界。こんばんは、、、、世界。' _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _snake_case = 'こんにちは、世界。' _snake_case = 'こんばんは、㔺界。😀' _snake_case = 'こんにちは、世界。こんばんは、世界。😀' _snake_case = tokenizer.encode(prefix_text + input_text ) _snake_case = tokenizer.encode('' , prefix_text=prefix_text + input_text ) _snake_case = tokenizer.encode(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization _snake_case = 'こんにちは、世界。' _snake_case = 'こんばんは、㔺界。😀' _snake_case = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _snake_case = len(tokenizer.encode(lowerCAmelCase_ ) ) - 2 _snake_case = [1] + [0] * (len_prefix + len_text + 1) _snake_case = [1] * (len_prefix + len_text + 1) + [0] _snake_case = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _snake_case = tokenizer(prefix_text + input_text ).token_type_ids _snake_case = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids _snake_case = tokenizer(lowerCAmelCase_ , prefix_text=lowerCAmelCase_ ).token_type_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _snake_case = tokenizer.encode('あンいワ' ) _snake_case = tokenizer.encode('' , prefix_text='あンいワ' ) _snake_case = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase_ ) , tokenizer.decode(lowerCAmelCase_ ) ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) _snake_case = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = tokenizer.batch_encode_plus(lowerCAmelCase_ , padding=lowerCAmelCase_ ) # fmt: off _snake_case = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] _snake_case = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _snake_case = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase_ ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase_ ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" pass def lowerCamelCase ( self ): """simple docstring""" pass
42
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
__lowercase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __lowercase = [None] * 1000_0000 __lowercase = True __lowercase = False def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __UpperCamelCase :Optional[Any] = chain(next_number(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :Union[str, Any] = number_chain while number < 10_000_000: __UpperCamelCase :List[Any] = number_chain number *= 10 return number_chain def lowerCamelCase ( SCREAMING_SNAKE_CASE = 10_000_000 ): '''simple docstring''' for i in range(1 , SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
43
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _a : str = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _a : Optional[int] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = "maskformer" _UpperCamelCase : Optional[Any] = {"hidden_size": "mask_feature_size"} _UpperCamelCase : Any = ["resnet", "swin"] _UpperCamelCase : Dict = ["detr"] def __init__( self , a__ = 256 , a__ = 256 , a__ = 0.1 , a__ = False , a__ = None , a__ = None , a__ = 0.0_2 , a__ = 1.0 , a__ = 1.0 , a__ = 1.0 , a__ = 2_0.0 , a__ = None , **a__ , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCAmelCase : Union[str, Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(a__ , a__ ): _lowerCAmelCase : str = backbone_config.pop("""model_type""" ) _lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Dict = config_class.from_dict(a__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCAmelCase : int = DetrConfig() else: # verify that the decoder is supported _lowerCAmelCase : Union[str, Any] = ( decoder_config.pop("""model_type""" ) if isinstance(a__ , a__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(a__ , a__ ): _lowerCAmelCase : int = CONFIG_MAPPING[decoder_type] _lowerCAmelCase : Tuple = config_class.from_dict(a__ ) _lowerCAmelCase : List[Any] = backbone_config _lowerCAmelCase : List[str] = decoder_config # main feature dimension for the model _lowerCAmelCase : int = fpn_feature_size _lowerCAmelCase : Tuple = mask_feature_size # initializer _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = init_xavier_std # Hungarian matcher && loss _lowerCAmelCase : Dict = cross_entropy_weight _lowerCAmelCase : Union[str, Any] = dice_weight _lowerCAmelCase : Tuple = mask_weight _lowerCAmelCase : int = use_auxiliary_loss _lowerCAmelCase : List[Any] = no_object_weight _lowerCAmelCase : int = output_auxiliary_logits _lowerCAmelCase : str = self.decoder_config.encoder_attention_heads _lowerCAmelCase : int = self.decoder_config.num_hidden_layers super().__init__(**a__ ) @classmethod def __A ( cls , a__ , a__ , **a__ ): return cls( backbone_config=a__ , decoder_config=a__ , **a__ , ) def __A ( self ): _lowerCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) _lowerCAmelCase : str = self.backbone_config.to_dict() _lowerCAmelCase : Dict = self.decoder_config.to_dict() _lowerCAmelCase : List[Any] = self.__class__.model_type return output
44
