code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ : Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: SCREAMING_SNAKE_CASE__ : List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: SCREAMING_SNAKE_CASE__ : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) UpperCAmelCase_ : Dict = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) UpperCAmelCase_ : Dict = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) UpperCAmelCase_ : int = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) UpperCAmelCase_ : List[Any] = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior UpperCAmelCase_ : Union[str, Any] = text_classifier("This is great !" , return_all_scores=lowercase_ ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) UpperCAmelCase_ : Optional[Any] = text_classifier("This is great !" , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) UpperCAmelCase_ : Optional[int] = text_classifier(["This is great !", "Something else"] , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) UpperCAmelCase_ : Optional[int] = text_classifier(["This is great !", "Something else"] , return_all_scores=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Optional[Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) UpperCAmelCase_ : Dict = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) UpperCAmelCase_ : Optional[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Any = pipeline("text-classification" ) UpperCAmelCase_ : Tuple = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "POSITIVE", "score": 1.0}] ) UpperCAmelCase_ : int = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "NEGATIVE", "score": 1.0}] ) UpperCAmelCase_ : Optional[Any] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = pipeline("text-classification" , framework="tf" ) UpperCAmelCase_ : int = text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "POSITIVE", "score": 1.0}] ) UpperCAmelCase_ : List[Any] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "NEGATIVE", "score": 1.0}] ) UpperCAmelCase_ : Union[str, Any] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = TextClassificationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 UpperCAmelCase_ : str = "HuggingFace is in" UpperCAmelCase_ : Dict = text_classifier(lowercase_ ) self.assertEqual(nested_simplify(lowercase_ ) , [{"label": ANY(lowercase_ ), "score": ANY(lowercase_ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) UpperCAmelCase_ : Any = ["HuggingFace is in ", "Paris is in France"] UpperCAmelCase_ : List[Any] = text_classifier(lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , [{"label": ANY(lowercase_ ), "score": ANY(lowercase_ )}, {"label": ANY(lowercase_ ), "score": ANY(lowercase_ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format UpperCAmelCase_ : Optional[int] = text_classifier(lowercase_ , top_k=lowercase_ ) UpperCAmelCase_ : int = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowercase_ ) , [[{"label": ANY(lowercase_ ), "score": ANY(lowercase_ )}] * N, [{"label": ANY(lowercase_ ), "score": ANY(lowercase_ )}] * N] , ) UpperCAmelCase_ : List[Any] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} UpperCAmelCase_ : int = text_classifier(lowercase_ ) self.assertEqual( nested_simplify(lowercase_ ) , {"label": ANY(lowercase_ ), "score": ANY(lowercase_ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. UpperCAmelCase_ : Dict = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowercase_ ): text_classifier(lowercase_ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility UpperCAmelCase_ : Optional[int] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"label": ANY(lowercase_ ), "score": ANY(lowercase_ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
61
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
62
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Optional[Any] = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" __a ='swin' __a ={ 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Any , __a : Optional[Any]=2_24 , __a : List[str]=4 , __a : List[Any]=3 , __a : Optional[Any]=96 , __a : str=[2, 2, 6, 2] , __a : Tuple=[3, 6, 12, 24] , __a : List[str]=7 , __a : Tuple=4.0 , __a : Optional[Any]=True , __a : Optional[Any]=0.0 , __a : Any=0.0 , __a : Tuple=0.1 , __a : Tuple="gelu" , __a : Union[str, Any]=False , __a : Optional[int]=0.02 , __a : Tuple=1e-5 , __a : List[str]=32 , __a : int=None , __a : Dict=None , **__a : Any , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(__a ) _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = layer_norm_eps _a = initializer_range _a = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(__a ) - 1) ) _a = ["stem"] + [f'stage{idx}' for idx in range(1 , len(__a ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =version.parse('1.11' ) @property def UpperCamelCase__ ( self : List[str] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase__ ( self : str ): return 1e-4
63
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int ): """simple docstring""" _snake_case : list[list[int]] = [] _snake_case : list[int] = [] _snake_case : Tuple = 0 _snake_case : Optional[Any] = sum(snake_case__ ) create_state_space_tree(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return result def UpperCAmelCase__ (snake_case__ : list[int] , snake_case__ : int , snake_case__ : int , snake_case__ : list[int] , snake_case__ : list[list[int]] , snake_case__ : int , ): """simple docstring""" if sum(snake_case__ ) > max_sum or (remaining_nums_sum + sum(snake_case__ )) < max_sum: return if sum(snake_case__ ) == max_sum: result.append(snake_case__ ) return for index in range(snake_case__ , len(snake_case__ ) ): create_state_space_tree( snake_case__ , snake_case__ , index + 1 , [*path, nums[index]] , snake_case__ , remaining_nums_sum - nums[index] , ) A_ = [3, 34, 4, 12, 5, 2] A_ = 9 A_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
64
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ = logging.getLogger() UpperCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A ( UpperCAmelCase_ ): def lowercase_ (self : str , __UpperCAmelCase : int ) -> str: """simple docstring""" os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) UpperCAmelCase__ = {"source": "What is love ?", "target": "life"} UpperCAmelCase__ = {"train": 1_2, "val": 2, "test": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: UpperCAmelCase__ = "\n".join([contents[field]] * n_lines[split] ) with open(os.path.join(__UpperCAmelCase , f"""{split}.{field}""" ) , "w" ) as f: f.write(__UpperCAmelCase ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : str = "pytorch" ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.get_auto_remove_tmp_dir() UpperCAmelCase__ = os.path.join(__UpperCAmelCase , "output" ) UpperCAmelCase__ = os.path.join(__UpperCAmelCase , "data" ) self._create_dummy_data(data_dir=__UpperCAmelCase ) UpperCAmelCase__ = f""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(f"""--gpus={gpus}""" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) UpperCAmelCase__ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__UpperCAmelCase , env=self.get_env() ) UpperCAmelCase__ = os.path.join(__UpperCAmelCase , "metrics.json" ) with open(__UpperCAmelCase ) as f: UpperCAmelCase__ = json.load(__UpperCAmelCase ) return result @require_torch_gpu def lowercase_ (self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def lowercase_ (self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def lowercase_ (self : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase_ (self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
65
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
"""simple docstring""" def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Any = [0] * len(_lowercase ) snake_case_ :List[str] = [] snake_case_ :int = [] snake_case_ :Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_lowercase ) ): if indegree[i] == 0: queue.append(_lowercase ) while queue: snake_case_ :int = queue.pop(0 ) cnt += 1 topo.append(_lowercase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_lowercase ) if cnt != len(_lowercase ): print("""Cycle exists""" ) else: print(_lowercase ) # Adjacency List of Graph __a = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
66
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
'''simple docstring''' from datetime import datetime import requests def __lowerCAmelCase ( UpperCamelCase__ ) -> bytes: __lowerCamelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __lowerCamelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(UpperCamelCase__ ).content if __name__ == "__main__": __UpperCAmelCase =input("Enter Video/IGTV url: ").strip() __UpperCAmelCase =f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(f'Done. Video saved to disk as {file_name}.')
67
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
68
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = 2 @register_to_config def __init__( self, lowerCAmelCase__ = 0.02, lowerCAmelCase__ = 100, lowerCAmelCase__ = 1.007, lowerCAmelCase__ = 80, lowerCAmelCase__ = 0.05, lowerCAmelCase__ = 50, ) -> List[str]: # standard deviation of the initial noise distribution snake_case_ = sigma_max # setable values snake_case_ = None snake_case_ = None snake_case_ = None # sigma(t_i) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> torch.FloatTensor: return sample def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> int: snake_case_ = num_inference_steps snake_case_ = np.arange(0, self.num_inference_steps)[::-1].copy() snake_case_ = torch.from_numpy(lowerCAmelCase__).to(lowerCAmelCase__) snake_case_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] snake_case_ = torch.tensor(lowerCAmelCase__, dtype=torch.floataa, device=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: snake_case_ = min(self.config.s_churn / self.num_inference_steps, 2**0.5 - 1) else: snake_case_ = 0 # sample eps ~ N(0, S_noise^2 * I) snake_case_ = self.config.s_noise * randn_tensor(sample.shape, generator=lowerCAmelCase__).to(sample.device) snake_case_ = sigma + gamma * sigma snake_case_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = True, ) -> Union[KarrasVeOutput, Tuple]: snake_case_ = sample_hat + sigma_hat * model_output snake_case_ = (sample_hat - pred_original_sample) / sigma_hat snake_case_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase__, derivative=lowerCAmelCase__, pred_original_sample=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ = True, ) -> Union[KarrasVeOutput, Tuple]: snake_case_ = sample_prev + sigma_prev * model_output snake_case_ = (sample_prev - pred_original_sample) / sigma_prev snake_case_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase__, derivative=lowerCAmelCase__, pred_original_sample=lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: raise NotImplementedError()
69
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="attention" ): """simple docstring""" _lowerCAmelCase = _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) _lowerCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) _lowerCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) _lowerCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowerCAmelCase = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) _lowerCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" if split_mlp_wi: _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] _lowerCAmelCase = (wi_a, wi_a) else: _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] _lowerCAmelCase = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def UpperCamelCase__ ( lowerCAmelCase , *, lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): """simple docstring""" _lowerCAmelCase = traverse_util.flatten_dict(variables["""target"""] ) _lowerCAmelCase = {"""/""".join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase ) _lowerCAmelCase = collections.OrderedDict() # Shared embeddings. _lowerCAmelCase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """attention""" ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 1 (MLP). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , """encoder""" , lowerCAmelCase ) _lowerCAmelCase = layer_norm if split_mlp_wi: _lowerCAmelCase = wi[0].T _lowerCAmelCase = wi[1].T else: _lowerCAmelCase = wi.T _lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase , lowerCAmelCase , """encoder""" ).T _lowerCAmelCase = old["""encoder/encoder_norm/scale"""] if not scalable_attention: _lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase , 0 , """encoder""" ).T _lowerCAmelCase = tax_relpos_bias_lookup( lowerCAmelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """self_attention""" ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """encoder_decoder_attention""" ) _lowerCAmelCase = layer_norm _lowerCAmelCase = k.T _lowerCAmelCase = o.T _lowerCAmelCase = q.T _lowerCAmelCase = v.T # Block i, layer 2 (MLP). _lowerCAmelCase = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) _lowerCAmelCase , _lowerCAmelCase = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" , lowerCAmelCase ) _lowerCAmelCase = layer_norm if split_mlp_wi: _lowerCAmelCase = wi[0].T _lowerCAmelCase = wi[1].T else: _lowerCAmelCase = wi.T _lowerCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase = tax_relpos_bias_lookup(lowerCAmelCase , lowerCAmelCase , """decoder""" ).T _lowerCAmelCase = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase = old["""decoder/logits_dense/kernel"""].T return new def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) _lowerCAmelCase = state_dict["""shared.weight"""] return state_dict def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = checkpoints.load_tax_checkpoint(lowerCAmelCase ) _lowerCAmelCase = convert_tax_to_pytorch( lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase , scalable_attention=lowerCAmelCase ) _lowerCAmelCase = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = False , ): """simple docstring""" _lowerCAmelCase = MTaConfig.from_json_file(lowerCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase = UMTaEncoderModel(lowerCAmelCase ) else: _lowerCAmelCase = UMTaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print("""Done""" ) if __name__ == "__main__": A__ : Tuple =argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) A__ : Union[str, Any] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
70
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
def A ( a_ ) -> list: if n_term == "": return [] __UpperCamelCase : list =[] for temp in range(int(a_ ) ): series.append(F'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": A_ :Union[str, Any] = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
71
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
"""simple docstring""" from math import factorial def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(A_ ) // (factorial(A_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', F"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
72
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets a ="""\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ a ="""\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ a =""" Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: __lowerCamelCase : Optional[Any] = simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Any = np.array(lowerCamelCase__ ) __lowerCamelCase : List[Any] = np.array(lowerCamelCase__ ) __lowerCamelCase : Any = en_sentvecs.shape[0] # mean centering __lowerCamelCase : Union[str, Any] = en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Dict = in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) __lowerCamelCase : Optional[int] = cdist(lowerCamelCase__ , lowerCamelCase__ , 'cosine' ) __lowerCamelCase : Optional[Any] = np.array(range(lowerCamelCase__ ) ) __lowerCamelCase : Dict = sim.argsort(axis=1 )[:, :1_0] __lowerCamelCase : Optional[int] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : Optional[Any]): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) ,codebase_urls=[] ,reference_urls=[] ,format='numpy' if self.config_name != 'cvit-mkb-clsr' else None ,) def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[Any]): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
73
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
"""simple docstring""" def _snake_case ( snake_case__ : int = 200 ): A = [1, 2, 5, 10, 20, 50, 100, 200] A = [0] * (pence + 1) A = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(snake_case__ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
74
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
'''simple docstring''' import os def a_ ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =os.path.join(os.path.dirname(__snake_case ) , '''num.txt''' ) with open(__snake_case ) as file_hand: return str(sum(int(__snake_case ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
75
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
import comet # From: unbabel-comet import torch import datasets a_ = datasets.logging.get_logger(__name__) a_ = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' a_ = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' a_ = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def __UpperCamelCase ( self : Any , a : List[Any] ) -> Optional[Any]: """simple docstring""" if self.config_name == "default": SCREAMING_SNAKE_CASE : str = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: SCREAMING_SNAKE_CASE : str = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def __UpperCamelCase ( self : Tuple , a : str , a : Any , a : Optional[int] , a : Optional[int]=None , a : Any=False ) -> int: """simple docstring""" if gpus is None: SCREAMING_SNAKE_CASE : Optional[Any] = 1 if torch.cuda.is_available() else 0 SCREAMING_SNAKE_CASE : List[Any] = {"src": sources, "mt": predictions, "ref": references} SCREAMING_SNAKE_CASE : Dict = [dict(zip(a , a ) ) for t in zip(*data.values() )] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = self.scorer.predict(a , gpus=a , progress_bar=a ) return {"mean_score": mean_score, "scores": scores}
76
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , a , a=1_2 , a=7 , a=True , a=True , a=True , a=9_9 , a=3_2 , a=3_2 , a=2 , a=4 , a=3_7 , a=0.1 , a=0.1 , a=5_1_2 , a=0.02 , a=0 , a=None , ) -> Union[str, Any]: lowercase__ : Any = parent lowercase__ : str = batch_size lowercase__ : List[Any] = seq_length lowercase__ : Union[str, Any] = is_training lowercase__ : List[str] = use_input_mask lowercase__ : int = use_labels lowercase__ : List[Any] = vocab_size lowercase__ : str = hidden_size lowercase__ : int = projection_dim lowercase__ : Optional[int] = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : Optional[Any] = intermediate_size lowercase__ : Optional[Any] = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : Optional[int] = max_position_embeddings lowercase__ : str = initializer_range lowercase__ : Tuple = scope lowercase__ : int = bos_token_id def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : int = None if self.use_input_mask: lowercase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowercase__ : int = input_mask.numpy() lowercase__ , lowercase__ : Tuple = input_mask.shape lowercase__ : List[str] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a ): lowercase__ : Dict = 1 lowercase__ : Union[str, Any] = 0 lowercase__ : Tuple = self.get_config() return config, input_ids, tf.convert_to_tensor(a ) def _UpperCAmelCase ( self ) -> List[Any]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self , a , a , a ) -> Any: lowercase__ : List[Any] = TFBlipTextModel(config=a ) lowercase__ : Optional[int] = model(a , attention_mask=a , training=a ) lowercase__ : List[str] = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Any = config_and_inputs lowercase__ : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , unittest.TestCase): lowerCamelCase__ : Dict = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Optional[int] = BlipTextModelTester(self ) lowercase__ : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: lowercase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Blip does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self ) -> Dict: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING' ) def _UpperCAmelCase ( self ) -> str: pass @slow def _UpperCAmelCase ( self ) -> int: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = TFBlipTextModel.from_pretrained(a ) self.assertIsNotNone(a ) def _UpperCAmelCase ( self , a=True ) -> List[str]: super().test_pt_tf_model_equivalence(allow_missing_keys=a )
77
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
'''simple docstring''' from __future__ import annotations from typing import Any def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not postfix_notation: return 0 _A = {"+", "-", "*", "/"} _A = [] for token in postfix_notation: if token in operations: _A , _A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__lowercase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
79
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Optional[int] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } a__ : str = {'mobilebert-uncased': 5_1_2} a__ : int = {} class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = MobileBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) UpperCamelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): UpperCamelCase__ = getattr(a , normalizer_state.pop("type" ) ) UpperCamelCase__ = do_lower_case UpperCamelCase__ = strip_accents UpperCamelCase__ = tokenize_chinese_chars UpperCamelCase__ = normalizer_class(**a ) UpperCamelCase__ = do_lower_case def __a ( self , a , a=None ): UpperCamelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , a , a = None ): UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , a , a = None ): UpperCamelCase__ = self._tokenizer.model.save(a , name=a ) return tuple(a )
80
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase_ : str = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=2048 , __A=128 , __A=1 , __A=512 , __A=30 , __A=4_4100 , ) -> Tuple: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =spectrogram_length a =feature_size a =num_audio_channels a =hop_length a =chunk_length a =sampling_rate def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> Optional[Any]: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = TvltFeatureExtractor def SCREAMING_SNAKE_CASE ( self ) -> Any: a =TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__A , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__A , '''feature_size''' ) ) self.assertTrue(hasattr(__A , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__A , '''hop_length''' ) ) self.assertTrue(hasattr(__A , '''chunk_length''' ) ) self.assertTrue(hasattr(__A , '''sampling_rate''' ) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =dict_first.pop('''mel_filters''' ) a =dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =dict_first.pop('''mel_filters''' ) a =dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: # Initialize feature_extractor a =self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test not batched input a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched a =feature_extractor(__A , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking a =feature_extractor( __A , return_tensors='''np''' , sampling_rate=4_4100 , mask_audio=__A ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Union[str, Any]: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> str: a =self._load_datasamples(1 ) a =TvltFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) a =torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __A , atol=1E-4 ) )
81
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
import math import tensorflow as tf from packaging import version def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(math.pi , x.dtype ) _lowerCAmelCase = tf.cast(0.044_715 , x.dtype ) _lowerCAmelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case , 3 )) )) return x * cdf def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) return x * tf.tanh(tf.math.softplus(snake_case ) ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(0.044_715 , x.dtype ) _lowerCAmelCase = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = tf.convert_to_tensor(snake_case ) _lowerCAmelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return tf.clip_by_value(_gelu(snake_case ) , -10 , 10 ) def _UpperCAmelCase ( snake_case , snake_case=-1 ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = tf.split(snake_case , 2 , axis=snake_case ) return a * tf.math.sigmoid(snake_case ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def _UpperCAmelCase ( snake_case ): """simple docstring""" return tf.keras.activations.gelu(snake_case , approximate=snake_case ) A__ = tf.keras.activations.gelu A__ = approximate_gelu_wrap else: A__ = _gelu A__ = _gelu_new A__ = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def _UpperCAmelCase ( snake_case ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
82
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCamelCase : str = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) _UpperCamelCase : Optional[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _UpperCamelCase : Optional[Any] = transform(UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) return image def A__ ( UpperCAmelCase_ ): if "visual_encoder" in key: _UpperCamelCase : Optional[int] = re.sub('visual_encoder*' , 'vision_model.encoder' , UpperCAmelCase_ ) if "blocks" in key: _UpperCamelCase : int = re.sub(R'blocks' , 'layers' , UpperCAmelCase_ ) if "attn" in key: _UpperCamelCase : Optional[Any] = re.sub(R'attn' , 'self_attn' , UpperCAmelCase_ ) if "norm1" in key: _UpperCamelCase : Tuple = re.sub(R'norm1' , 'layer_norm1' , UpperCAmelCase_ ) if "norm2" in key: _UpperCamelCase : Union[str, Any] = re.sub(R'norm2' , 'layer_norm2' , UpperCAmelCase_ ) if "encoder.norm" in key: _UpperCamelCase : int = re.sub(R'encoder.norm' , 'post_layernorm' , UpperCAmelCase_ ) if "encoder.patch_embed.proj" in key: _UpperCamelCase : str = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , UpperCAmelCase_ ) if "encoder.pos_embed" in key: _UpperCamelCase : Any = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , UpperCAmelCase_ ) if "encoder.cls_token" in key: _UpperCamelCase : int = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , UpperCAmelCase_ ) if "self_attn" in key: _UpperCamelCase : str = re.sub(R'self_attn.proj' , 'self_attn.projection' , UpperCAmelCase_ ) return key @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_=None ): if config_path is not None: _UpperCamelCase : List[str] = BlipConfig.from_pretrained(UpperCAmelCase_ ) else: _UpperCamelCase : List[Any] = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) _UpperCamelCase : Tuple = BlipForConditionalGeneration(UpperCAmelCase_ ).eval() _UpperCamelCase : Optional[int] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCamelCase : Tuple = blip_decoder(pretrained=UpperCAmelCase_ , image_size=3_8_4 , vit='base' ) _UpperCamelCase : Any = pt_model.eval() _UpperCamelCase : Any = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : List[Any] = modified_state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : List[str] = rename_key(UpperCAmelCase_ ) _UpperCamelCase : str = value hf_model.load_state_dict(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = 3_8_4 _UpperCamelCase : Union[str, Any] = load_demo_image(image_size=UpperCAmelCase_ , device='cpu' ) _UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCamelCase : Optional[int] = tokenizer(['a picture of'] ).input_ids _UpperCamelCase : int = hf_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] _UpperCamelCase : List[str] = hf_model.generate(UpperCAmelCase_ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCAmelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCamelCase : Tuple = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCamelCase : Any = blip_vqa(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='base' ) vqa_model.eval() _UpperCamelCase : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : int = modified_state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Dict = rename_key(UpperCAmelCase_ ) _UpperCamelCase : str = value _UpperCamelCase : List[str] = BlipForQuestionAnswering(UpperCAmelCase_ ) hf_vqa_model.load_state_dict(UpperCAmelCase_ ) _UpperCamelCase : int = ['How many dogs are in this image?'] _UpperCamelCase : Union[str, Any] = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids _UpperCamelCase : str = hf_vqa_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCamelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCamelCase : List[Any] = blip_itm(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='base' ) itm_model.eval() _UpperCamelCase : Tuple = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCamelCase : Optional[int] = modified_state_dict.pop(UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = rename_key(UpperCAmelCase_ ) _UpperCamelCase : int = value _UpperCamelCase : str = BlipForImageTextRetrieval(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = ['A picture of a woman with a dog sitting in a beach'] _UpperCamelCase : Tuple = tokenizer( UpperCAmelCase_ , return_tensors='pt' , padding='max_length' , truncation=UpperCAmelCase_ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(UpperCAmelCase_ ) hf_itm_model.eval() _UpperCamelCase : Union[str, Any] = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') snake_case_ : Union[str, Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
83
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
"""simple docstring""" def _snake_case ( lowercase__ : str , lowercase__ : int ) -> str: '''simple docstring''' lowerCAmelCase_ :list[list[str]] = [[] for _ in range(lowercase__ )] lowerCAmelCase_ :Optional[Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(lowercase__ ) <= key: return input_string for position, character in enumerate(lowercase__ ): lowerCAmelCase_ :List[str] = position % (lowest * 2) # puts it in bounds lowerCAmelCase_ :int = min(lowercase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowercase__ ) lowerCAmelCase_ :str = ["""""".join(lowercase__ ) for row in temp_grid] lowerCAmelCase_ :Any = """""".join(lowercase__ ) return output_string def _snake_case ( lowercase__ : str , lowercase__ : int ) -> str: '''simple docstring''' lowerCAmelCase_ :List[str] = [] lowerCAmelCase_ :List[Any] = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string lowerCAmelCase_ :list[list[str]] = [[] for _ in range(lowercase__ )] # generates template for position in range(len(lowercase__ ) ): lowerCAmelCase_ :Any = position % (lowest * 2) # puts it in bounds lowerCAmelCase_ :Dict = min(lowercase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) lowerCAmelCase_ :Tuple = 0 for row in temp_grid: # fills in the characters lowerCAmelCase_ :Dict = input_string[counter : counter + len(lowercase__ )] grid.append(list(lowercase__ ) ) counter += len(lowercase__ ) lowerCAmelCase_ :List[Any] = """""" # reads as zigzag for position in range(len(lowercase__ ) ): lowerCAmelCase_ :Tuple = position % (lowest * 2) # puts it in bounds lowerCAmelCase_ :str = min(lowercase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _snake_case ( lowercase__ : str ) -> dict[int, str]: '''simple docstring''' lowerCAmelCase_ :int = {} for key_guess in range(1 , len(lowercase__ ) ): # tries every key lowerCAmelCase_ :int = decrypt(lowercase__ , lowercase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
84
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__) def UpperCamelCase_( snake_case : torch.nn.Module , snake_case : BnbQuantizationConfig , snake_case : Union[str, os.PathLike] = None , snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None , snake_case : Optional[List[str]] = None , snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None , snake_case : Optional[Union[str, os.PathLike]] = None , snake_case : bool = False , ): '''simple docstring''' snake_case_ = bnb_quantization_config.load_in_abit snake_case_ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) snake_case_ = [] # custom device map if isinstance(snake_case , snake_case ) and len(device_map.keys() ) > 1: snake_case_ = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: snake_case_ = get_keys_to_not_convert(snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(snake_case ) snake_case_ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: snake_case_ = [] snake_case_ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(snake_case ) # compatibility with peft snake_case_ = load_in_abit snake_case_ = load_in_abit snake_case_ = get_parameter_device(snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) snake_case_ = replace_with_bnb_layers(snake_case , snake_case , modules_to_not_convert=snake_case ) # convert param to the right dtype snake_case_ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: snake_case_ = name.replace(".weight" , "" ).replace(".bias" , "" ) snake_case_ = getattr(snake_case , snake_case , snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(snake_case ): param.to(snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): snake_case_ = replace_with_bnb_layers( snake_case , snake_case , modules_to_not_convert=snake_case ) snake_case_ = get_quantized_model_device_map( snake_case , snake_case , snake_case , max_memory=snake_case , no_split_module_classes=snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): snake_case_ = True snake_case_ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( snake_case , snake_case , snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=snake_case , offload_state_dict=snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(snake_case , device_map=snake_case , offload_dir=snake_case ) def UpperCamelCase_( snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[Any]=None , snake_case : Any=None , snake_case : Any=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): snake_case_ = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(snake_case , snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) snake_case_ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) snake_case_ = {} snake_case_ = special_dtypes snake_case_ = no_split_module_classes snake_case_ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": snake_case_ = get_balanced_memory( snake_case , low_zero=(device_map == "balanced_low_0") , max_memory=snake_case , **snake_case , ) snake_case_ = max_memory snake_case_ = infer_auto_device_map(snake_case , **snake_case ) if isinstance(snake_case , snake_case ): # check if don't have any quantized module on the cpu snake_case_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules snake_case_ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def UpperCamelCase_( snake_case : Tuple , snake_case : str , snake_case : int=None , snake_case : Optional[Any]=None ): '''simple docstring''' if modules_to_not_convert is None: snake_case_ = [] snake_case_ , snake_case_ = _replace_with_bnb_layers( snake_case , snake_case , snake_case , snake_case ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def UpperCamelCase_( snake_case : List[Any] , snake_case : Optional[int] , snake_case : int=None , snake_case : Any=None , ): '''simple docstring''' snake_case_ = False for name, module in model.named_children(): if current_key_name is None: snake_case_ = [] current_key_name.append(snake_case ) if isinstance(snake_case , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` snake_case_ = ".".join(snake_case ) snake_case_ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: snake_case_ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: snake_case_ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) snake_case_ = module.weight.data if module.bias is not None: snake_case_ = module.bias.data bnb_module.requires_grad_(snake_case ) setattr(snake_case , snake_case , snake_case ) snake_case_ = True if len(list(module.children() ) ) > 0: snake_case_ , snake_case_ = _replace_with_bnb_layers( snake_case , snake_case , snake_case , snake_case ) snake_case_ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCamelCase_( snake_case : Optional[Any] ): '''simple docstring''' with init_empty_weights(): snake_case_ = deepcopy(snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` snake_case_ = find_tied_parameters(snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case , snake_case ): snake_case_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case_ = sum(snake_case , [] ) snake_case_ = len(snake_case ) > 0 # Check if it is a base model snake_case_ = False if hasattr(snake_case , "base_model_prefix" ): snake_case_ = not hasattr(snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case_ = list(model.named_children() ) snake_case_ = [list_modules[-1][0]] # add last module together with tied weights snake_case_ = set(snake_case ) - set(snake_case ) snake_case_ = list(set(snake_case ) ) + list(snake_case ) # remove ".weight" from the keys snake_case_ = [".weight", ".bias"] snake_case_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case_ = name.replace(snake_case , "" ) filtered_module_names.append(snake_case ) return filtered_module_names def UpperCamelCase_( snake_case : List[Any] ): '''simple docstring''' for m in model.modules(): if isinstance(snake_case , bnb.nn.Linearabit ): return True return False def UpperCamelCase_( snake_case : nn.Module ): '''simple docstring''' return next(parameter.parameters() ).device def UpperCamelCase_( snake_case : int , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : int , snake_case : int ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(snake_case , snake_case , 0 , dtype=snake_case , value=snake_case ) snake_case_ = param_name snake_case_ = model if "." in tensor_name: snake_case_ = tensor_name.split("." ) for split in splits[:-1]: snake_case_ = getattr(snake_case , snake_case ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) snake_case_ = new_module snake_case_ = splits[-1] # offload weights snake_case_ = False offload_weight(module._parameters[tensor_name] , snake_case , snake_case , index=snake_case ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , snake_case , index=snake_case , ) else: offload_weight(snake_case , snake_case , snake_case , index=snake_case ) offload_weight(snake_case , param_name.replace("weight" , "SCB" ) , snake_case , index=snake_case ) set_module_tensor_to_device(snake_case , snake_case , "meta" , dtype=snake_case , value=torch.empty(*param.size() ) )
85
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
"""simple docstring""" lowerCamelCase__ = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCamelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def __lowerCAmelCase (_UpperCamelCase ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __lowerCAmelCase (_UpperCamelCase ): return "".join(REVERSE_DICT[char] for char in message.split() ) def __lowerCAmelCase (): __lowerCAmelCase : Optional[Any] = 'Morse code here!' print(_UpperCamelCase ) __lowerCAmelCase : List[str] = encrypt(_UpperCamelCase ) print(_UpperCamelCase ) __lowerCAmelCase : Optional[Any] = decrypt(_UpperCamelCase ) print(_UpperCamelCase ) if __name__ == "__main__": main()
86
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase = True except (ImportError, AttributeError): UpperCamelCase = object def lowercase_ ( *_lowerCamelCase : Union[str, Any] , **_lowerCamelCase : List[str]): pass UpperCamelCase = False UpperCamelCase = logging.get_logger('''transformers-cli/serving''') def lowercase_ ( _lowerCamelCase : Namespace): lowercase__ : int = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(_lowerCamelCase , args.host , args.port , args.workers) class snake_case_ ( __A ): __A : dict class snake_case_ ( __A ): __A : List[str] __A : Optional[List[int]] class snake_case_ ( __A ): __A : str class snake_case_ ( __A ): __A : Any class snake_case_ ( __A ): @staticmethod def __UpperCamelCase ( lowercase_ : ArgumentParser ) -> Union[str, Any]: lowercase__ : Union[str, Any] = parser.add_parser( "serve" , help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task" , type=lowercase_ , choices=get_supported_tasks() , help="The task to run the pipeline on" , ) serve_parser.add_argument("--host" , type=lowercase_ , default="localhost" , help="Interface the server will listen on." ) serve_parser.add_argument("--port" , type=lowercase_ , default=88_88 , help="Port the serving will listen to." ) serve_parser.add_argument("--workers" , type=lowercase_ , default=1 , help="Number of http workers" ) serve_parser.add_argument("--model" , type=lowercase_ , help="Model's name or path to stored model." ) serve_parser.add_argument("--config" , type=lowercase_ , help="Model's config name or path to stored model." ) serve_parser.add_argument("--tokenizer" , type=lowercase_ , help="Tokenizer name to use." ) serve_parser.add_argument( "--device" , type=lowercase_ , default=-1 , help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)" , ) serve_parser.set_defaults(func=lowercase_ ) def __init__( self : int , lowercase_ : Pipeline , lowercase_ : str , lowercase_ : int , lowercase_ : int ) -> Dict: lowercase__ : Dict = pipeline lowercase__ : Any = host lowercase__ : List[str] = port lowercase__ : List[Any] = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " "Please install transformers with [serving]: pip install \"transformers[serving]\"." "Or install FastAPI and uvicorn separately." ) else: logger.info(F'''Serving model over {host}:{port}''' ) lowercase__ : Optional[Any] = FastAPI( routes=[ APIRoute( "/" , self.model_info , response_model=lowercase_ , response_class=lowercase_ , methods=["GET"] , ), APIRoute( "/tokenize" , self.tokenize , response_model=lowercase_ , response_class=lowercase_ , methods=["POST"] , ), APIRoute( "/detokenize" , self.detokenize , response_model=lowercase_ , response_class=lowercase_ , methods=["POST"] , ), APIRoute( "/forward" , self.forward , response_model=lowercase_ , response_class=lowercase_ , methods=["POST"] , ), ] , timeout=6_00 , ) def __UpperCamelCase ( self : int ) -> List[str]: run(self._app , host=self.host , port=self.port , workers=self.workers ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str = Body(lowercase_ , embed=lowercase_ ) , lowercase_ : bool = Body(lowercase_ , embed=lowercase_ ) ) -> Optional[Any]: try: lowercase__ : Union[str, Any] = self._pipeline.tokenizer.tokenize(lowercase_ ) if return_ids: lowercase__ : Union[str, Any] = self._pipeline.tokenizer.convert_tokens_to_ids(lowercase_ ) return ServeTokenizeResult(tokens=lowercase_ , tokens_ids=lowercase_ ) else: return ServeTokenizeResult(tokens=lowercase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"model": "", "error": str(lowercase_ )} ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : List[int] = Body(lowercase_ , embed=lowercase_ ) , lowercase_ : bool = Body(lowercase_ , embed=lowercase_ ) , lowercase_ : bool = Body(lowercase_ , embed=lowercase_ ) , ) -> Optional[int]: try: lowercase__ : str = self._pipeline.tokenizer.decode(lowercase_ , lowercase_ , lowercase_ ) return ServeDeTokenizeResult(model="" , text=lowercase_ ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"model": "", "error": str(lowercase_ )} ) async def __UpperCamelCase ( self : Tuple , lowercase_ : int=Body(lowercase_ , embed=lowercase_ ) ) -> List[Any]: # Check we don't have empty string if len(lowercase_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowercase__ : int = self._pipeline(lowercase_ ) return ServeForwardResult(output=lowercase_ ) except Exception as e: raise HTTPException(5_00 , {"error": str(lowercase_ )} )
87
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __lowerCAmelCase : Optional[Any] = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __lowerCAmelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( A_ ): '''simple docstring''' if "://" in dataset_path: __magic_name__ = dataset_path.split("""://""" )[1] return dataset_path def a__ ( A_ ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = not is_remote_filesystem(A_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(A_ ), fs._strip_protocol(A_ ) ) else: fs.mv(A_, A_, recursive=A_ ) def a__ ( ): '''simple docstring''' if hasattr(fsspec.asyn, """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __magic_name__ = None __magic_name__ = None __magic_name__ = threading.Lock()
88
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : int = 'roberta-prelayernorm' def __init__( self : int ,_UpperCAmelCase : Any=50265 ,_UpperCAmelCase : int=768 ,_UpperCAmelCase : Any=12 ,_UpperCAmelCase : Union[str, Any]=12 ,_UpperCAmelCase : Tuple=3072 ,_UpperCAmelCase : List[str]="gelu" ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : str=0.1 ,_UpperCAmelCase : Tuple=512 ,_UpperCAmelCase : Tuple=2 ,_UpperCAmelCase : List[Any]=0.02 ,_UpperCAmelCase : Any=1E-12 ,_UpperCAmelCase : List[str]=1 ,_UpperCAmelCase : List[Any]=0 ,_UpperCAmelCase : Optional[int]=2 ,_UpperCAmelCase : int="absolute" ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Tuple=None ,**_UpperCAmelCase : int ,): super().__init__(pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,**_UpperCAmelCase ) _a : Union[str, Any] = vocab_size _a : Dict = hidden_size _a : int = num_hidden_layers _a : List[str] = num_attention_heads _a : Union[str, Any] = hidden_act _a : int = intermediate_size _a : Optional[int] = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : str = max_position_embeddings _a : List[str] = type_vocab_size _a : List[Any] = initializer_range _a : Dict = layer_norm_eps _a : Optional[int] = position_embedding_type _a : int = use_cache _a : int = classifier_dropout class __magic_name__ ( _UpperCamelCase ): @property def __lowercase ( self : Union[str, Any] ): if self.task == "multiple-choice": _a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _a : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