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: __a = 0 __a = len(lowerCAmelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __a = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None __a = sorted_collection[point] if current_item == item: return point else: if point < left: __a = left __a = point elif point > right: __a = right __a = point else: if item < current_item: __a = point - 1 else: __a = point + 1 return None def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __a = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase__ , lowerCAmelCase__ , point + 1 , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : int ) -> List[str]: if collection != sorted(lowerCAmelCase__ ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 6_7 lowercase_ = interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print("Not found")
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
"""simple docstring""" import random class lowercase : @staticmethod def _snake_case ( lowercase ) -> tuple[list[int], list[int]]: lowerCAmelCase = [ord(lowercase ) for i in text] lowerCAmelCase = [] lowerCAmelCase = [] for i in plain: lowerCAmelCase = random.randint(1 , 300 ) lowerCAmelCase = (i + k) * k cipher.append(lowercase ) key.append(lowercase ) return cipher, key @staticmethod def _snake_case ( lowercase , lowercase ) -> str: lowerCAmelCase = [] for i in range(len(lowercase ) ): lowerCAmelCase = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowercase ) ) return "".join(lowercase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
46
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : List[str] = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowerCamelCase : Any = 1_0 lowerCamelCase : Tuple = 2_5_6 def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[MinHash]: """simple docstring""" if len(_UpperCamelCase ) < MIN_NUM_TOKENS: return None _SCREAMING_SNAKE_CASE =MinHash(num_perm=_UpperCamelCase ) for token in set(_UpperCamelCase ): min_hash.update(token.encode() ) return min_hash def _lowerCAmelCase ( _UpperCamelCase : str ) -> Set[str]: """simple docstring""" return {t for t in NON_ALPHA.split(_UpperCamelCase ) if len(t.strip() ) > 0} class A__ : def __init__( self : Dict , *, _a : float = 0.85 , ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =duplication_jaccard_threshold _SCREAMING_SNAKE_CASE =NUM_PERM _SCREAMING_SNAKE_CASE =MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _SCREAMING_SNAKE_CASE =defaultdict(_a ) def A ( self : Tuple , _a : Tuple , _a : MinHash ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._index.query(_a ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def A ( self : int ) -> List[List[Dict]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for base, duplicates in self._duplicate_clusters.items(): _SCREAMING_SNAKE_CASE =[base] + list(_a ) # reformat the cluster to be a list of dict _SCREAMING_SNAKE_CASE =[{'base_index': el[0], 'repo_name': el[1], 'path': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def A ( self : Union[str, Any] , _a : Optional[Any] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_duplicate_clusters() with open(_a , 'w' ) as f: json.dump(_a , _a ) def _lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =element _SCREAMING_SNAKE_CASE =get_min_hash([t for t in NON_ALPHA.split(data['content'] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] ) -> List[Any]: """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_UpperCamelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] , _UpperCamelCase : float ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =DuplicationIndex(duplication_jaccard_threshold=_UpperCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_UpperCamelCase ) ) , max_queue_size=1_00 ) ): di.add(_UpperCamelCase , _UpperCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str ) -> float: """simple docstring""" _SCREAMING_SNAKE_CASE =get_tokens(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =get_tokens(_UpperCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : Union[str, Any] = None def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for elementa in cluster: _SCREAMING_SNAKE_CASE =_shared_dataset[elementa['base_index']]['content'] for elementa in extremes: _SCREAMING_SNAKE_CASE =_shared_dataset[elementa['base_index']]['content'] if jaccard_similarity(_UpperCamelCase , _UpperCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _SCREAMING_SNAKE_CASE =1 extremes.append(_UpperCamelCase ) return extremes def _lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : Any ) -> Optional[Any]: """simple docstring""" global _shared_dataset _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =partial(_find_cluster_extremes_shared , jaccard_threshold=_UpperCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _UpperCamelCase , _UpperCamelCase , ) , total=len(_UpperCamelCase ) , ): extremes_list.append(_UpperCamelCase ) return extremes_list def _lowerCAmelCase ( _UpperCamelCase : Type[Dataset] , _UpperCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: """simple docstring""" _SCREAMING_SNAKE_CASE =make_duplicate_clusters(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE ={x['base_index'] for cluster in duplicate_clusters for x in cluster} _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =find_extremes(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for extremes in extremes_clusters: for element in extremes: _SCREAMING_SNAKE_CASE =element _SCREAMING_SNAKE_CASE =duplicate_indices - set(extreme_dict.keys() ) _SCREAMING_SNAKE_CASE =dataset.filter(lambda _UpperCamelCase , _UpperCamelCase : idx not in remove_indices , with_indices=_UpperCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _SCREAMING_SNAKE_CASE =element['base_index'] in extreme_dict if element["is_extreme"]: _SCREAMING_SNAKE_CASE =extreme_dict[element['base_index']]['copies'] print(f"Original dataset size: {len(_UpperCamelCase )}" ) print(f"Number of duplicate clusters: {len(_UpperCamelCase )}" ) print(f"Files in duplicate cluster: {len(_UpperCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_UpperCamelCase )}" ) print(f"Filtered dataset size: {len(_UpperCamelCase )}" ) return ds_filter, duplicate_clusters
47
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE__ : Dict = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=False ,) -> List[Any]: output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE ,exist_ok=_SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,f=output_path.as_posix() ,input_names=_SCREAMING_SNAKE_CASE ,output_names=_SCREAMING_SNAKE_CASE ,dynamic_axes=_SCREAMING_SNAKE_CASE ,do_constant_folding=_SCREAMING_SNAKE_CASE ,use_external_data_format=_SCREAMING_SNAKE_CASE ,enable_onnx_checker=_SCREAMING_SNAKE_CASE ,opset_version=_SCREAMING_SNAKE_CASE ,) else: export( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,f=output_path.as_posix() ,input_names=_SCREAMING_SNAKE_CASE ,output_names=_SCREAMING_SNAKE_CASE ,dynamic_axes=_SCREAMING_SNAKE_CASE ,do_constant_folding=_SCREAMING_SNAKE_CASE ,opset_version=_SCREAMING_SNAKE_CASE ,) @torch.no_grad() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = False ) -> List[Any]: lowerCamelCase : Union[str, Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowerCamelCase : Union[str, Any] = "cuda" elif fpaa and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA" ) else: lowerCamelCase : Dict = "cpu" lowerCamelCase : int = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ,torch_dtype=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCamelCase : Tuple = Path(_SCREAMING_SNAKE_CASE ) # TEXT ENCODER lowerCamelCase : Dict = pipeline.text_encoder.config.max_position_embeddings lowerCamelCase : Dict = pipeline.text_encoder.config.hidden_size lowerCamelCase : Dict = pipeline.tokenizer( "A sample prompt" ,padding="max_length" ,max_length=pipeline.tokenizer.model_max_length ,truncation=_SCREAMING_SNAKE_CASE ,return_tensors="pt" ,) onnx_export( pipeline.text_encoder ,model_args=(text_input.input_ids.to(device=_SCREAMING_SNAKE_CASE ,dtype=torch.intaa )) ,output_path=output_path / "text_encoder" / "model.onnx" ,ordered_input_names=["input_ids"] ,output_names=["last_hidden_state", "pooler_output"] ,dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, } ,opset=_SCREAMING_SNAKE_CASE ,) del pipeline.text_encoder # UNET lowerCamelCase : int = pipeline.unet.config.in_channels lowerCamelCase : Any = pipeline.unet.config.sample_size lowerCamelCase : List[str] = output_path / "unet" / "model.onnx" onnx_export( pipeline.unet ,model_args=( torch.randn(2 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), torch.randn(2 ).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), torch.randn(2 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), False, ) ,output_path=_SCREAMING_SNAKE_CASE ,ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"] ,output_names=["out_sample"] ,dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, } ,opset=_SCREAMING_SNAKE_CASE ,use_external_data_format=_SCREAMING_SNAKE_CASE ,) lowerCamelCase : List[str] = str(unet_path.absolute().as_posix() ) lowerCamelCase : Optional[int] = os.path.dirname(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = onnx.load(_SCREAMING_SNAKE_CASE ) # clean up existing tensor files shutil.rmtree(_SCREAMING_SNAKE_CASE ) os.mkdir(_SCREAMING_SNAKE_CASE ) # collate external tensor files into one onnx.save_model( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,save_as_external_data=_SCREAMING_SNAKE_CASE ,all_tensors_to_one_file=_SCREAMING_SNAKE_CASE ,location="weights.pb" ,convert_attribute=_SCREAMING_SNAKE_CASE ,) del pipeline.unet # VAE ENCODER lowerCamelCase : int = pipeline.vae lowerCamelCase : Optional[Any] = vae_encoder.config.in_channels lowerCamelCase : int = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowerCamelCase : str = lambda _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE : vae_encoder.encode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )[0].sample() onnx_export( _SCREAMING_SNAKE_CASE ,model_args=( torch.randn(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), False, ) ,output_path=output_path / "vae_encoder" / "model.onnx" ,ordered_input_names=["sample", "return_dict"] ,output_names=["latent_sample"] ,dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } ,opset=_SCREAMING_SNAKE_CASE ,) # VAE DECODER lowerCamelCase : int = pipeline.vae lowerCamelCase : Optional[int] = vae_decoder.config.latent_channels lowerCamelCase : str = vae_decoder.config.out_channels # forward only through the decoder part lowerCamelCase : str = vae_encoder.decode onnx_export( _SCREAMING_SNAKE_CASE ,model_args=( torch.randn(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), False, ) ,output_path=output_path / "vae_decoder" / "model.onnx" ,ordered_input_names=["latent_sample", "return_dict"] ,output_names=["sample"] ,dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, } ,opset=_SCREAMING_SNAKE_CASE ,) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowerCamelCase : int = pipeline.safety_checker lowerCamelCase : str = safety_checker.config.vision_config.num_channels lowerCamelCase : Tuple = safety_checker.config.vision_config.image_size lowerCamelCase : int = safety_checker.forward_onnx onnx_export( pipeline.safety_checker ,model_args=( torch.randn( 1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), torch.randn(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ,dtype=_SCREAMING_SNAKE_CASE ), ) ,output_path=output_path / "safety_checker" / "model.onnx" ,ordered_input_names=["clip_input", "images"] ,output_names=["out_images", "has_nsfw_concepts"] ,dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, } ,opset=_SCREAMING_SNAKE_CASE ,) del pipeline.safety_checker lowerCamelCase : List[Any] = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker" ) lowerCamelCase : Optional[Any] = pipeline.feature_extractor else: lowerCamelCase : List[Any] = None lowerCamelCase : Optional[int] = None lowerCamelCase : str = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder" ) ,vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder" ) ,text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder" ) ,tokenizer=pipeline.tokenizer ,unet=OnnxRuntimeModel.from_pretrained(output_path / "unet" ) ,scheduler=pipeline.scheduler ,safety_checker=_SCREAMING_SNAKE_CASE ,feature_extractor=_SCREAMING_SNAKE_CASE ,requires_safety_checker=safety_checker is not None ,) onnx_pipeline.save_pretrained(_SCREAMING_SNAKE_CASE ) print("ONNX pipeline saved to" ,_SCREAMING_SNAKE_CASE ) del pipeline del onnx_pipeline lowerCamelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ,provider="CPUExecutionProvider" ) print("ONNX pipeline is loadable" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') SCREAMING_SNAKE_CASE__ : Any = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
48
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
__snake_case :Union[str, Any] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __snake_case :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __snake_case :Optional[int] = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
49
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: # Base Case if curr_ind == len(_UpperCAmelCase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_UpperCAmelCase ) ): if valid_connection(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Insert current vertex into path as next transition lowerCamelCase__ : List[Any] = next_ver # Validate created path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , curr_ind + 1 ): return True # Backtrack lowerCamelCase__ : List[str] = -1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 0 ) -> list[int]: lowerCamelCase__ : Any = [-1] * (len(_UpperCAmelCase ) + 1) # initialize start and end of path with starting index lowerCamelCase__ : Optional[Any] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_UpperCAmelCase , _UpperCAmelCase , 1 ) else []
50
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : str = XLNetTokenizer UpperCAmelCase__ : Optional[Any] = XLNetTokenizerFast UpperCAmelCase__ : str = True UpperCAmelCase__ : Optional[int] = True def lowerCamelCase ( self : str): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLNetTokenizer(_snake_case , keep_accents=_snake_case) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''<eod>''') self.assertEqual(len(_snake_case) , 1006) def lowerCamelCase ( self : int): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = XLNetTokenizer(_snake_case , keep_accents=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case) , [285, 46, 10, 170, 382]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_snake_case) self.assertListEqual(_snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_snake_case) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = XLNetTokenizer(_snake_case , do_lower_case=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''▁he''', '''ll''', '''o''']) def lowerCamelCase ( self : int): """simple docstring""" UpperCAmelCase_ = XLNetTokenizer(_snake_case , do_lower_case=_snake_case) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def lowerCamelCase ( self : List[Any]): """simple docstring""" UpperCAmelCase_ = XLNetTokenizer.from_pretrained('''xlnet-base-cased''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