import colorsys from PIL import Image # type: ignore def lowerCamelCase_ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : int ) -> float: """simple docstring""" __lowerCamelCase = x __lowerCamelCase = y for step in range(UpperCamelCase__ ): # noqa: B007 __lowerCamelCase = a * a - b * b + x __lowerCamelCase = 2 * a * b + y __lowerCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase_ ( UpperCamelCase__ : float ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCamelCase__ , 1 , 1 ) ) def lowerCamelCase_ ( UpperCamelCase__ : int = 800 , UpperCamelCase__ : int = 600 , UpperCamelCase__ : float = -0.6 , UpperCamelCase__ : float = 0 , UpperCamelCase__ : float = 3.2 , UpperCamelCase__ : int = 50 , UpperCamelCase__ : bool = True , ) -> Image.Image: """simple docstring""" __lowerCamelCase = Image.new('RGB' , (image_width, image_height) ) __lowerCamelCase = img.load() # loop through the image-coordinates for image_x in range(UpperCamelCase__ ): for image_y in range(UpperCamelCase__ ): # determine the figure-coordinates based on the image-coordinates __lowerCamelCase = figure_width / image_width * image_height __lowerCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowerCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowerCamelCase = get_distance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowerCamelCase = get_color_coded_rgb(UpperCamelCase__ ) else: __lowerCamelCase = get_black_and_white_rgb(UpperCamelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __A = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
90
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=13 , lowercase_ : Union[str, Any]=30 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=3 , lowercase_ : Union[str, Any]=True , lowercase_ : int=True , lowercase_ : Tuple=32 , lowercase_ : Tuple=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Dict=37 , lowercase_ : Optional[int]="gelu" , lowercase_ : str=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : List[str]=10 , lowercase_ : Dict=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = image_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = is_training SCREAMING_SNAKE_CASE_ : Any = use_labels SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : Any = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : Tuple = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxViTModel(config=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : str = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE_ : Tuple = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Any , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : Dict = FlaxViTForImageClassification(config=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : int = 1 SCREAMING_SNAKE_CASE_ : List[str] = FlaxViTForImageClassification(lowercase_) SCREAMING_SNAKE_CASE_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Any = model(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxViTModelTester(self) SCREAMING_SNAKE_CASE_ : int = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : str = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) @jax.jit def model_jitted(lowercase_ : int , **lowercase_ : Optional[Any]): return model(pixel_values=lowercase_ , **lowercase_) with self.subTest('''JIT Enabled'''): SCREAMING_SNAKE_CASE_ : Tuple = model_jitted(**lowercase_).to_tuple() with self.subTest('''JIT Disabled'''): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ : Optional[int] = model_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''') SCREAMING_SNAKE_CASE_ : List[str] = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(lowercase_)
91
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
92
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : Optional[int] = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] _lowercase : Dict = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] _lowercase : List[Any] = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): _lowercase : Tuple = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
def __lowerCamelCase ( UpperCAmelCase_ : list ): """simple docstring""" a :List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping a :List[Any] = True for i in range(0 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: a , a :List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order a :Union[str, Any] = False for i in range(1 , len(UpperCAmelCase_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: a , a :Dict = input_list[i + 1], input_list[i] # swapping if elements not in order a :Dict = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') snake_case : Any = [int(x) for x in input().split()] # inputing elements of the list in one line snake_case : Tuple = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
94
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : int = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __lowerCAmelCase : def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) a__ : str =model a__ : int =kwargs.get("model_save_dir" , lowerCAmelCase__ ) a__ : int =kwargs.get("latest_model_name" , lowerCAmelCase__ ) def __call__( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' a__ : Dict ={k: np.array(lowerCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__ ) @staticmethod def _lowercase ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Dict: '''simple docstring''' if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) a__ : Any ="CPUExecutionProvider" return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Dict =file_name if file_name is not None else ONNX_WEIGHTS_NAME a__ : Dict =self.model_save_dir.joinpath(self.latest_model_name ) a__ : List[str] =Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) a__ : List[str] =self.model_save_dir.joinpath(lowerCAmelCase__ ) if src_path.exists(): a__ : Any =Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass def _lowercase ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' if os.path.isfile(lowerCAmelCase__ ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> int: '''simple docstring''' a__ : int =file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__ ): a__ : Tuple =OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) a__ : Union[str, Any] =Path(lowerCAmelCase__ ) # load model from hub else: # download model a__ : Tuple =hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) a__ : str =Path(lowerCAmelCase__ ).parent a__ : List[Any] =Path(lowerCAmelCase__ ).name a__ : str =OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> int: '''simple docstring''' a__ : int =None if len(str(lowerCAmelCase__ ).split("@" ) ) == 2: a__ , a__ : str =model_id.split("@" ) return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
95
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
"""simple docstring""" import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase=1024 , lowercase=1024 , lowercase=3.6 ): _lowerCamelCase : Union[str, Any] = tokenizer _lowerCamelCase : Any = tokenizer.bos_token_id _lowerCamelCase : Optional[int] = dataset _lowerCamelCase : Optional[int] = seq_length _lowerCamelCase : Union[str, Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self ): _lowerCamelCase : Optional[int] = iter(self.dataset ) _lowerCamelCase : Dict = True while more_examples: _lowerCamelCase, _lowerCamelCase : Dict = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowercase )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Optional[Any] = False break _lowerCamelCase : Optional[Any] = tokenizer(lowercase , truncation=lowercase )['input_ids'] _lowerCamelCase : Any = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowercase ) , self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(lowercase ) == self.seq_length: yield torch.tensor(lowercase ) def _snake_case ( lowercase__ ): _lowerCamelCase : List[Any] = {'streaming': True} _lowerCamelCase : str = load_dataset(args.dataset_name , split='train' , **lowercase__ ) _lowerCamelCase : Dict = ConstantLengthDataset(lowercase__ , lowercase__ , seq_length=args.seq_length ) _lowerCamelCase : str = DataLoader(lowercase__ , batch_size=args.batch_size ) return eval_dataloader def _snake_case ( lowercase__ ): model.eval() _lowerCamelCase : Tuple = [] for step, batch in enumerate(lowercase__ ): with torch.no_grad(): _lowerCamelCase : str = model(lowercase__ , labels=lowercase__ ) _lowerCamelCase : Optional[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowercase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : str = torch.mean(torch.cat(lowercase__ ) ) try: _lowerCamelCase : Any = torch.exp(lowercase__ ) except OverflowError: _lowerCamelCase : int = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator lowercase__ = Accelerator() # Parse configuration lowercase__ = HfArgumentParser(EvaluationArguments) lowercase__ = parser.parse_args() set_seed(args.seed) # Logging lowercase__ = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer lowercase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowercase__ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowercase__ = create_dataloader(args) # Prepare everything with our `accelerator`. lowercase__ , lowercase__ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") lowercase__ , lowercase__ = evaluate(args) logger.info(F"loss/eval: {eval_loss}, perplexity: {perplexity}")
96
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a ( __a ) -> Any: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a ( ) -> List[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[Any] = '''mock-s3-bucket''' UpperCamelCase__ :int = f'''s3://{mock_bucket}''' UpperCamelCase__ :List[str] = extract_path_from_uri(__a ) assert dataset_path.startswith('''s3://''' ) is False UpperCamelCase__ :Optional[int] = '''./local/path''' UpperCamelCase__ :Union[str, Any] = extract_path_from_uri(__a ) assert dataset_path == new_dataset_path def a ( __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = is_remote_filesystem(__a ) assert is_remote is True UpperCamelCase__ :Union[str, Any] = fsspec.filesystem('''file''' ) UpperCamelCase__ :Optional[int] = is_remote_filesystem(__a ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __a ) def a ( __a , __a , __a , __a , __a , __a , __a ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} UpperCamelCase__ :Union[str, Any] = input_paths[compression_fs_class.protocol] if input_path is None: UpperCamelCase__ :Optional[int] = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__a ) UpperCamelCase__ :Dict = fsspec.filesystem(compression_fs_class.protocol , fo=__a ) assert isinstance(__a , __a ) UpperCamelCase__ :str = os.path.basename(__a ) UpperCamelCase__ :Optional[Any] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__a , '''r''' , encoding='''utf-8''' ) as f, open(__a , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a ( __a , __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :Tuple = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} UpperCamelCase__ :Any = compressed_file_paths[protocol] UpperCamelCase__ :Union[str, Any] = '''dataset.jsonl''' UpperCamelCase__ :str = f'''{protocol}://{member_file_path}::{compressed_file_path}''' UpperCamelCase__ , *UpperCamelCase__ :Dict = fsspec.get_fs_token_paths(__a ) assert fs.isfile(__a ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a ( __a , __a , __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Any = hf_api.dataset_info(__a , token=__a ) UpperCamelCase__ :List[str] = HfFileSystem(repo_info=__a , token=__a ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__a ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a ( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__a , __a , clobber=__a ) with pytest.warns(__a ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__a ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
97
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Optional[int] = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
def A_ ( A__ , A__ ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def A_ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
99
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __magic_name__ = TypeVar("T") class SCREAMING_SNAKE_CASE_ ( Generic[T] ): """simple docstring""" def __init__( self , lowerCAmelCase__ = True): __SCREAMING_SNAKE_CASE = {} # dictionary of lists __SCREAMING_SNAKE_CASE = directed def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) self.adj_list[destination_vertex].append(lowerCAmelCase__) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: __SCREAMING_SNAKE_CASE = [destination_vertex] __SCREAMING_SNAKE_CASE = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: __SCREAMING_SNAKE_CASE = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: __SCREAMING_SNAKE_CASE = [destination_vertex] __SCREAMING_SNAKE_CASE = [] return self def __repr__( self): return pformat(self.adj_list)
100
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ ,A__ = None ,A__ = None ,A__ = False ,**A__ ,): super().__init__(features=A__ ,cache_dir=A__ ,keep_in_memory=A__ ,**A__) lowercase = Sql( cache_dir=A__ ,features=A__ ,sql=A__ ,con=A__ ,**A__ ,) def A__ ( self): lowercase = None lowercase = None lowercase = None lowercase = None self.builder.download_and_prepare( download_config=A__ ,download_mode=A__ ,verification_mode=A__ ,base_path=A__ ,) # Build dataset for splits lowercase = self.builder.as_dataset( split='''train''' ,verification_mode=A__ ,in_memory=self.keep_in_memory) return dataset class lowercase : def __init__( self ,A__ ,A__ ,A__ ,A__ = None ,A__ = None ,**A__ ,): if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.') lowercase = dataset lowercase = name lowercase = con lowercase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase = num_proc lowercase = to_sql_kwargs def A__ ( self): lowercase = self.to_sql_kwargs.pop('''sql''' ,A__) lowercase = self.to_sql_kwargs.pop('''con''' ,A__) lowercase = self.to_sql_kwargs.pop('''index''' ,A__) lowercase = self._write(index=A__ ,**self.to_sql_kwargs) return written def A__ ( self ,A__): lowercase , lowercase , lowercase = args lowercase = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs lowercase = query_table( table=self.dataset.data ,key=slice(A__ ,offset + self.batch_size) ,indices=self.dataset._indices ,) lowercase = batch.to_pandas() lowercase = df.to_sql(self.name ,self.con ,index=A__ ,**A__) return num_rows or len(A__) def A__ ( self ,A__ ,**A__): lowercase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 ,len(self.dataset) ,self.batch_size) ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating SQL from Arrow format''' ,): written += self._batch_sql((offset, index, to_sql_kwargs)) else: lowercase , lowercase = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql ,[(offset, index, to_sql_kwargs) for offset in range(0 ,A__ ,A__)] ,) ,total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size ,unit='''ba''' ,disable=not logging.is_progress_bar_enabled() ,desc='''Creating SQL from Arrow format''' ,): written += num_rows return written
101
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
102
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : BigBirdConfig SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE : bool = True def SCREAMING_SNAKE_CASE ( self : Tuple ): super().setup() __lowercase = nn.Dense(5 ,dtype=self.dtype ) def __call__( self : List[str] ,*lowercase__ : int ,**lowercase__ : int ): __lowercase = super().__call__(*lowercase__ ,**lowercase__ ) __lowercase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def _A ( A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" def cross_entropy(A__ , A__ , A__=None ): __lowercase = logits.shape[-1] __lowercase = (labels[..., None] == jnp.arange(A__ )[None]).astype('''f4''' ) __lowercase = jax.nn.log_softmax(A__ , axis=-1 ) __lowercase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __lowercase = reduction(A__ ) return loss __lowercase = partial(A__ , reduction=jnp.mean ) __lowercase = cross_entropy(A__ , A__ ) __lowercase = cross_entropy(A__ , A__ ) __lowercase = cross_entropy(A__ , A__ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : str = "google/bigbird-roberta-base" SCREAMING_SNAKE_CASE : int = 3_0_0_0 SCREAMING_SNAKE_CASE : int = 1_0_5_0_0 SCREAMING_SNAKE_CASE : int = 1_2_8 SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : int = 5 # tx_args SCREAMING_SNAKE_CASE : float = 3e-5 SCREAMING_SNAKE_CASE : float = 0.0 SCREAMING_SNAKE_CASE : int = 2_0_0_0_0 SCREAMING_SNAKE_CASE : float = 0.0095 SCREAMING_SNAKE_CASE : str = "bigbird-roberta-natural-questions" SCREAMING_SNAKE_CASE : str = "training-expt" SCREAMING_SNAKE_CASE : str = "data/nq-training.jsonl" SCREAMING_SNAKE_CASE : str = "data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE ( self : List[str] ): os.makedirs(self.base_dir ,exist_ok=lowercase__ ) __lowercase = os.path.join(self.base_dir ,self.save_dir ) __lowercase = self.batch_size_per_device * jax.device_count() @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : Dict ,lowercase__ : int ): __lowercase = self.collate_fn(lowercase__ ) __lowercase = jax.tree_util.tree_map(lowercase__ ,lowercase__ ) return batch def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Tuple ): __lowercase , __lowercase = self.fetch_inputs(features['''input_ids'''] ) __lowercase = { '''input_ids''': jnp.array(lowercase__ ,dtype=jnp.intaa ), '''attention_mask''': jnp.array(lowercase__ ,dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] ,dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] ,dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] ,dtype=jnp.intaa ), } return batch def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : list ): __lowercase = [self._fetch_inputs(lowercase__ ) for ids in input_ids] return zip(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : list ): __lowercase = [1 for _ in range(len(lowercase__ ) )] while len(lowercase__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _A ( A__ , A__ , A__=None ): """simple docstring""" if seed is not None: __lowercase = dataset.shuffle(seed=A__ ) for i in range(len(A__ ) // batch_size ): __lowercase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(A__ ) @partial(jax.pmap , axis_name='''batch''' ) def _A ( A__ , A__ , **A__ ): """simple docstring""" def loss_fn(A__ ): __lowercase = model_inputs.pop('''start_labels''' ) __lowercase = model_inputs.pop('''end_labels''' ) __lowercase = model_inputs.pop('''pooled_labels''' ) __lowercase = state.apply_fn(**A__ , params=A__ , dropout_rng=A__ , train=A__ ) __lowercase , __lowercase , __lowercase = outputs return state.loss_fn( A__ , A__ , A__ , A__ , A__ , A__ , ) __lowercase , __lowercase = jax.random.split(A__ ) __lowercase = jax.value_and_grad(A__ ) __lowercase , __lowercase = grad_fn(state.params ) __lowercase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __lowercase = jax.lax.pmean(A__ , '''batch''' ) __lowercase = state.apply_gradients(grads=A__ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _A ( A__ , **A__ ): """simple docstring""" __lowercase = model_inputs.pop('''start_labels''' ) __lowercase = model_inputs.pop('''end_labels''' ) __lowercase = model_inputs.pop('''pooled_labels''' ) __lowercase = state.apply_fn(**A__ , params=state.params , train=A__ ) __lowercase , __lowercase , __lowercase = outputs __lowercase = state.loss_fn(A__ , A__ , A__ , A__ , A__ , A__ ) __lowercase = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowercase_ (train_state.TrainState ): """simple docstring""" SCREAMING_SNAKE_CASE : Callable = struct.field(pytree_node=lowerCamelCase__ ) @dataclass class lowercase_ : """simple docstring""" SCREAMING_SNAKE_CASE : Args SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : Callable SCREAMING_SNAKE_CASE : wandb SCREAMING_SNAKE_CASE : Callable = None def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any]=None ): __lowercase = model.params __lowercase = TrainState.create( apply_fn=model.__call__ ,params=lowercase__ ,tx=lowercase__ ,loss_fn=lowercase__ ,) if ckpt_dir is not None: __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = restore_checkpoint(lowercase__ ,lowercase__ ) __lowercase = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __lowercase , __lowercase = build_tx(**lowercase__ ) __lowercase = train_state.TrainState( step=lowercase__ ,apply_fn=model.__call__ ,params=lowercase__ ,tx=lowercase__ ,opt_state=lowercase__ ,) __lowercase = args __lowercase = data_collator __lowercase = lr __lowercase = params __lowercase = jax_utils.replicate(lowercase__ ) return state def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Dict ): __lowercase = self.args __lowercase = len(lowercase__ ) // args.batch_size __lowercase = jax.random.PRNGKey(0 ) __lowercase = jax.random.split(lowercase__ ,jax.device_count() ) for epoch in range(args.max_epochs ): __lowercase = jnp.array(0 ,dtype=jnp.floataa ) __lowercase = get_batched_dataset(lowercase__ ,args.batch_size ,seed=lowercase__ ) __lowercase = 0 for batch in tqdm(lowercase__ ,total=lowercase__ ,desc=F"Running EPOCH-{epoch}" ): __lowercase = self.data_collator(lowercase__ ) __lowercase , __lowercase , __lowercase = self.train_step_fn(lowercase__ ,lowercase__ ,**lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __lowercase = jax_utils.unreplicate(state.step ) __lowercase = running_loss.item() / i __lowercase = self.scheduler_fn(state_step - 1 ) __lowercase = self.evaluate(lowercase__ ,lowercase__ ) __lowercase = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(lowercase__ ) ) self.logger.log(lowercase__ ,commit=lowercase__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"-e{epoch}-s{i}" ,state=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[Any] ): __lowercase = get_batched_dataset(lowercase__ ,self.args.batch_size ) __lowercase = len(lowercase__ ) // self.args.batch_size __lowercase = jnp.array(0 ,dtype=jnp.floataa ) __lowercase = 0 for batch in tqdm(lowercase__ ,total=lowercase__ ,desc='''Evaluating ... ''' ): __lowercase = self.data_collator(lowercase__ ) __lowercase = self.val_step_fn(lowercase__ ,**lowercase__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : int ,lowercase__ : Any ): __lowercase = jax_utils.unreplicate(lowercase__ ) print(F"SAVING CHECKPOINT IN {save_dir}" ,end=''' ... ''' ) self.model_save_fn(lowercase__ ,params=state.params ) with open(os.path.join(lowercase__ ,'''opt_state.msgpack''' ) ,'''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(lowercase__ ,'''args.joblib''' ) ) joblib.dump(self.data_collator ,os.path.join(lowercase__ ,'''data_collator.joblib''' ) ) with open(os.path.join(lowercase__ ,'''training_state.json''' ) ,'''w''' ) as f: json.dump({'''step''': state.step.item()} ,lowercase__ ) print('''DONE''' ) def _A ( A__ , A__ ): """simple docstring""" print(F"RESTORING CHECKPOINT FROM {save_dir}" , end=''' ... ''' ) with open(os.path.join(A__ , '''flax_model.msgpack''' ) , '''rb''' ) as f: __lowercase = from_bytes(state.params , f.read() ) with open(os.path.join(A__ , '''opt_state.msgpack''' ) , '''rb''' ) as f: __lowercase = from_bytes(state.opt_state , f.read() ) __lowercase = joblib.load(os.path.join(A__ , '''args.joblib''' ) ) __lowercase = joblib.load(os.path.join(A__ , '''data_collator.joblib''' ) ) with open(os.path.join(A__ , '''training_state.json''' ) , '''r''' ) as f: __lowercase = json.load(A__ ) __lowercase = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase = num_train_steps - warmup_steps __lowercase = optax.linear_schedule(init_value=A__ , end_value=A__ , transition_steps=A__ ) __lowercase = optax.linear_schedule(init_value=A__ , end_value=1e-7 , transition_steps=A__ ) __lowercase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _A ( A__ , A__ , A__ , A__ , A__ ): """simple docstring""" def weight_decay_mask(A__ ): __lowercase = traverse_util.flatten_dict(A__ ) __lowercase = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(A__ ) __lowercase = scheduler_fn(A__ , A__ , A__ , A__ ) __lowercase = optax.adamw(learning_rate=A__ , weight_decay=A__ , mask=A__ ) return tx, lr
104
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : int = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[int] ="""gptj""" lowerCamelCase : str ={ """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCAmelCase__=5_0400 , lowerCAmelCase__=2048 , lowerCAmelCase__=4096 , lowerCAmelCase__=28 , lowerCAmelCase__=16 , lowerCAmelCase__=64 , lowerCAmelCase__=None , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=0.02 , lowerCAmelCase__=True , lowerCAmelCase__=5_0256 , lowerCAmelCase__=5_0256 , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Tuple: a : List[Any] = vocab_size a : Tuple = n_positions a : Optional[Any] = n_embd a : Any = n_layer a : Tuple = n_head a : Optional[Any] = n_inner a : Dict = rotary_dim a : Optional[int] = activation_function a : Any = resid_pdrop a : Optional[Any] = embd_pdrop a : Union[str, Any] = attn_pdrop a : Optional[int] = layer_norm_epsilon a : Union[str, Any] = initializer_range a : Optional[Any] = use_cache a : List[str] = bos_token_id a : List[Any] = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ ) class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = "default" , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCAmelCase__ ): # TODO: how to do that better? a : Optional[int] = 0 @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: a : Any = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) a : int = {0: "batch", 1: "past_sequence + sequence"} else: a : Union[str, Any] = {0: "batch", 1: "sequence"} return common_inputs @property def __a ( self ) -> int: return self._config.n_layer @property def __a ( self ) -> int: return self._config.n_head def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = -1 , lowerCAmelCase__ = -1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , ) -> Mapping[str, Any]: a : Optional[int] = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() a : Optional[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch a, a : List[Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values a : Optional[int] = seqlen + 2 a : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) a : List[str] = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] a : List[Any] = common_inputs["attention_mask"] if self.use_past: a : int = ordered_inputs["attention_mask"].dtype a : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> int: return 13
105
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = FlaxAutoencoderKL @property def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (3_2, 3_2) lowerCAmelCase__ : str = jax.random.PRNGKey(0 ) lowerCAmelCase__ : str = jax.random.uniform(lowercase_ ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = { '''block_out_channels''': [3_2, 6_4], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict
106
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class snake_case__ (pl.LightningModule ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : Optional[int] ) -> List[str]: super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __UpperCAmelCase ( self : str ) -> int: pass def __magic_name__ ( A : str, A : str, A : str ): '''simple docstring''' a = LongformerModel.from_pretrained(A ) a = LightningModel(A ) a = torch.load(A, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(A ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : List[str] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
107
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase__ = (3, 9, -11, 0, 7, 5, 1, -1) lowerCAmelCase__ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : int a : Node | None class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Node | None = None for i in sorted(snake_case__ , reverse=snake_case__ ): lowerCAmelCase : str = Node(snake_case__ , self.head ) def __iter__( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.head while node: yield node.data lowerCAmelCase : Any = node.next_node def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __str__( self ): """simple docstring""" return " -> ".join([str(snake_case__ ) for node in self] ) def a__ ( SCREAMING_SNAKE_CASE : SortedLinkedList , SCREAMING_SNAKE_CASE : SortedLinkedList ): '''simple docstring''' return SortedLinkedList(list(SCREAMING_SNAKE_CASE ) + list(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
108
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as input_file: UpperCAmelCase : List[str] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase : str = input_file.read() UpperCAmelCase : int = regexp.search(_SCREAMING_SNAKE_CASE ) return match def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as input_file: UpperCAmelCase : Union[str, Any] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase : Optional[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase : int = regexp.finditer(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Dict = Path("""./datasets""" ) UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_SCREAMING_SNAKE_CASE ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any = Path("""./datasets""" ) UpperCAmelCase : Optional[Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_SCREAMING_SNAKE_CASE ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
109
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase__ ( nn.Module ): a__ : int a__ : int a__ : float = 0.0 a__ : int = 1 a__ : int = 1 a__ : bool = True a__ : bool = False a__ : bool = False a__ : bool = False a__ : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = [] snake_case : Optional[Any] = [] for i in range(self.num_layers ): snake_case : int = self.in_channels if i == 0 else self.out_channels snake_case : Tuple = FlaxResnetBlockaD( in_channels=_A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_A ) snake_case : Optional[int] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_A ) snake_case : Any = resnets snake_case : Union[str, Any] = attentions if self.add_downsample: snake_case : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): """simple docstring""" snake_case : Optional[int] = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case : Optional[Any] = resnet(_A , _A , deterministic=_A ) snake_case : Dict = attn(_A , _A , deterministic=_A ) output_states += (hidden_states,) if self.add_downsample: snake_case : Optional[int] = self.downsamplers_a(_A ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__ ( nn.Module ): a__ : int a__ : int a__ : float = 0.0 a__ : int = 1 a__ : bool = True a__ : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = [] for i in range(self.num_layers ): snake_case : int = self.in_channels if i == 0 else self.out_channels snake_case : Dict = FlaxResnetBlockaD( in_channels=_A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_A ) snake_case : List[str] = resnets if self.add_downsample: snake_case : Optional[int] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): """simple docstring""" snake_case : Tuple = () for resnet in self.resnets: snake_case : Tuple = resnet(_A , _A , deterministic=_A ) output_states += (hidden_states,) if self.add_downsample: snake_case : Optional[Any] = self.downsamplers_a(_A ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__ ( nn.Module ): a__ : int a__ : int a__ : int a__ : float = 0.0 a__ : int = 1 a__ : int = 1 a__ : bool = True a__ : bool = False a__ : bool = False a__ : bool = False a__ : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = [] snake_case : int = [] for i in range(self.num_layers ): snake_case : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case : str = self.prev_output_channel if i == 0 else self.out_channels snake_case : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_A ) snake_case : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_A ) snake_case : int = resnets snake_case : Dict = attentions if self.add_upsample: snake_case : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case : str = res_hidden_states_tuple[-1] snake_case : Optional[Any] = res_hidden_states_tuple[:-1] snake_case : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case : int = resnet(_A , _A , deterministic=_A ) snake_case : Optional[int] = attn(_A , _A , deterministic=_A ) if self.add_upsample: snake_case : Optional[int] = self.upsamplers_a(_A ) return hidden_states class lowerCamelCase__ ( nn.Module ): a__ : int a__ : int a__ : int a__ : float = 0.0 a__ : int = 1 a__ : bool = True a__ : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = [] for i in range(self.num_layers ): snake_case : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case : Any = self.prev_output_channel if i == 0 else self.out_channels snake_case : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_A ) snake_case : List[Any] = resnets if self.add_upsample: snake_case : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states snake_case : List[Any] = res_hidden_states_tuple[-1] snake_case : List[Any] = res_hidden_states_tuple[:-1] snake_case : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case : Any = resnet(_A , _A , deterministic=_A ) if self.add_upsample: snake_case : List[Any] = self.upsamplers_a(_A ) return hidden_states class lowerCamelCase__ ( nn.Module ): a__ : int a__ : float = 0.0 a__ : int = 1 a__ : int = 1 a__ : bool = False a__ : bool = False a__ : jnp.dtype = jnp.floataa def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case : Optional[Any] = [] for _ in range(self.num_layers ): snake_case : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_A ) snake_case : Optional[Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_A ) snake_case : Optional[int] = resnets snake_case : List[Any] = attentions def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ): """simple docstring""" snake_case : List[str] = self.resnets[0](_A , _A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case : Optional[int] = attn(_A , _A , deterministic=_A ) snake_case : Optional[int] = resnet(_A , _A , deterministic=_A ) return hidden_states
148
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = None @staticmethod def A_ ( ): raise NotImplementedError def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): raise NotImplementedError def A_ ( self , lowercase ): raise NotImplementedError def A_ ( self ): if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def A_ ( cls ): return F'''`pip install {cls.pip_package or cls.name}`''' class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''optuna''' @staticmethod def A_ ( ): return is_optuna_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_optuna(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_optuna(_A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''ray''' lowerCamelCase__ = '''\'ray[tune]\'''' @staticmethod def A_ ( ): return is_ray_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_ray(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_ray(_A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''sigopt''' @staticmethod def A_ ( ): return is_sigopt_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_sigopt(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_sigopt(_A ) class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' lowerCamelCase__ = '''wandb''' @staticmethod def A_ ( ): return is_wandb_available() def A_ ( self , lowercase , lowercase , lowercase , **lowercase ): return run_hp_search_wandb(_A , _A , _A , **_A ) def A_ ( self , lowercase ): return default_hp_space_wandb(_A ) lowercase__ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _snake_case ( ): _lowerCamelCase : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase__ ) > 0: _lowerCamelCase : Optional[int] = available_backends[0].name if len(lowercase__ ) > 1: logger.info( f'''{len(lowercase__ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowerCamelCase ): lowercase__ = '''encoder-decoder''' lowercase__ = True def __init__( self : List[Any] , **snake_case_ : int ) -> List[str]: '''simple docstring''' super().__init__(**_A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ = kwargs.pop("encoder" ) A__ = encoder_config.pop("model_type" ) A__ = kwargs.pop("decoder" ) A__ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig A__ = AutoConfig.for_model(_A , **_A ) A__ = AutoConfig.for_model(_A , **_A ) A__ = True @classmethod def __magic_name__ ( cls : List[Any] , snake_case_ : PretrainedConfig , snake_case_ : PretrainedConfig , **snake_case_ : Optional[int] ) -> PretrainedConfig: '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) A__ = True A__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.encoder.to_dict() A__ = self.decoder.to_dict() A__ = self.__class__.model_type return output
247
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
"""simple docstring""" import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _a = logging.get_logger(__name__) _a = R"""\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n""" class _UpperCAmelCase( _lowerCamelCase ): @add_start_docstrings(_A) def __call__( self , __a , __a , **__a) -> bool: '''simple docstring''' raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a = None) -> int: '''simple docstring''' _UpperCamelCase = max_length _UpperCamelCase = max_position_embeddings @add_start_docstrings(_A) def __call__( self , __a , __a , **__a) -> bool: '''simple docstring''' _UpperCamelCase = input_ids.shape[-1] _UpperCamelCase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' '''exceptions, performance degradation, or nothing at all.''') return is_done class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a) -> Union[str, Any]: '''simple docstring''' warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' '''with `max_length = start_length + max_new_tokens` instead.''' , _A , ) _UpperCamelCase = start_length _UpperCamelCase = max_new_tokens _UpperCamelCase = start_length + max_new_tokens @add_start_docstrings(_A) def __call__( self , __a , __a , **__a) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _UpperCAmelCase( _lowerCamelCase ): def __init__( self , __a , __a = None) -> int: '''simple docstring''' _UpperCamelCase = max_time _UpperCamelCase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_A) def __call__( self , __a , __a , **__a) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _UpperCAmelCase( _lowerCamelCase ): @add_start_docstrings(_A) def __call__( self , __a , __a , **__a) -> bool: '''simple docstring''' return any(criteria(_A , _A) for criteria in self) @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(_A , _A): return stopping_criterium.max_length elif isinstance(_A , _A): return stopping_criterium.max_length return None def lowerCamelCase__ ( __snake_case, __snake_case ) -> StoppingCriteriaList: """simple docstring""" _UpperCamelCase = stopping_criteria.max_length _UpperCamelCase = deepcopy(__snake_case ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''', __snake_case ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__snake_case ) ) return new_stopping_criteria
194
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
'''simple docstring''' from heapq import heappop, heappush import numpy as np def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' UpperCAmelCase_ = grid.shape UpperCAmelCase_ = [-1, 1, 0, 0] UpperCAmelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase_ = [(0, source)], set() UpperCAmelCase_ = np.full((rows, cols) , np.inf ) UpperCAmelCase_ = 0 UpperCAmelCase_ = np.empty((rows, cols) , dtype=snake_case_ ) UpperCAmelCase_ = None while queue: (UpperCAmelCase_) = heappop(snake_case_ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase_ = predecessors[x, y] path.append(snake_case_ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(snake_case_ ) ): UpperCAmelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(snake_case_ , (dist + 1, (nx, ny)) ) UpperCAmelCase_ = dist + 1 UpperCAmelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase: Optional[Any] = logging.get_logger(__name__) _lowercase: Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowercase: List[Any] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _lowercase: List[str] = {"allegro/herbert-base-cased": 514} _lowercase: Optional[Any] = {} class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_INIT_CONFIGURATION __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = HerbertTokenizer def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<s>" , lowerCamelCase_="<unk>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_="</s>" , **lowerCamelCase_ , ): """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , sep_token=_A , **_A , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.cls_token_id] a = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" a = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
227
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) UpperCamelCase_ = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" UpperCamelCase_ = model(_A )['''last_hidden_state'''] UpperCamelCase_ = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , _A ) # compare the actual values for a slice. UpperCamelCase_ = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
122
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
from __future__ import annotations from typing import Any def a ( snake_case__: Tuple ): '''simple docstring''' create_state_space_tree(snake_case__ , [] , 0 ) def a ( snake_case__: Optional[Any] , snake_case__: str , snake_case__: Optional[Any] ): '''simple docstring''' if index == len(snake_case__ ): print(snake_case__ ) return create_state_space_tree(snake_case__ , snake_case__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(snake_case__ , snake_case__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __a = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
30
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin A: List[str] = False @skip_mps class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = StableDiffusionAttendAndExcitePipeline __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : List[Any] = TEXT_TO_IMAGE_PARAMS __lowerCAmelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) __lowerCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> str: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_A ) @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> Union[str, Any]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) UpperCAmelCase : Optional[int] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : Union[str, Any] = CLIPTextModel(_A ) UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> int: '''simple docstring''' if str(_A ).startswith("""mps""" ): UpperCAmelCase : Dict = torch.manual_seed(_A ) else: UpperCAmelCase : Tuple = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase : List[str] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] = '''cpu''' UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase : Tuple = self.get_dummy_inputs(_A ) UpperCAmelCase : Any = pipe(**_A ).images UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) UpperCAmelCase : int = np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) UpperCAmelCase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> Optional[Any]: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(_A ) @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> Tuple: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(_A ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = torch.manual_seed(51 ) UpperCAmelCase : Tuple = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=_A , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) UpperCAmelCase : List[Any] = '''a painting of an elephant with glasses''' UpperCAmelCase : List[str] = [5, 7] UpperCAmelCase : List[str] = pipe( prompt=_A , token_indices=_A , guidance_scale=7.5 , generator=_A , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] UpperCAmelCase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-1
109
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