51
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
from sklearn.metrics import fa_score import datasets __lowerCamelCase : List[Any] = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ __lowerCamelCase : List[Any] = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ __lowerCamelCase : str = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def __UpperCamelCase( self , A_ , A_ , A_=None , A_=1 , A_="binary" , A_=None ): '''simple docstring''' UpperCamelCase : List[str] = fa_score( A_ , A_ , labels=A_ , pos_label=A_ , average=A_ , sample_weight=A_ ) return {"f1": float(A_ ) if score.size == 1 else score}
52
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = torch.nn.Linear(1_0 , 1_0 ) __UpperCamelCase = torch.optim.SGD(model.parameters() , 0.1 ) __UpperCamelCase = Accelerator() __UpperCamelCase = accelerator.prepare(__A ) try: pickle.loads(pickle.dumps(__A ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
53
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": a__ : str = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') a__ : Optional[Any] = parser.parse_args() if args.model_type == "bert": a__ : int = BertForMaskedLM.from_pretrained(args.model_name) a__ : Union[str, Any] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') a__ : List[Any] = model.state_dict() a__ : Union[str, Any] = {} for w in ["word_embeddings", "position_embeddings"]: a__ : Optional[Any] = state_dict[F"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: a__ : List[Any] = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"] a__ : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: a__ : str = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] a__ : Dict = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] a__ : int = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] a__ : Optional[Any] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] a__ : Any = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] a__ : int = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] a__ : List[str] = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] a__ : Any = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 a__ : Union[str, Any] = state_dict['''cls.predictions.decoder.weight'''] a__ : Dict = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: a__ : Union[str, Any] = state_dict[F"cls.predictions.transform.dense.{w}"] a__ : int = state_dict[F"cls.predictions.transform.LayerNorm.{w}"] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
54
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __snake_case ( ): lowerCamelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=UpperCAmelCase_ ) lowerCamelCase_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=UpperCAmelCase_ ) env_command_parser(subparsers=UpperCAmelCase_ ) launch_command_parser(subparsers=UpperCAmelCase_ ) tpu_command_parser(subparsers=UpperCAmelCase_ ) test_command_parser(subparsers=UpperCAmelCase_ ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(UpperCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase_ ) if __name__ == "__main__": main()
55
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Union[str, Any]=False ): snake_case_ = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class a ( _lowerCamelCase ): def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : int=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Union[str, Any]=True , lowercase_ : int=True , lowercase_ : int=True , lowercase_ : List[Any]=True , lowercase_ : List[Any]=99 , lowercase_ : Tuple=32 , lowercase_ : Any=32 , lowercase_ : Tuple=2 , lowercase_ : List[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : List[Any]="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Optional[Any]=512 , lowercase_ : Union[str, Any]=16 , lowercase_ : Optional[int]=2 , lowercase_ : Tuple=0.02 , lowercase_ : Optional[int]=3 , lowercase_ : Any=4 , lowercase_ : Dict=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = embedding_size def A_ ( self : Union[str, Any] ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Optional[int] ): snake_case_ = TFMobileBertModel(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): snake_case_ = TFMobileBertForMaskedLM(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : List[str] ): snake_case_ = TFMobileBertForNextSentencePrediction(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A_ ( self : Dict , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Any ): snake_case_ = TFMobileBertForPreTraining(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): snake_case_ = self.num_labels snake_case_ = TFMobileBertForSequenceClassification(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Any ): snake_case_ = self.num_choices snake_case_ = TFMobileBertForMultipleChoice(config=lowercase_ ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = TFMobileBertForTokenClassification(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Tuple ): snake_case_ = TFMobileBertForQuestionAnswering(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : int ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def A_ ( self : str ): snake_case_ = TFMobileBertModelTest.TFMobileBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def A_ ( self : int ): self.config_tester.run_common_tests() def A_ ( self : str ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def A_ ( self : Dict ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def A_ ( self : Any ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def A_ ( self : Any ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) @slow def A_ ( self : List[str] ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: snake_case_ = TFMobileBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class a ( unittest.TestCase ): @slow def A_ ( self : Optional[Any] ): snake_case_ = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(lowercase_ )[0] snake_case_ = [1, 6, 3_0522] self.assertEqual(output.shape , lowercase_ ) snake_case_ = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4 )
56
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def snake_case ( *__a , **__a ): pass @is_pipeline_test @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case ( self , __a , __a , __a ): __lowerCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __lowerCAmelCase = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def snake_case ( self , __a , __a ): __lowerCAmelCase = vqa_pipeline(__a , top_k=1 ) self.assertEqual( __a , [ [{"score": ANY(__a ), "answer": ANY(__a )}], [{"score": ANY(__a ), "answer": ANY(__a )}], ] , ) @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __lowerCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowerCAmelCase = "How many cats are there?" __lowerCAmelCase = vqa_pipeline(image=__a , question="How many cats are there?" , top_k=2 ) self.assertEqual( __a , [{"score": ANY(__a ), "answer": ANY(__a )}, {"score": ANY(__a ), "answer": ANY(__a )}] ) __lowerCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( __a , [{"score": ANY(__a ), "answer": ANY(__a )}, {"score": ANY(__a ), "answer": ANY(__a )}] ) @slow @require_torch def snake_case ( self ): __lowerCAmelCase = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) __lowerCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowerCAmelCase = "How many cats are there?" __lowerCAmelCase = vqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}] ) __lowerCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}] ) __lowerCAmelCase = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [[{"score": 0.8_7_9_9, "answer": "2"}, {"score": 0.2_9_6, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def snake_case ( self ): pass
57
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self , A = True , A = None , A = PILImageResampling.BICUBIC , A = True , A = None , A = True , A = 1 / 255 , A = True , A = None , A = None , A = True , **A , ) -> None: super().__init__(**A ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A , param_name="""crop_size""" ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = crop_size _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD _SCREAMING_SNAKE_CASE = do_convert_rgb def snake_case_( self , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _SCREAMING_SNAKE_CASE = get_resize_output_image_size(A , size=size["""shortest_edge"""] , default_to_square=A ) return resize(A , size=A , resample=A , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(A , size=(size["""height"""], size["""width"""]) , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def snake_case_( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(A , param_name="""size""" , default_to_square=A ) _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop _SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size _SCREAMING_SNAKE_CASE = get_size_dict(A , param_name="""crop_size""" , default_to_square=A ) _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _SCREAMING_SNAKE_CASE = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: _SCREAMING_SNAKE_CASE = [convert_to_rgb(A ) for image in images] # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(A ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=A , size=A , resample=A ) for image in images] if do_center_crop: _SCREAMING_SNAKE_CASE = [self.center_crop(image=A , size=A ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=A , mean=A , std=A ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(A , A ) for image in images] _SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
58