from collections.abc import Callable class lowerCamelCase__: def __init__( self: str , UpperCamelCase_: Callable | None = None ): __lowerCamelCase = [] # Stores indexes of each item for supporting updates and deletion. __lowerCamelCase = {} # Stores current size of heap. __lowerCamelCase = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __lowerCamelCase = key or (lambda UpperCamelCase_ : x) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: int ): return int((i - 1) / 2 ) if i > 0 else None def lowerCAmelCase__ ( self: int , UpperCamelCase_: int ): __lowerCamelCase = int(2 * i + 1 ) return left if 0 < left < self.size else None def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int ): __lowerCamelCase = int(2 * i + 2 ) return right if 0 < right < self.size else None def lowerCAmelCase__ ( self: int , UpperCamelCase_: int , UpperCamelCase_: int ): __lowerCamelCase = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __lowerCamelCase = self.arr[j], self.arr[i] def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int ): return self.arr[i][1] < self.arr[j][1] def lowerCAmelCase__ ( self: int , UpperCamelCase_: int ): __lowerCamelCase = self._left(_A ) __lowerCamelCase = self._right(_A ) __lowerCamelCase = i if left is not None and not self._cmp(_A , _A ): __lowerCamelCase = left if right is not None and not self._cmp(_A , _A ): __lowerCamelCase = right return valid_parent def lowerCAmelCase__ ( self: Any , UpperCamelCase_: int ): __lowerCamelCase = self._parent(_A ) while parent is not None and not self._cmp(_A , _A ): self._swap(_A , _A ) __lowerCamelCase = parent, self._parent(_A ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: int ): __lowerCamelCase = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A , _A ) __lowerCamelCase = valid_parent, self._get_valid_parent(_A ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int ): if item not in self.pos_map: return __lowerCamelCase = self.pos_map[item] __lowerCamelCase = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int ): if item not in self.pos_map: return __lowerCamelCase = self.pos_map[item] del self.pos_map[item] __lowerCamelCase = self.arr[self.size - 1] __lowerCamelCase = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int ): __lowerCamelCase = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: __lowerCamelCase = [item, self.key(_A )] __lowerCamelCase = self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowerCAmelCase__ ( self: str ): return self.arr[0] if self.size else None def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCamelCase__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : int = '''\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n''' def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int]=8 ) -> Optional[Any]: A_ : str = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A_ : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __magic_name__ ( _lowerCamelCase ): """simple docstring""" def __init__( self :Union[str, Any] , snake_case :UNetaDConditionModel , snake_case :DDPMScheduler , snake_case :VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=_A , scheduler=_A , movq=_A , ) A_ : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[Any] , snake_case :int , snake_case :Optional[int] , snake_case :Dict , snake_case :int , snake_case :Optional[Any] ): '''simple docstring''' if latents is None: A_ : Tuple = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) A_ : Optional[int] = latents.to(_A ) A_ : Any = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :List[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) A_ : Optional[int] = torch.device(f"cuda:{gpu_id}" ) A_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_A , _A ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) A_ : List[str] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=_A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A_ : int = None for cpu_offloaded_model in [self.unet, self.movq]: A_ : Dict = cpu_offload_with_hook(_A , _A , prev_module_hook=_A ) # We'll offload the last model manually. A_ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_A , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_A ) def __call__( self :Optional[int] , snake_case :Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case :Union[torch.FloatTensor, List[torch.FloatTensor]] , snake_case :torch.FloatTensor , snake_case :int = 512 , snake_case :int = 512 , snake_case :int = 100 , snake_case :float = 4.0 , snake_case :int = 1 , snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case :Optional[torch.FloatTensor] = None , snake_case :Optional[str] = "pil" , snake_case :bool = True , ): '''simple docstring''' A_ : List[Any] = self._execution_device A_ : List[Any] = guidance_scale > 1.0 if isinstance(_A , _A ): A_ : List[str] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): A_ : Optional[int] = torch.cat(_A , dim=0 ) if isinstance(_A , _A ): A_ : Optional[Any] = torch.cat(_A , dim=0 ) A_ : List[str] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: A_ : List[str] = image_embeds.repeat_interleave(_A , dim=0 ) A_ : Tuple = negative_image_embeds.repeat_interleave(_A , dim=0 ) A_ : Any = hint.repeat_interleave(_A , dim=0 ) A_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) A_ : str = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_A ) self.scheduler.set_timesteps(_A , device=_A ) A_ : Optional[Any] = self.scheduler.timesteps A_ : Optional[int] = self.movq.config.latent_channels A_ : Dict = downscale_height_and_width(_A , _A , self.movq_scale_factor ) # create initial latent A_ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _A , _A , _A , self.scheduler , ) for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance A_ : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ : Optional[Any] = {'''image_embeds''': image_embeds, '''hint''': hint} A_ : Tuple = self.unet( sample=_A , timestep=_A , encoder_hidden_states=_A , added_cond_kwargs=_A , return_dict=_A , )[0] if do_classifier_free_guidance: A_ : Any = noise_pred.split(latents.shape[1] , dim=1 ) A_ : int = noise_pred.chunk(2 ) A_ : Any = variance_pred.chunk(2 ) A_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A_ : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A_ : Tuple = self.scheduler.step( _A , _A , _A , generator=_A , )[0] # post-processing A_ : Dict = self.movq.decode(_A , force_not_quantize=_A )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: A_ : Tuple = image * 0.5 + 0.5 A_ : int = image.clamp(0 , 1 ) A_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A_ : Union[str, Any] = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A )
300
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase__ ( lowercase__ : Dict ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase__ ( ): snake_case : List[str] = '''mock-s3-bucket''' snake_case : Optional[int] = F'''s3://{mock_bucket}''' snake_case : List[Any] = extract_path_from_uri(lowercase__ ) assert dataset_path.startswith("s3://" ) is False snake_case : Optional[int] = '''./local/path''' snake_case : Dict = extract_path_from_uri(lowercase__ ) assert dataset_path == new_dataset_path def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Tuple = is_remote_filesystem(lowercase__ ) assert is_remote is True snake_case : int = fsspec.filesystem("file" ) snake_case : Optional[Any] = is_remote_filesystem(lowercase__ ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , lowercase__ ) def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): snake_case : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} snake_case : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case : Dict = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase__ ) snake_case : Any = fsspec.filesystem(compression_fs_class.protocol , fo=lowercase__ ) assert isinstance(lowercase__ , lowercase__ ) snake_case : List[Any] = os.path.basename(lowercase__ ) snake_case : Tuple = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowercase__ , "r" , encoding="utf-8" ) as f, open(lowercase__ , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : Union[str, Any] ): snake_case : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} snake_case : List[str] = compressed_file_paths[protocol] snake_case : str = '''dataset.jsonl''' snake_case : List[str] = F'''{protocol}://{member_file_path}::{compressed_file_path}''' snake_case : Tuple = fsspec.get_fs_token_paths(lowercase__ ) assert fs.isfile(lowercase__ ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def UpperCamelCase__ ( lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : str , lowercase__ : Dict ): snake_case : Optional[Any] = hf_api.dataset_info(lowercase__ , token=lowercase__ ) snake_case : int = HfFileSystem(repo_info=lowercase__ , token=lowercase__ ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowercase__ ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def UpperCamelCase__ ( ): snake_case : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowercase__ , lowercase__ , clobber=lowercase__ ) with pytest.warns(lowercase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowercase__ ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
148
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
"""simple docstring""" def _snake_case ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowerCamelCase : List[Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" _lowerCamelCase : Union[str, Any] = str(bin(lowercase__ ) )[2:] _lowerCamelCase : Optional[int] = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
96
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) SCREAMING_SNAKE_CASE = "bert-base-cased" SCREAMING_SNAKE_CASE = "fp16" SCREAMING_SNAKE_CASE = "bf16" SCREAMING_SNAKE_CASE = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase_ ( _lowerCamelCase ): def __magic_name__ ( self : List[str] ) -> Any: '''simple docstring''' super().setUp() A__ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_A ): A__ = self.dist_env.copy() A__ = F"""{i + 1}""" A__ = strategy with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __magic_name__ ( self : List[Any] ) -> str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_A ): A__ = self.dist_env.copy() A__ = prefetch_policy with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __magic_name__ ( self : Any ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_A ): A__ = self.dist_env.copy() A__ = state_dict_type with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __magic_name__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = AutoModel.from_pretrained(_A ) for policy in FSDP_AUTO_WRAP_POLICY: A__ = self.dist_env.copy() A__ = policy if policy == "TRANSFORMER_BASED_WRAP": A__ = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A__ = '''2000''' with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) A__ = self.dist_env.copy() A__ = '''TRANSFORMER_BASED_WRAP''' A__ = '''T5Layer''' with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() with self.assertRaises(_A ) as cm: fsdp_plugin.set_auto_wrap_policy(_A ) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception ) ) A__ = self.dist_env.copy() A__ = '''SIZE_BASED_WRAP''' A__ = '''0''' with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __magic_name__ ( self : Any ) -> Dict: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A__ = self.dist_env.copy() A__ = mp_dtype with mockenv_context(**_A ): A__ = Accelerator() if mp_dtype == "fp16": A__ = torch.floataa elif mp_dtype == "bf16": A__ = torch.bfloataa A__ = MixedPrecision(param_dtype=_A , reduce_dtype=_A , buffer_dtype=_A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_A ) def __magic_name__ ( self : str ) -> str: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A__ = self.dist_env.copy() A__ = str(_A ).lower() with mockenv_context(**_A ): A__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_A ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase_ ( _lowerCamelCase ): def __magic_name__ ( self : int ) -> List[str]: '''simple docstring''' super().setUp() A__ = 0.82 A__ = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A__ = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A__ = 160 A__ = 160 A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps"] ) def __magic_name__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , "test_performance.py" ) A__ = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A__ = cmd.copy() for i, strategy in enumerate(_A ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append("--mixed_precision=no" ) else: cmd_config.append("--mixed_precision=fp16" ) if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) def __magic_name__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , "test_checkpointing.py" ) A__ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(_A ): A__ = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue A__ = len(_A ) for state_dict_type in FSDP_STATE_DICT_TYPE: A__ = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) A__ = cmd_config[:-1] A__ = os.path.join(self.tmpdir , "epoch_0" ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) def __magic_name__ ( self : int ) -> int: '''simple docstring''' A__ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py" ) A__ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"] ) else: cmd_config.extend(["--mixed_precision=no"] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"] ) for i, strategy in enumerate(_A ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() )
247
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
"""simple docstring""" _a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [False] * len(__snake_case ) _UpperCamelCase = [s] _UpperCamelCase = True while queue: _UpperCamelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__snake_case ) _UpperCamelCase = True _UpperCamelCase = u return visited[t] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = [-1] * (len(__snake_case )) _UpperCamelCase = 0 _UpperCamelCase = [] _UpperCamelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(__snake_case, __snake_case, __snake_case, __snake_case ): _UpperCamelCase = float('''Inf''' ) _UpperCamelCase = sink while s != source: # Find the minimum value in select path _UpperCamelCase = min(__snake_case, graph[parent[s]][s] ) _UpperCamelCase = parent[s] max_flow += path_flow _UpperCamelCase = sink while v != source: _UpperCamelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase = parent[v] for i in range(len(__snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
194
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 SCREAMING_SNAKE_CASE_: Union[str, Any] ={ # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class __A : def __init__(self : Optional[Any] , __a : int = 14 ): if group not in primes: raise ValueError("Unsupported Group" ) UpperCAmelCase_ = primes[group]['''prime'''] UpperCAmelCase_ = primes[group]['''generator'''] UpperCAmelCase_ = int(hexlify(urandom(32 ) ) , base=16 ) def _lowercase (self : Optional[int] ): return hex(self.__private_key )[2:] def _lowercase (self : str ): UpperCAmelCase_ = pow(self.generator , self.__private_key , self.prime ) return hex(_A )[2:] def _lowercase (self : List[Any] , __a : int ): return ( 2 <= key <= self.prime - 2 and pow(_A , (self.prime - 1) // 2 , self.prime ) == 1 ) def _lowercase (self : int , __a : str ): UpperCAmelCase_ = int(_A , base=16 ) if not self.is_valid_public_key(_A ): raise ValueError("Invalid public key" ) UpperCAmelCase_ = pow(_A , self.__private_key , self.prime ) return shaaaa(str(_A ).encode() ).hexdigest() @staticmethod def _lowercase (__a : int , __a : int ): return ( 2 <= remote_public_key_str <= prime - 2 and pow(_A , (prime - 1) // 2 , _A ) == 1 ) @staticmethod def _lowercase (__a : str , __a : str , __a : int = 14 ): UpperCAmelCase_ = int(_A , base=16 ) UpperCAmelCase_ = int(_A , base=16 ) UpperCAmelCase_ = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(_A , _A ): raise ValueError("Invalid public key" ) UpperCAmelCase_ = pow(_A , _A , _A ) return shaaaa(str(_A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase: Any = logging.get_logger(__name__) _lowercase: str = {"vocab_file": "spiece.model"} _lowercase: int = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _lowercase: Dict = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__(self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_ = None , **lowerCamelCase_ , ): """simple docstring""" a = {} if sp_model_kwargs is None else sp_model_kwargs a = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) a = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing a = '''<|endoftext|>''' if eos_token is None else eos_token a = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: a = unk_token if pad_token is None else pad_token a = eos_token if bos_token is None else bos_token else: a = '''<pad>''' if pad_token is None else pad_token a = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off a = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing a = re.compile( F'''[{''.join(map(_A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__(self ): """simple docstring""" a = self.__dict__.copy() a = None return state def __setstate__(self , lowerCamelCase_ ): """simple docstring""" a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ (self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = self.non_printing_characters_re.sub("" , _A ) # Normalize whitespaces a = ''''''.join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization a = unicodedata.normalize("NFC" , _A ) return text def UpperCamelCase_ (self , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" a = self.preprocess_text(_A ) return self.sp_model.encode(_A , out_type=_A ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.sp_model.PieceToId(_A ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.sp_model.IdToPiece(_A ) @staticmethod def UpperCamelCase_ (lowerCamelCase_ ): """simple docstring""" return out_string def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [] a = '''''' a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token a = True a = [] else: current_sub_tokens.append(_A ) a = False out_string += self.sp_model.decode(_A ) return out_string def UpperCamelCase_ (self ): """simple docstring""" a = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = False ): """simple docstring""" if isinstance(_A , _A ): a = self.preprocess_text(_A ) a = self.sp_model.encode(_A ) else: a = [self.preprocess_text(_A ) for t in text] a = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": a = torch.tensor(_A ) return token_ids def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" return self.sp_model.decode(_A ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] a = ( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(_A ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=_A )
227
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0
import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase__ ( a__ : int , a__ : Any ) -> Generator[tuple[str, ...], None, None]: UpperCamelCase_ = iter(a__ ) while True: UpperCamelCase_ = tuple(itertools.islice(a__ , a__ ) ) if not chunk: return yield chunk def lowerCamelCase__ ( a__ : Dict ) -> str: UpperCamelCase_ = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCamelCase_ = '''''' if len(a__ ) < 2: return dirty for i in range(len(a__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(a__ ) & 1: clean += "X" return clean def lowerCamelCase__ ( a__ : Union[str, Any] ) -> list[str]: UpperCamelCase_ = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCamelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(a__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(a__ ) return table def lowerCamelCase__ ( a__ : Dict , a__ : List[str] ) -> str: UpperCamelCase_ = generate_table(a__ ) UpperCamelCase_ = prepare_input(a__ ) UpperCamelCase_ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a__ , 2 ): UpperCamelCase_ = divmod(table.index(a__ ) , 5 ) UpperCamelCase_ = divmod(table.index(a__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase__ ( a__ : Dict , a__ : Optional[int] ) -> str: UpperCamelCase_ = generate_table(a__ ) UpperCamelCase_ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(a__ , 2 ): UpperCamelCase_ = divmod(table.index(a__ ) , 5 ) UpperCamelCase_ = divmod(table.index(a__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
122
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A: str = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: List[Any] = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A: str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import collections import importlib.util import os import re from pathlib import Path UpperCAmelCase_ = 'src/transformers' # Matches is_xxx_available() UpperCAmelCase_ = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available UpperCAmelCase_ = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: UpperCAmelCase_ = re.compile(r'^\s*try:') # Catches a line with else: UpperCAmelCase_ = re.compile(r'^\s*else:') def lowerCamelCase__ ( A__ : Union[str, Any] ): '''simple docstring''' if _re_test_backend.search(A__ ) is None: return None __lowerCamelCase = [b[0] for b in _re_backend.findall(A__ )] backends.sort() return "_and_".join(A__ ) def lowerCamelCase__ ( A__ : Dict ): '''simple docstring''' with open(A__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowerCamelCase = f.readlines() __lowerCamelCase = 0 while line_index < len(A__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A__ ): return None # First grab the objects without a specific backend in _import_structure __lowerCamelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __lowerCamelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A__ ): __lowerCamelCase = _re_one_line_import_struct.search(A__ ).groups()[0] __lowerCamelCase = re.findall("""\[([^\]]+)\]""" , A__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __lowerCamelCase = _re_import_struct_key_value.search(A__ ) if single_line_import_search is not None: __lowerCamelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(A__ ) > 0] objects.extend(A__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __lowerCamelCase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __lowerCamelCase = lines[line_index] if _re_import_struct_add_one.search(A__ ) is not None: objects.append(_re_import_struct_add_one.search(A__ ).groups()[0] ) elif _re_import_struct_add_many.search(A__ ) is not None: __lowerCamelCase = _re_import_struct_add_many.search(A__ ).groups()[0].split(""", """ ) __lowerCamelCase = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_between_brackets.search(A__ ) is not None: __lowerCamelCase = _re_between_brackets.search(A__ ).groups()[0].split(""", """ ) __lowerCamelCase = [obj[1:-1] for obj in imports if len(A__ ) > 0] objects.extend(A__ ) elif _re_quote_object.search(A__ ) is not None: objects.append(_re_quote_object.search(A__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __lowerCamelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCamelCase = [] while ( line_index < len(A__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __lowerCamelCase = lines[line_index] __lowerCamelCase = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCamelCase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(A__ ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCamelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __lowerCamelCase = lines[line_index] __lowerCamelCase = _re_import.search(A__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowerCamelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase__ ( A__ : Optional[Any] , A__ : Optional[int] ): '''simple docstring''' def find_duplicates(A__ : List[str] ): return [k for k, v in collections.Counter(A__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCamelCase = [] for key in import_dict_objects.keys(): __lowerCamelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) __lowerCamelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCamelCase = '''base imports''' if key == '''none''' else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowerCamelCase = os.path.join(A__ , """__init__.py""" ) __lowerCamelCase = parse_init(A__ ) if objects is not None: __lowerCamelCase = analyze_results(*A__ ) if len(A__ ) > 0: __lowerCamelCase = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(A__ ) ) if len(A__ ) > 0: raise ValueError("""\n\n""".join(A__ ) ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = [] for path, directories, files in os.walk(A__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(A__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A__ ) / folder).glob("""*.py""" ) ) ) == 0: continue __lowerCamelCase = str((Path(A__ ) / folder).relative_to(A__ ) ) __lowerCamelCase = short_path.replace(os.path.sep , """.""" ) submodules.append(A__ ) for fname in files: if fname == "__init__.py": continue __lowerCamelCase = str((Path(A__ ) / fname).relative_to(A__ ) ) __lowerCamelCase = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(A__ ) return submodules UpperCAmelCase_ = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = importlib.util.spec_from_file_location( """transformers""" , os.path.join(A__ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowerCamelCase = spec.loader.load_module() __lowerCamelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A__ ) > 0: __lowerCamelCase = '''\n'''.join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