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class UpperCAmelCase : def __init__(self : Tuple , snake_case__ : Optional[int] , snake_case__ : List[str]=13 , snake_case__ : List[Any]=7 , snake_case__ : Tuple=False , snake_case__ : Dict=True , snake_case__ : Optional[int]=False , snake_case__ : Dict=True , snake_case__ : Tuple=33 , snake_case__ : str=32 , snake_case__ : Tuple=5 , snake_case__ : int=4 , snake_case__ : str=37 , snake_case__ : Optional[Any]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : str=5_12 , snake_case__ : List[Any]=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : List[str]=0.02 , snake_case__ : str=3 , snake_case__ : Optional[Any]=4 , snake_case__ : str=None , ) -> Tuple: '''simple docstring''' snake_case : int = parent snake_case : Dict = batch_size snake_case : List[Any] = seq_length snake_case : List[str] = is_training snake_case : Optional[Any] = use_input_mask snake_case : Optional[Any] = use_token_type_ids snake_case : Optional[Any] = use_labels snake_case : Union[str, Any] = vocab_size snake_case : Tuple = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : int = num_attention_heads snake_case : Any = intermediate_size snake_case : Tuple = hidden_act snake_case : Dict = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Dict = max_position_embeddings snake_case : str = type_vocab_size snake_case : Optional[Any] = type_sequence_label_size snake_case : Any = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Tuple = num_choices snake_case : str = scope def _SCREAMING_SNAKE_CASE (self : int ) -> int: '''simple docstring''' snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Union[str, Any] = None if self.use_input_mask: snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : int = None snake_case : Any = None snake_case : Tuple = None if self.use_labels: snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = EsmModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : List[str] = model(snake_case__ , attention_mask=snake_case__ ) snake_case : List[str] = model(snake_case__ ) snake_case : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Dict , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[Any] ) -> str: '''simple docstring''' snake_case : Optional[int] = EsmForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : int = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Any = self.num_labels snake_case : int = EsmForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Dict = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Tuple = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : Tuple = config_and_inputs snake_case : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : List[Any] = False A__ : int = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) A__ : Any = () A__ : Optional[Any] = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) A__ : List[Any] = True def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : int = EsmModelTester(self ) snake_case : Tuple = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case : Optional[int] = type self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = EsmModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _SCREAMING_SNAKE_CASE (self : str ) -> List[Any]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs()[0] snake_case : int = EsmEmbeddings(config=snake_case__ ) snake_case : List[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) snake_case : List[Any] = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) snake_case : Optional[int] = create_position_ids_from_input_ids(snake_case__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case__ , snake_case__ ) ) ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()[0] snake_case : Any = EsmEmbeddings(config=snake_case__ ) snake_case : Optional[int] = torch.empty(2 , 4 , 30 ) snake_case : Optional[Any] = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] snake_case : Dict = torch.as_tensor([expected_single_positions, expected_single_positions] ) snake_case : int = embeddings.create_position_ids_from_inputs_embeds(snake_case__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case__ , snake_case__ ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[Any]: '''simple docstring''' pass @require_torch class UpperCAmelCase ( A_ ): @slow def _SCREAMING_SNAKE_CASE (self : str ) -> str: '''simple docstring''' with torch.no_grad(): snake_case : Tuple = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() snake_case : str = torch.tensor([[0, 1, 2, 3, 4, 5]] ) snake_case : Optional[Any] = model(snake_case__ )[0] snake_case : List[str] = 33 snake_case : Tuple = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , snake_case__ ) snake_case : str = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' with torch.no_grad(): snake_case : Dict = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() snake_case : str = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) snake_case : int = model(snake_case__ )[0] # compare the actual values for a slice. snake_case : Optional[Any] = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) )
59
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Any = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys snake_case__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0