12
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class __magic_name__ ( _lowerCamelCase ): """simple docstring""" __UpperCamelCase = '''align_text_model''' def __init__( self :int , snake_case :List[Any]=30_522 , snake_case :Any=768 , snake_case :Optional[Any]=12 , snake_case :Any=12 , snake_case :Dict=3_072 , snake_case :List[str]="gelu" , snake_case :str=0.1 , snake_case :Any=0.1 , snake_case :List[str]=512 , snake_case :Any=2 , snake_case :str=0.02 , snake_case :Tuple=1e-12 , snake_case :List[Any]=0 , snake_case :Optional[Any]="absolute" , snake_case :str=True , **snake_case :Optional[Any] , ): '''simple docstring''' super().__init__(**_A ) A_ : int = vocab_size A_ : Dict = hidden_size A_ : Tuple = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : Optional[int] = hidden_act A_ : Dict = intermediate_size A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : str = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Tuple = initializer_range A_ : Any = layer_norm_eps A_ : List[str] = position_embedding_type A_ : str = use_cache A_ : List[str] = pad_token_id @classmethod def SCREAMING_SNAKE_CASE ( cls :List[str] , snake_case :Union[str, os.PathLike] , **snake_case :Optional[Any] ): '''simple docstring''' cls._set_token_in_kwargs(_A ) A_ : Optional[int] = cls.get_config_dict(_A , **_A ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": A_ : str = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_A , **_A ) class __magic_name__ ( _lowerCamelCase ): """simple docstring""" __UpperCamelCase = '''align_vision_model''' def __init__( self :Optional[Any] , snake_case :int = 3 , snake_case :int = 600 , snake_case :float = 2.0 , snake_case :float = 3.1 , snake_case :int = 8 , snake_case :List[int] = [3, 3, 5, 3, 5, 5, 3] , snake_case :List[int] = [32, 16, 24, 40, 80, 112, 192] , snake_case :List[int] = [16, 24, 40, 80, 112, 192, 320] , snake_case :List[int] = [] , snake_case :List[int] = [1, 2, 2, 2, 1, 2, 1] , snake_case :List[int] = [1, 2, 2, 3, 3, 4, 1] , snake_case :List[int] = [1, 6, 6, 6, 6, 6, 6] , snake_case :float = 0.25 , snake_case :str = "swish" , snake_case :int = 2_560 , snake_case :str = "mean" , snake_case :float = 0.02 , snake_case :float = 0.001 , snake_case :float = 0.99 , snake_case :float = 0.2 , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(**_A ) A_ : List[str] = num_channels A_ : Union[str, Any] = image_size A_ : Optional[Any] = width_coefficient A_ : List[str] = depth_coefficient A_ : List[str] = depth_divisor A_ : List[Any] = kernel_sizes A_ : Any = in_channels A_ : List[str] = out_channels A_ : List[Any] = depthwise_padding A_ : int = strides A_ : Tuple = num_block_repeats A_ : str = expand_ratios A_ : Any = squeeze_expansion_ratio A_ : List[str] = hidden_act A_ : List[str] = hidden_dim A_ : Dict = pooling_type A_ : str = initializer_range A_ : int = batch_norm_eps A_ : List[str] = batch_norm_momentum A_ : Optional[int] = drop_connect_rate A_ : int = sum(_A ) * 4 @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , snake_case :Union[str, os.PathLike] , **snake_case :Optional[Any] ): '''simple docstring''' cls._set_token_in_kwargs(_A ) A_ : Union[str, Any] = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": A_ : int = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_A , **_A ) class __magic_name__ ( _lowerCamelCase ): """simple docstring""" __UpperCamelCase = '''align''' __UpperCamelCase = True def __init__( self :Tuple , snake_case :Tuple=None , snake_case :Any=None , snake_case :List[Any]=640 , snake_case :int=1.0 , snake_case :Any=0.02 , **snake_case :Optional[int] , ): '''simple docstring''' super().__init__(**_A ) if text_config is None: A_ : Dict = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: A_ : str = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) A_ : Dict = AlignTextConfig(**_A ) A_ : Union[str, Any] = AlignVisionConfig(**_A ) A_ : Optional[int] = projection_dim A_ : Tuple = temperature_init_value A_ : List[str] = initializer_range @classmethod def SCREAMING_SNAKE_CASE ( cls :Union[str, Any] , snake_case :AlignTextConfig , snake_case :AlignVisionConfig , **snake_case :Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_A ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) A_ : List[Any] = self.text_config.to_dict() A_ : Union[str, Any] = self.vision_config.to_dict() A_ : Optional[int] = self.__class__.model_type return output
300
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = False ): """simple docstring""" snake_case : Optional[int] = scheduler snake_case : List[str] = optimizers if isinstance(_A , (list, tuple) ) else [optimizers] snake_case : Tuple = split_batches snake_case : Optional[int] = step_with_optimizer snake_case : Tuple = GradientState() def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_A , **_A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_A , **_A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step snake_case : Tuple = AcceleratorState().num_processes for _ in range(_A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_A , **_A ) else: self.scheduler.step(*_A , **_A ) def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.get_last_lr() def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.state_dict() def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" self.scheduler.load_state_dict(_A ) def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.get_lr() def lowerCamelCase_ ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return self.scheduler.print_lr(*_A , **_A )
148
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) _lowerCamelCase : Dict = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _lowerCamelCase : str = components[:-1] + [test_fn.replace('.py' , '' )] _lowerCamelCase : Dict = '''.'''.join(lowercase__ ) return test_module_path def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = get_module_path(lowercase__ ) _lowerCamelCase : Tuple = importlib.import_module(lowercase__ ) return test_module def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Any = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(lowercase__ , lowercase__ ) ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = get_test_module(lowercase__ ) for attr in dir(lowercase__ ): _lowerCamelCase : Optional[int] = getattr(lowercase__ , lowercase__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowerCamelCase : Any = getattr(lowercase__ , 'all_model_classes' , [] ) if len(lowercase__ ) > 0: test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = get_test_classes(lowercase__ ) _lowerCamelCase : List[str] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = test_class() if hasattr(lowercase__ , 'setUp' ): test.setUp() _lowerCamelCase : Dict = None if hasattr(lowercase__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowerCamelCase : Optional[Any] = test.model_tester.__class__ return model_tester def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : List[str] = get_test_classes(lowercase__ ) _lowerCamelCase : Tuple = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[Any] = get_test_classes_for_model(lowercase__ , lowercase__ ) _lowerCamelCase : Dict = [] for test_class in test_classes: _lowerCamelCase : Any = get_model_tester_from_test_class(lowercase__ ) if tester_class is not None: tester_classes.append(lowercase__ ) # sort with class names return sorted(lowercase__ , key=lambda lowercase__ : x.__name__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[int] = get_test_classes(lowercase__ ) _lowerCamelCase : Any = {test_class: get_model_tester_from_test_class(lowercase__ ) for test_class in test_classes} return test_tester_mapping def _snake_case ( lowercase__ ): _lowerCamelCase : Tuple = get_model_classes(lowercase__ ) _lowerCamelCase : int = { model_class: get_test_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_test_mapping def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = get_model_classes(lowercase__ ) _lowerCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase__ , lowercase__ ) for model_class in model_classes } return model_to_tester_mapping def _snake_case ( lowercase__ ): if isinstance(lowercase__ , lowercase__ ): return o elif isinstance(lowercase__ , lowercase__ ): return o.__name__ elif isinstance(lowercase__ , (list, tuple) ): return [to_json(lowercase__ ) for x in o] elif isinstance(lowercase__ , lowercase__ ): return {to_json(lowercase__ ): to_json(lowercase__ ) for k, v in o.items()} else: return o
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: A__ = model.config A__ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) A__ = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: if "encoder.model" in name: A__ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: A__ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: A__ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: A__ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: A__ = '''encoder.''' + name if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": A__ = '''encoder.layernorm.bias''' return name def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowercase_ ) if "qkv" in key: A__ = key.split("." ) A__ = int(key_split[3] ) A__ = int(key_split[5] ) A__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[dim : dim * 2, :] A__ = val[-dim:, :] else: A__ = val[:dim] A__ = val[dim : dim * 2] A__ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: A__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> List[str]: A__ = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model A__ = get_configs(lowercase_ ) A__ = DonutSwinModel(lowercase_ ) A__ = MBartForCausalLM(lowercase_ ) A__ = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() A__ = original_model.state_dict() A__ = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document A__ = load_dataset("hf-internal-testing/example-documents" ) A__ = dataset['''test'''][0]['''image'''].convert("RGB" ) A__ = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) A__ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) A__ = DonutProcessor(lowercase_ , lowercase_ ) A__ = processor(lowercase_ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": A__ = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' A__ = '''When is the coffee break?''' A__ = task_prompt.replace("{user_input}" , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": A__ = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: A__ = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": A__ = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": A__ = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt A__ = '''hello world''' else: raise ValueError("Model name not supported" ) A__ = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors="pt" )[ '''input_ids''' ] A__ = original_model.encoder.model.patch_embed(lowercase_ ) A__ = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states A__ = original_model.encoder(lowercase_ ) A__ = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states A__ = original_model(lowercase_ , lowercase_ , lowercase_ ).logits A__ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
247
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=__snake_case ) _UpperCamelCase = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__snake_case ) env_command_parser(subparsers=__snake_case ) launch_command_parser(subparsers=__snake_case ) tpu_command_parser(subparsers=__snake_case ) test_command_parser(subparsers=__snake_case ) # Let's go _UpperCamelCase = parser.parse_args() if not hasattr(__snake_case, '''func''' ): parser.print_help() exit(1 ) # Run args.func(__snake_case ) if __name__ == "__main__": main()
194
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A : @staticmethod def _lowercase (*__a : int , **__a : Union[str, Any] ): pass def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> str: '''simple docstring''' UpperCAmelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A ( unittest.TestCase ): a__ : List[str] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _lowercase (self : List[Any] , __a : List[Any] , __a : Dict , __a : Dict ): UpperCAmelCase_ = DepthEstimationPipeline(model=_A , image_processor=_A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowercase (self : Dict , __a : int , __a : int ): UpperCAmelCase_ = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , _A ) import datasets UpperCAmelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) UpperCAmelCase_ = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , _A , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def _lowercase (self : int ): pass @slow @require_torch def _lowercase (self : int ): UpperCAmelCase_ = '''Intel/dpt-large''' UpperCAmelCase_ = pipeline("depth-estimation" , model=_A ) UpperCAmelCase_ = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) UpperCAmelCase_ = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.6_62 ) @require_torch def _lowercase (self : Optional[int] ): self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase: Optional[Any] = logging.get_logger(__name__) _lowercase: Optional[int] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = '''yolos''' def __init__(self , lowerCamelCase_=768 , lowerCamelCase_=12 , lowerCamelCase_=12 , lowerCamelCase_=3072 , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1E-1_2 , lowerCamelCase_=[512, 864] , lowerCamelCase_=16 , lowerCamelCase_=3 , lowerCamelCase_=True , lowerCamelCase_=100 , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=1 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=5 , lowerCamelCase_=2 , lowerCamelCase_=0.1 , **lowerCamelCase_ , ): """simple docstring""" super().__init__(**_A ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = version.parse("1.11" ) @property def UpperCamelCase_ (self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ (self ): """simple docstring""" return 1E-4 @property def UpperCamelCase_ (self ): """simple docstring""" return 12
227
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowercase_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = parent def lowerCamelCase_ ( self ): """simple docstring""" return {} def lowerCamelCase__ ( ) -> Union[str, Any]: UpperCamelCase_ = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' UpperCamelCase_ = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class lowercase_ ( _lowerCamelCase , unittest.TestCase ): A__ : Any = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = MarkupLMFeatureExtractionTester(self ) @property def lowerCamelCase_ ( self ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.feature_extraction_class() # Test not batched input UpperCamelCase_ = get_html_strings()[0] UpperCamelCase_ = feature_extractor(_A ) # fmt: off UpperCamelCase_ = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] UpperCamelCase_ = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , _A ) self.assertEqual(encoding.xpaths , _A ) # Test batched UpperCamelCase_ = get_html_strings() UpperCamelCase_ = feature_extractor(_A ) # fmt: off UpperCamelCase_ = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] UpperCamelCase_ = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _A ) self.assertEqual(encoding.xpaths , _A )
122
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
def a ( ): '''simple docstring''' return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(snake_case__ , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"{solution() = }")
30
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
0
"""simple docstring""" import requests def _snake_case ( UpperCamelCase : Optional[int] , UpperCamelCase : int ): UpperCAmelCase : str = {'''Content-Type''': '''application/json'''} UpperCAmelCase : Union[str, Any] = requests.post(UpperCamelCase , json={"""text""": message_body} , headers=UpperCamelCase ) if response.status_code != 200: UpperCAmelCase : int = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
109
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase__( _lowerCamelCase): UpperCAmelCase__ : Optional[int] = '''unispeech-sat''' def __init__( self: Tuple , UpperCamelCase_: List[str]=32 , UpperCamelCase_: str=7_68 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: List[Any]=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: Dict="gelu" , UpperCamelCase_: int=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: str=0.1 , UpperCamelCase_: str=0.0 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: int=0.02 , UpperCamelCase_: List[str]=1E-5 , UpperCamelCase_: Tuple="group" , UpperCamelCase_: Optional[int]="gelu" , UpperCamelCase_: List[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase_: Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_: Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_: List[str]=False , UpperCamelCase_: Optional[int]=1_28 , UpperCamelCase_: int=16 , UpperCamelCase_: List[Any]=False , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: int=0.05 , UpperCamelCase_: Any=10 , UpperCamelCase_: int=2 , UpperCamelCase_: List[str]=0.0 , UpperCamelCase_: str=10 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: str=3_20 , UpperCamelCase_: Union[str, Any]=2 , UpperCamelCase_: Any=0.1 , UpperCamelCase_: Tuple=1_00 , UpperCamelCase_: Any=2_56 , UpperCamelCase_: List[Any]=2_56 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: Any="mean" , UpperCamelCase_: List[str]=False , UpperCamelCase_: Union[str, Any]=False , UpperCamelCase_: Optional[int]=2_56 , UpperCamelCase_: Optional[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , UpperCamelCase_: List[str]=(5, 3, 3, 1, 1) , UpperCamelCase_: Union[str, Any]=(1, 2, 3, 1, 1) , UpperCamelCase_: List[str]=5_12 , UpperCamelCase_: str=0 , UpperCamelCase_: Optional[int]=1 , UpperCamelCase_: Dict=2 , UpperCamelCase_: str=5_04 , **UpperCamelCase_: Union[str, Any] , ): super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __lowerCamelCase = hidden_size __lowerCamelCase = feat_extract_norm __lowerCamelCase = feat_extract_activation __lowerCamelCase = list(_A ) __lowerCamelCase = list(_A ) __lowerCamelCase = list(_A ) __lowerCamelCase = conv_bias __lowerCamelCase = num_conv_pos_embeddings __lowerCamelCase = num_conv_pos_embedding_groups __lowerCamelCase = len(self.conv_dim ) __lowerCamelCase = num_hidden_layers __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_dropout __lowerCamelCase = attention_dropout __lowerCamelCase = activation_dropout __lowerCamelCase = feat_proj_dropout __lowerCamelCase = final_dropout __lowerCamelCase = layerdrop __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = vocab_size __lowerCamelCase = num_clusters __lowerCamelCase = do_stable_layer_norm __lowerCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCamelCase = apply_spec_augment __lowerCamelCase = mask_time_prob __lowerCamelCase = mask_time_length __lowerCamelCase = mask_time_min_masks __lowerCamelCase = mask_feature_prob __lowerCamelCase = mask_feature_length __lowerCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowerCamelCase = num_codevectors_per_group __lowerCamelCase = num_codevector_groups __lowerCamelCase = contrastive_logits_temperature __lowerCamelCase = feat_quantizer_dropout __lowerCamelCase = num_negatives __lowerCamelCase = codevector_dim __lowerCamelCase = proj_codevector_dim __lowerCamelCase = diversity_loss_weight # ctc loss __lowerCamelCase = ctc_loss_reduction __lowerCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCamelCase = list(_A ) __lowerCamelCase = list(_A ) __lowerCamelCase = list(_A ) __lowerCamelCase = xvector_output_dim @property def lowerCAmelCase__ ( self: List[str] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
12
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __snake_case ( ) -> Dict: A_ : Any = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=_lowerCAmelCase , default=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=_lowerCAmelCase , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=_lowerCAmelCase , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=_lowerCAmelCase , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=_lowerCAmelCase , default=0 , help="cuda_id." , ) A_ : Any = parser.parse_args() return args def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : int ) -> Tuple: if not len(_lowerCAmelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) A_ : str = imgs[0].size A_ : Tuple = Image.new("RGB" , size=(cols * w, rows * h) ) A_ : int = grid.size for i, img in enumerate(_lowerCAmelCase ): grid.paste(_lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int="robotic cat with wings" , _lowerCAmelCase : List[Any]=7.5 , _lowerCAmelCase : Tuple=50 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=42 , ) -> Any: A_ : str = torch.Generator(pipeline.device ).manual_seed(_lowerCAmelCase ) A_ : Dict = pipeline( _lowerCAmelCase , guidance_scale=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase , ).images A_ : int = int(math.sqrt(_lowerCAmelCase ) ) A_ : str = image_grid(_lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCAmelCase : Dict = parse_args() # Load models and create wrapper for stable diffusion _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''') _lowerCAmelCase : Optional[Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''') _lowerCAmelCase : Any = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''') _lowerCAmelCase : str = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''') _lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCAmelCase : Tuple = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')): _lowerCAmelCase : str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, '''unet''', unet) else: _lowerCAmelCase : List[str] = unet.to(torch.device('''cuda''', args.cuda_id)) _lowerCAmelCase : Optional[Any] = pipeline.to(unet.device) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split())))) _lowerCAmelCase : Any = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
300
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def UpperCamelCase__ ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : str ): snake_case : Optional[int] = state_dict.pop(lowercase__ ) snake_case : int = val def UpperCamelCase__ ( lowercase__ : Dict ): snake_case : Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case : Optional[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) snake_case : List[str] = value else: snake_case : Optional[Any] = value return new_state_dict def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : List[str] = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case : Optional[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case : List[str] = in_proj_weight[:256, :] snake_case : Optional[Any] = in_proj_bias[:256] snake_case : Optional[int] = in_proj_weight[256:512, :] snake_case : Any = in_proj_bias[256:512] snake_case : Optional[int] = in_proj_weight[-256:, :] snake_case : Optional[int] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case : Union[str, Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case : str = in_proj_weight[:256, :] snake_case : str = in_proj_bias[:256] snake_case : List[str] = in_proj_weight[256:512, :] snake_case : List[str] = in_proj_bias[256:512] snake_case : Union[str, Any] = in_proj_weight[-256:, :] snake_case : Any = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention snake_case : int = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) snake_case : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case : Dict = in_proj_weight_cross_attn[:256, :] snake_case : List[str] = in_proj_bias_cross_attn[:256] snake_case : Tuple = in_proj_weight_cross_attn[256:512, :] snake_case : Union[str, Any] = in_proj_bias_cross_attn[256:512] snake_case : str = in_proj_weight_cross_attn[-256:, :] snake_case : Tuple = in_proj_bias_cross_attn[-256:] def UpperCamelCase__ ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ): snake_case : Dict = image.size snake_case : str = max(lowercase__ , lowercase__ ) snake_case : Dict = 800 if '''detection''' in checkpoint_url else 1000 snake_case : Optional[Any] = target_max_size / current_max_size snake_case : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCamelCase__ ( lowercase__ : Tuple ): snake_case : int = F.to_tensor(lowercase__ ) snake_case : Dict = F.normalize(lowercase__ , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def UpperCamelCase__ ( lowercase__ : Tuple , lowercase__ : Any , lowercase__ : Optional[int] ): logger.info("Converting model..." ) # load original state dict snake_case : int = torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) snake_case : List[str] = rename_backbone_keys(lowercase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case : Optional[int] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case : Any = state_dict.pop(lowercase__ ) snake_case : Optional[int] = val # create HuggingFace model and load state dict snake_case : List[Any] = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: snake_case : Optional[Any] = 15 snake_case : Dict = 2 snake_case : Tuple = {0: '''table''', 1: '''table rotated'''} snake_case : Union[str, Any] = idalabel snake_case : Optional[int] = {v: k for k, v in idalabel.items()} else: snake_case : Dict = 125 snake_case : Any = 6 snake_case : Any = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } snake_case : Optional[int] = idalabel snake_case : List[Any] = {v: k for k, v in idalabel.items()} snake_case : List[str] = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) snake_case : List[str] = TableTransformerForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() # verify our conversion snake_case : Any = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' snake_case : List[str] = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=lowercase__ ) snake_case : Optional[Any] = Image.open(lowercase__ ).convert("RGB" ) snake_case : Union[str, Any] = normalize(resize(lowercase__ , lowercase__ ) ).unsqueeze(0 ) snake_case : Union[str, Any] = model(lowercase__ ) if "detection" in checkpoint_url: snake_case : Optional[Any] = (1, 15, 3) snake_case : Optional[int] = torch.tensor( [[-6.78_97, -16.9985, 6.79_37], [-8.01_86, -22.2192, 6.96_77], [-7.31_17, -21.0708, 7.40_55]] ) snake_case : Tuple = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: snake_case : Optional[int] = (1, 125, 7) snake_case : List[str] = torch.tensor( [[-18.1430, -8.32_14, 4.82_74], [-18.4685, -7.13_61, -4.26_67], [-26.3693, -9.34_29, -4.99_62]] ) snake_case : Union[str, Any] = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowercase__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase__ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) snake_case : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowercase__ ) image_processor.push_to_hub(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __A = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
148
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
0
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( _lowerCamelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = BlenderbotSmallTokenizer lowerCamelCase__ = False def A_ ( self ): super().setUp() _lowerCamelCase : Optional[int] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : int = dict(zip(_A , range(len(_A ) ) ) ) _lowerCamelCase : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : str = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) def A_ ( self , **lowercase ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_A ) def A_ ( self , lowercase ): _lowerCamelCase : Any = '''adapt act apte''' _lowerCamelCase : Union[str, Any] = '''adapt act apte''' return input_text, output_text def A_ ( self ): _lowerCamelCase : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : Optional[int] = '''adapt act apte''' _lowerCamelCase : List[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Dict = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) _lowerCamelCase : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : List[str] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def A_ ( self ): _lowerCamelCase : int = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] _lowerCamelCase : Union[str, Any] = '''I am a small frog.''' _lowerCamelCase : Dict = tok([src_text] , padding=_A , truncation=_A )['''input_ids'''] _lowerCamelCase : Dict = tok.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def A_ ( self ): _lowerCamelCase : List[str] = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) _lowerCamelCase : List[str] = '''I am a small frog .''' _lowerCamelCase : Any = '''.''' _lowerCamelCase : List[str] = tok(_A )['''input_ids'''] _lowerCamelCase : Optional[int] = tok(_A )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
96
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ = 10_00 ) -> int: A__ = 2**power A__ = 0 while n: A__ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
247
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _a = logging.get_logger(__name__) class _UpperCAmelCase( _lowerCamelCase ): lowercase__ = '''mask2former''' lowercase__ = ['''swin'''] lowercase__ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , __a = None , __a = 2_56 , __a = 2_56 , __a = 2_56 , __a = 10_24 , __a = "relu" , __a = 6 , __a = 10 , __a = 8 , __a = 0.0 , __a = 20_48 , __a = False , __a = False , __a = 4 , __a = 2_55 , __a = 1_00 , __a = 0.1 , __a = 2.0 , __a = 5.0 , __a = 5.0 , __a = 1_25_44 , __a = 3.0 , __a = 0.75 , __a = 0.02 , __a = 1.0 , __a = True , __a = [4, 8, 16, 32] , __a = None , **__a , ) -> List[str]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_A , _A): _UpperCamelCase = backbone_config.pop('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(_A) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {",".join(self.backbones_supported)}''') _UpperCamelCase = backbone_config _UpperCamelCase = feature_size _UpperCamelCase = mask_feature_size _UpperCamelCase = hidden_dim _UpperCamelCase = encoder_feedforward_dim _UpperCamelCase = activation_function _UpperCamelCase = encoder_layers _UpperCamelCase = decoder_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = dropout _UpperCamelCase = dim_feedforward _UpperCamelCase = pre_norm _UpperCamelCase = enforce_input_projection _UpperCamelCase = common_stride _UpperCamelCase = ignore_value _UpperCamelCase = num_queries _UpperCamelCase = no_object_weight _UpperCamelCase = class_weight _UpperCamelCase = mask_weight _UpperCamelCase = dice_weight _UpperCamelCase = train_num_points _UpperCamelCase = oversample_ratio _UpperCamelCase = importance_sample_ratio _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = use_auxiliary_loss _UpperCamelCase = feature_strides _UpperCamelCase = output_auxiliary_logits _UpperCamelCase = decoder_layers super().__init__(**_A) @classmethod def UpperCAmelCase ( cls , __a , **__a) -> Union[str, Any]: '''simple docstring''' return cls( backbone_config=_A , **_A , ) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
194
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( _lowerCamelCase , unittest.TestCase ): a__ : int = AudioLDMPipeline a__ : Tuple = TEXT_TO_AUDIO_PARAMS a__ : int = TEXT_TO_AUDIO_BATCH_PARAMS a__ : int = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def _lowercase (self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_A , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase_ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCAmelCase_ = ClapTextModelWithProjection(_A ) UpperCAmelCase_ = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) UpperCAmelCase_ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_A , ) UpperCAmelCase_ = SpeechTaHifiGan(_A ) UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def _lowercase (self : Union[str, Any] , __a : str , __a : Any=0 ): if str(_A ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_A ) else: UpperCAmelCase_ = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = audioldm_pipe(**_A ) UpperCAmelCase_ = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 256 UpperCAmelCase_ = audio[:10] UpperCAmelCase_ = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _lowercase (self : List[str] ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = 3 * [inputs['''prompt''']] # forward UpperCAmelCase_ = audioldm_pipe(**_A ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = audioldm_pipe.tokenizer( _A , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors="pt" , ) UpperCAmelCase_ = text_inputs['''input_ids'''].to(_A ) UpperCAmelCase_ = audioldm_pipe.text_encoder( _A , ) UpperCAmelCase_ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase_ = F.normalize(_A , dim=-1 ) UpperCAmelCase_ = prompt_embeds # forward UpperCAmelCase_ = audioldm_pipe(**_A ) UpperCAmelCase_ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ = negative_prompt UpperCAmelCase_ = 3 * [inputs['''prompt''']] # forward UpperCAmelCase_ = audioldm_pipe(**_A ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = 3 * [inputs.pop("prompt" )] UpperCAmelCase_ = [] for p in [prompt, negative_prompt]: UpperCAmelCase_ = audioldm_pipe.tokenizer( _A , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors="pt" , ) UpperCAmelCase_ = text_inputs['''input_ids'''].to(_A ) UpperCAmelCase_ = audioldm_pipe.text_encoder( _A , ) UpperCAmelCase_ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase_ = F.normalize(_A , dim=-1 ) embeds.append(_A ) UpperCAmelCase_ = embeds # forward UpperCAmelCase_ = audioldm_pipe(**_A ) UpperCAmelCase_ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_A ) UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = '''egg cracking''' UpperCAmelCase_ = audioldm_pipe(**_A , negative_prompt=_A ) UpperCAmelCase_ = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 256 UpperCAmelCase_ = audio[:10] UpperCAmelCase_ = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_A ) UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) UpperCAmelCase_ = audioldm_pipe(_A , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCAmelCase_ = 2 UpperCAmelCase_ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCAmelCase_ = 2 UpperCAmelCase_ = audioldm_pipe(_A , num_inference_steps=2 , num_waveforms_per_prompt=_A ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCAmelCase_ = 2 UpperCAmelCase_ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_A ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = audioldm_pipe.vocoder.config.sampling_rate UpperCAmelCase_ = self.get_dummy_inputs(_A ) UpperCAmelCase_ = audioldm_pipe(audio_length_in_s=0.0_16 , **_A ) UpperCAmelCase_ = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.0_16 UpperCAmelCase_ = audioldm_pipe(audio_length_in_s=0.0_32 , **_A ) UpperCAmelCase_ = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.0_32 def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = AudioLDMPipeline(**_A ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = ['''hey'''] UpperCAmelCase_ = audioldm_pipe(_A , num_inference_steps=1 ) UpperCAmelCase_ = output.audios.shape assert audio_shape == (1, 256) UpperCAmelCase_ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCAmelCase_ = SpeechTaHifiGan(_A ).to(_A ) UpperCAmelCase_ = audioldm_pipe(_A , num_inference_steps=1 ) UpperCAmelCase_ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def _lowercase (self : Tuple ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A ) def _lowercase (self : int ): self._test_inference_batch_single_identical(test_mean_pixel_difference=_A ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowercase (self : Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A ) @slow class __A ( unittest.TestCase ): def _lowercase (self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Optional[int] , __a : List[Any] , __a : str="cpu" , __a : Dict=torch.floataa , __a : str=0 ): UpperCAmelCase_ = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ = np.random.RandomState(_A ).standard_normal((1, 8, 128, 16) ) UpperCAmelCase_ = torch.from_numpy(_A ).to(device=_A , dtype=_A ) UpperCAmelCase_ = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def _lowercase (self : Any ): UpperCAmelCase_ = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = self.get_inputs(_A ) UpperCAmelCase_ = 25 UpperCAmelCase_ = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 81920 UpperCAmelCase_ = audio[77230:77240] UpperCAmelCase_ = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) UpperCAmelCase_ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _lowercase (self : List[Any] ): UpperCAmelCase_ = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) UpperCAmelCase_ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCAmelCase_ = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ = self.get_inputs(_A ) UpperCAmelCase_ = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 81920 UpperCAmelCase_ = audio[27780:27790] UpperCAmelCase_ = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) UpperCAmelCase_ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
0
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _lowercase ( _lowerCamelCase ): """simple docstring""" def __init__(self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=1024 , lowerCamelCase_=1024 , lowerCamelCase_=3.6 ): """simple docstring""" a = tokenizer a = tokenizer.bos_token_id a = dataset a = seq_length a = seq_length * chars_per_token * num_of_sequences def __iter__(self ): """simple docstring""" a = iter(self.dataset ) a = True while more_examples: a = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: a = False break a = tokenizer(_A , truncation=_A )['''input_ids'''] a = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): a = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def a( A : Tuple ) -> Optional[Any]: """simple docstring""" a = {'''streaming''': True} a = load_dataset(args.dataset_name , split="train" , **A ) a = ConstantLengthDataset(A , A , seq_length=args.seq_length ) a = DataLoader(A , batch_size=args.batch_size ) return eval_dataloader def a( A : Dict ) -> str: """simple docstring""" model.eval() a = [] for step, batch in enumerate(A ): with torch.no_grad(): a = model(A , labels=A ) a = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(A ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break a = torch.mean(torch.cat(A ) ) try: a = torch.exp(A ) except OverflowError: a = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator _lowercase: List[Any] = Accelerator() # Parse configuration _lowercase: List[Any] = HfArgumentParser(EvaluationArguments) _lowercase: str = parser.parse_args() set_seed(args.seed) # Logging _lowercase: List[Any] = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer _lowercase: List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _lowercase: str = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _lowercase: int = create_dataloader(args) # Prepare everything with our `accelerator`. _lowercase , _lowercase: Optional[int] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") _lowercase , _lowercase: Tuple = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
227
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
0
class lowercase_ : def __init__( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = n UpperCamelCase_ = [None] * self.n UpperCamelCase_ = 0 # index of the first element UpperCamelCase_ = 0 UpperCamelCase_ = 0 def __len__( self ): """simple docstring""" return self.size def lowerCamelCase_ ( self ): """simple docstring""" return self.size == 0 def lowerCamelCase_ ( self ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) UpperCamelCase_ = data UpperCamelCase_ = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase_ ( self ): """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) UpperCamelCase_ = self.array[self.front] UpperCamelCase_ = None UpperCamelCase_ = (self.front + 1) % self.n self.size -= 1 return temp
122
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
from __future__ import annotations import time import numpy as np __a = [8, 5, 9, 7] __a = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __a = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowercase__: """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : list[list[int]] , ) -> None: lowercase_ = claim_vector lowercase_ = allocated_resources_table lowercase_ = maximum_claim_table def _lowercase ( self : List[str] ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase ( self : Optional[Any] ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase ( self : Any ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_A ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase ( self : Any ) -> dict[int, list[int]]: return {self.__need().index(_A ): i for i in self.__need()} def _lowercase ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : int ) -> None: lowercase_ = self.__need() lowercase_ = self.__allocated_resources_table lowercase_ = self.__available_resources() lowercase_ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 5_0 + '''\n''' ) while need_list: lowercase_ = False for each_need in need_list: lowercase_ = True for index, need in enumerate(_A ): if need > available_resources[index]: lowercase_ = False break if execution: lowercase_ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowercase_ = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(_A ) # update available/freed resources stack lowercase_ = np.array(_A ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(_A ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def _lowercase ( self : Tuple ) -> int: print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(_A ) + 1}''' + ''' '''.join(f'''{it:>8}''' for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(_A ) + 1}''' + ''' '''.join(f'''{it:>8}''' for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(_A ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(_A ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
30
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A: Optional[int] = logging.get_logger(__name__) A: List[Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase ): __lowerCAmelCase : Dict = '''deta''' __lowerCAmelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=900 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: '''simple docstring''' if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase : Any = CONFIG_MAPPING['''resnet'''](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(_A , _A ): UpperCAmelCase : Dict = backbone_config.pop("""model_type""" ) UpperCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : Any = config_class.from_dict(_A ) UpperCAmelCase : int = backbone_config UpperCAmelCase : Dict = num_queries UpperCAmelCase : Dict = max_position_embeddings UpperCAmelCase : Union[str, Any] = d_model UpperCAmelCase : str = encoder_ffn_dim UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : Tuple = encoder_attention_heads UpperCAmelCase : List[str] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = decoder_layers UpperCAmelCase : List[str] = decoder_attention_heads UpperCAmelCase : List[Any] = dropout UpperCAmelCase : str = attention_dropout UpperCAmelCase : List[str] = activation_dropout UpperCAmelCase : List[str] = activation_function UpperCAmelCase : Optional[int] = init_std UpperCAmelCase : int = init_xavier_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = auxiliary_loss UpperCAmelCase : Any = position_embedding_type # deformable attributes UpperCAmelCase : List[str] = num_feature_levels UpperCAmelCase : int = encoder_n_points UpperCAmelCase : Optional[Any] = decoder_n_points UpperCAmelCase : int = two_stage UpperCAmelCase : str = two_stage_num_proposals UpperCAmelCase : Optional[int] = with_box_refine UpperCAmelCase : Union[str, Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCAmelCase : Any = class_cost UpperCAmelCase : Optional[int] = bbox_cost UpperCAmelCase : Tuple = giou_cost # Loss coefficients UpperCAmelCase : int = mask_loss_coefficient UpperCAmelCase : Any = dice_loss_coefficient UpperCAmelCase : int = bbox_loss_coefficient UpperCAmelCase : Optional[Any] = giou_loss_coefficient UpperCAmelCase : int = eos_coefficient UpperCAmelCase : Any = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.d_model def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase : str = self.__class__.model_type return output
109
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCamelCase__: UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : torch.Tensor # [batch_size x 3] UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float UpperCAmelCase__ : float UpperCAmelCase__ : Tuple[int] def lowerCAmelCase__ ( self: Optional[Any] ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def lowerCAmelCase__ ( self: Optional[Any] ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def lowerCAmelCase__ ( self: Optional[Any] ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = torch.arange(self.height * self.width ) __lowerCamelCase = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = self.shape __lowerCamelCase = int(np.prod(_A ) ) __lowerCamelCase = self.get_image_coords() __lowerCamelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __lowerCamelCase = self.get_camera_rays(_A ) __lowerCamelCase = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def lowerCAmelCase__ ( self: Any , UpperCamelCase_: torch.Tensor ): __lowerCamelCase = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __lowerCamelCase = coords.view(_A , -1 , 2 ) __lowerCamelCase = self.resolution() __lowerCamelCase = self.fov() __lowerCamelCase = (flat.float() / (res - 1)) * 2 - 1 __lowerCamelCase = fracs * torch.tan(fov / 2 ) __lowerCamelCase = fracs.view(_A , -1 , 2 ) __lowerCamelCase = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) __lowerCamelCase = directions / directions.norm(dim=-1 , keepdim=_A ) __lowerCamelCase = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: int ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase__ ( A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __lowerCamelCase = np.array([np.sin(A__ ), np.cos(A__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __lowerCamelCase = -z * 4 __lowerCamelCase = np.array([np.cos(A__ ), -np.sin(A__ ), 0.0] ) __lowerCamelCase = np.cross(A__ , A__ ) origins.append(A__ ) xs.append(A__ ) ys.append(A__ ) zs.append(A__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A__ , axis=0 ) ).float() , width=A__ , height=A__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A__ )) , )
12
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Optional[Any] , snake_case :str , snake_case :int=13 , snake_case :Optional[int]=7 , snake_case :List[Any]=True , snake_case :Optional[int]=True , snake_case :str=True , snake_case :Any=99 , snake_case :str=32 , snake_case :Optional[Any]=5 , snake_case :str=4 , snake_case :Optional[Any]=37 , snake_case :List[str]="gelu" , snake_case :int=0.1 , snake_case :List[Any]=0.1 , snake_case :str=512 , snake_case :Dict=16 , snake_case :Union[str, Any]=2 , snake_case :Optional[Any]=0.02 , snake_case :List[Any]=3 , snake_case :Dict=4 , snake_case :Union[str, Any]=None , ): '''simple docstring''' A_ : List[str] = parent A_ : Union[str, Any] = batch_size A_ : Dict = seq_length A_ : Dict = is_training A_ : Optional[int] = use_token_type_ids A_ : Tuple = use_labels A_ : List[str] = vocab_size A_ : Tuple = hidden_size A_ : List[str] = num_hidden_layers A_ : Optional[Any] = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : List[str] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : List[str] = type_sequence_label_size A_ : Any = initializer_range A_ : Union[str, Any] = num_labels A_ : int = num_choices A_ : Union[str, Any] = scope A_ : Any = self.vocab_size - 1 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Dict = None if self.use_token_type_ids: A_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Optional[Any] = None A_ : Optional[int] = None A_ : List[str] = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : List[str] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A_ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :str , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :int , *snake_case :Union[str, Any] ): '''simple docstring''' A_ : Tuple = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() A_ : Dict = model(_A , token_type_ids=_A , head_mask=_A ) A_ : Any = model(_A , token_type_ids=_A ) A_ : Union[str, Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :int , snake_case :Any , snake_case :List[Any] , snake_case :Union[str, Any] , *snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() A_ : List[Any] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Union[str, Any] , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , *snake_case :List[str] ): '''simple docstring''' A_ : List[str] = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() A_ : Optional[Any] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Optional[int] , snake_case :str , snake_case :List[Any] , snake_case :List[Any] , *snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : Tuple = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : List[Any] = self.prepare_config_and_inputs() ( A_ ) : Optional[Any] = config_and_inputs A_ : Any = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class __magic_name__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCamelCase = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :Dict , snake_case :Tuple , snake_case :Dict , snake_case :Optional[Any] , snake_case :Any ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :List[str] , snake_case :List[str] , snake_case :Dict=False ): '''simple docstring''' A_ : List[Any] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) A_ : Union[str, Any] = inputs_dict['''labels'''] A_ : Dict = inputs_dict['''labels'''] A_ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) A_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Tuple = OpenAIGPTModelTester(self ) A_ : Any = ConfigTester(self , config_class=_A , n_embd=37 ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[int] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(_A ) A_ : List[Any] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=_A ) # the president is A_ : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A_ : int = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
300
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCamelCase__ : a__ : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) a__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) a__ : Optional[str] = field(default=_lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) a__ : Optional[str] = field(default=_lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) a__ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) a__ : Optional[int] = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a__ : Optional[int] = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = {} if self.train_dir is not None: snake_case : Any = self.train_dir if self.validation_dir is not None: snake_case : Union[str, Any] = self.validation_dir snake_case : Optional[int] = data_files if data_files else None @dataclass class lowerCamelCase__ : a__ : str = field( default=_lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.""" ) } , ) a__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) a__ : Optional[str] = field( default=_lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) a__ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a__ : str = field(default=_lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) a__ : bool = field( default=_lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a__ : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) a__ : bool = field( default=_lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCamelCase__ ( _lowerCamelCase ): a__ : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def UpperCamelCase__ ( lowercase__ : List[Any] ): snake_case : List[str] = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase__ ( ): snake_case : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. snake_case : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case : List[str] = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: snake_case : List[str] = ds['''train'''].train_test_split(data_args.train_val_split ) snake_case : Optional[Any] = split['''train'''] snake_case : List[str] = split['''test'''] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case : List[str] = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: snake_case : Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: snake_case : Any = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: snake_case : Dict = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: snake_case : Any = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: snake_case : str = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: snake_case : Any = ViTImageProcessor() # create model if model_args.model_name_or_path: snake_case : int = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) snake_case : Any = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: snake_case : Any = ds['''train'''].column_names else: snake_case : List[str] = ds['''validation'''].column_names if data_args.image_column_name is not None: snake_case : Union[str, Any] = data_args.image_column_name elif "image" in column_names: snake_case : Optional[int] = '''image''' elif "img" in column_names: snake_case : Optional[int] = '''img''' else: snake_case : Any = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: snake_case : Union[str, Any] = image_processor.size['''shortest_edge'''] else: snake_case : List[str] = (image_processor.size['''height'''], image_processor.size['''width''']) snake_case : Union[str, Any] = Compose( [ Lambda(lambda lowercase__ : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): snake_case : Dict = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: snake_case : Optional[int] = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: snake_case : Optional[Any] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate snake_case : List[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: snake_case : Dict = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer snake_case : List[Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: snake_case : Optional[Any] = None if training_args.resume_from_checkpoint is not None: snake_case : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case : Union[str, Any] = last_checkpoint snake_case : int = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case : Dict = trainer.evaluate() trainer.log_metrics("eval" , lowercase__ ) trainer.save_metrics("eval" , lowercase__ ) # Write model card and (optionally) push to hub snake_case : List[str] = { '''tasks''': '''masked-auto-encoding''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-auto-encoding'''], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def UpperCamelCase__ ( lowercase__ : int ): main() if __name__ == "__main__": main()
148
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" def _snake_case ( lowercase__ = 50 ): _lowerCamelCase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
96
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
0
"""simple docstring""" from __future__ import annotations from random import choice def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: return choice(lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: A__ = random_pivot(lowercase_ ) # partition based on pivot # linear time A__ = [e for e in lst if e < pivot] A__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowercase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowercase_ ) < k - 1: return kth_number(lowercase_ , k - len(lowercase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowercase_ , lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
247
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
0
"""simple docstring""" import heapq def lowerCamelCase__ ( __snake_case ) -> set[int]: """simple docstring""" _UpperCamelCase = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(__snake_case, [-1 * len(__snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCamelCase = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCamelCase = heapq.heappop(__snake_case )[1][0] chosen_vertices.add(__snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCamelCase = elem[1][1].index(__snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(__snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
194
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__(self : Any , __a : bool , __a : Optional[int] = None , __a : Optional[int] = None ): super().__init__() UpperCAmelCase_ = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ = torch.zeros(_A , _A ) else: UpperCAmelCase_ = None UpperCAmelCase_ = torch.nn.Parameter(_A ) class __A ( _lowerCamelCase ): a__ : VQModel a__ : CLIPTextModel a__ : CLIPTokenizer a__ : TransformeraDModel a__ : LearnedClassifierFreeSamplingEmbeddings a__ : VQDiffusionScheduler def __init__(self : List[Any] , __a : VQModel , __a : CLIPTextModel , __a : CLIPTokenizer , __a : TransformeraDModel , __a : VQDiffusionScheduler , __a : LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=_A , transformer=_A , text_encoder=_A , tokenizer=_A , scheduler=_A , learned_classifier_free_sampling_embeddings=_A , ) def _lowercase (self : str , __a : Any , __a : Optional[Any] , __a : Union[str, Any] ): UpperCAmelCase_ = len(_A ) if isinstance(_A , _A ) else 1 # get prompt text embeddings UpperCAmelCase_ = self.tokenizer( _A , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCAmelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCAmelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ = prompt_embeds.repeat_interleave(_A , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ = negative_prompt_embeds.unsqueeze(0 ).repeat(_A , 1 , 1 ) else: UpperCAmelCase_ = [''''''] * batch_size UpperCAmelCase_ = text_input_ids.shape[-1] UpperCAmelCase_ = self.tokenizer( _A , padding="max_length" , max_length=_A , truncation=_A , return_tensors="pt" , ) UpperCAmelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ = negative_prompt_embeds.shape[1] UpperCAmelCase_ = negative_prompt_embeds.repeat(1 , _A , 1 ) UpperCAmelCase_ = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__(self : Tuple , __a : Union[str, List[str]] , __a : int = 100 , __a : float = 5.0 , __a : float = 1.0 , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , ): if isinstance(_A , _A ): UpperCAmelCase_ = 1 elif isinstance(_A , _A ): UpperCAmelCase_ = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) UpperCAmelCase_ = batch_size * num_images_per_prompt UpperCAmelCase_ = guidance_scale > 1.0 UpperCAmelCase_ = self._encode_prompt(_A , _A , _A ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ = torch.full(_A , _A ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) UpperCAmelCase_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A , device=self.device ) UpperCAmelCase_ = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ = latents for i, t in enumerate(self.progress_bar(_A ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ = self.transformer(_A , encoder_hidden_states=_A , timestep=_A ).sample if do_classifier_free_guidance: UpperCAmelCase_ = model_output.chunk(2 ) UpperCAmelCase_ = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_A , dim=1 , keepdim=_A ) UpperCAmelCase_ = self.truncate(_A , _A ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step(_A , timestep=_A , sample=_A , generator=_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCAmelCase_ = self.vqvae.config.vq_embed_dim UpperCAmelCase_ = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ = self.vqvae.quantize.get_codebook_entry(_A , shape=_A ) UpperCAmelCase_ = self.vqvae.decode(_A , force_not_quantize=_A ).sample UpperCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_A ) if not return_dict: return (image,) return ImagePipelineOutput(images=_A ) def _lowercase (self : Dict , __a : torch.FloatTensor , __a : float ): UpperCAmelCase_ = torch.sort(_A , 1 , descending=_A ) UpperCAmelCase_ = torch.exp(_A ) UpperCAmelCase_ = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ = torch.full_like(keep_mask[:, 0:1, :] , _A ) UpperCAmelCase_ = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase_ = keep_mask[:, :-1, :] UpperCAmelCase_ = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase_ = log_p_x_0.clone() UpperCAmelCase_ = -torch.inf # -inf = log(0) return rv
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _lowercase ( _lowerCamelCase ): """simple docstring""" __A = (DPMSolverSDEScheduler,) __A = 10 def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" a = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_A ) return config def UpperCamelCase_ (self ): """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ (self ): """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ (self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ (self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) a = self.dummy_model() a = self.dummy_sample_deter * scheduler.init_noise_sigma a = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): a = scheduler.scale_model_input(_A , _A ) a = model(_A , _A ) a = scheduler.step(_A , _A , _A ) a = output.prev_sample a = torch.sum(torch.abs(_A ) ) a = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config(prediction_type="v_prediction" ) a = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) a = self.dummy_model() a = self.dummy_sample_deter * scheduler.init_noise_sigma a = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): a = scheduler.scale_model_input(_A , _A ) a = model(_A , _A ) a = scheduler.step(_A , _A , _A ) a = output.prev_sample a = torch.sum(torch.abs(_A ) ) a = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) a = self.dummy_model() a = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a = scheduler.scale_model_input(_A , _A ) a = model(_A , _A ) a = scheduler.step(_A , _A , _A ) a = output.prev_sample a = torch.sum(torch.abs(_A ) ) a = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def UpperCamelCase_ (self ): """simple docstring""" a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) a = self.dummy_model() a = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma a = sample.to(_A ) for t in scheduler.timesteps: a = scheduler.scale_model_input(_A , _A ) a = model(_A , _A ) a = scheduler.step(_A , _A , _A ) a = output.prev_sample a = torch.sum(torch.abs(_A ) ) a = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
227
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowercase_ ( unittest.TestCase ): A__ : List[str] = MODEL_FOR_CAUSAL_LM_MAPPING A__ : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase_ = text_generator("""This is a test""" , do_sample=_A ) self.assertEqual( _A , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) UpperCamelCase_ = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( _A , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) UpperCamelCase_ = text_generator("""This is a test""" , do_sample=_A , num_return_sequences=2 , return_tensors=_A ) self.assertEqual( _A , [ {"""generated_token_ids""": ANY(_A )}, {"""generated_token_ids""": ANY(_A )}, ] , ) UpperCamelCase_ = text_generator.model.config.eos_token_id UpperCamelCase_ = '''<pad>''' UpperCamelCase_ = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=_A , num_return_sequences=2 , batch_size=2 , return_tensors=_A , ) self.assertEqual( _A , [ [ {"""generated_token_ids""": ANY(_A )}, {"""generated_token_ids""": ANY(_A )}, ], [ {"""generated_token_ids""": ANY(_A )}, {"""generated_token_ids""": ANY(_A )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output UpperCamelCase_ = text_generator("""This is a test""" , do_sample=_A ) self.assertEqual( _A , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) UpperCamelCase_ = text_generator(["""This is a test""", """This is a second test"""] , do_sample=_A ) self.assertEqual( _A , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = TextGenerationPipeline(model=_A , tokenizer=_A ) return text_generator, ["This is a test", "Another test"] def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = '''Hello I believe in''' UpperCamelCase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) UpperCamelCase_ = text_generator(_A ) self.assertEqual( _A , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) UpperCamelCase_ = text_generator(_A , stop_sequence=""" fe""" ) self.assertEqual(_A , [{"""generated_text""": """Hello I believe in fe"""}] ) def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ = text_generator.model UpperCamelCase_ = text_generator.tokenizer UpperCamelCase_ = text_generator("""This is a test""" ) self.assertEqual(_A , [{"""generated_text""": ANY(_A )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase_ = text_generator("""This is a test""" , return_full_text=_A ) self.assertEqual(_A , [{"""generated_text""": ANY(_A )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase_ = pipeline(task="""text-generation""" , model=_A , tokenizer=_A , return_full_text=_A ) UpperCamelCase_ = text_generator("""This is a test""" ) self.assertEqual(_A , [{"""generated_text""": ANY(_A )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) UpperCamelCase_ = text_generator("""This is a test""" , return_full_text=_A ) self.assertEqual(_A , [{"""generated_text""": ANY(_A )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) UpperCamelCase_ = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_A ) self.assertEqual( _A , [ [{"""generated_text""": ANY(_A )}, {"""generated_text""": ANY(_A )}], [{"""generated_text""": ANY(_A )}, {"""generated_text""": ANY(_A )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase_ = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_A ) self.assertEqual( _A , [ [{"""generated_text""": ANY(_A )}, {"""generated_text""": ANY(_A )}], [{"""generated_text""": ANY(_A )}, {"""generated_text""": ANY(_A )}], ] , ) with self.assertRaises(_A ): UpperCamelCase_ = text_generator("""test""" , return_full_text=_A , return_text=_A ) with self.assertRaises(_A ): UpperCamelCase_ = text_generator("""test""" , return_full_text=_A , return_tensors=_A ) with self.assertRaises(_A ): UpperCamelCase_ = text_generator("""test""" , return_text=_A , return_tensors=_A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase_ = text_generator("""""" ) self.assertEqual(_A , [{"""generated_text""": ANY(_A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase_ = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase_ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0_0_0_0 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_0_0 , max_new_tokens=2_0 ) UpperCamelCase_ = text_generator("""This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=2_0 ) # Hole strategy cannot work with self.assertRaises(_A ): text_generator( """This is a test""" * 5_0_0 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 1_0 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase_ ( self ): """simple docstring""" import torch # Classic `model_kwargs` UpperCamelCase_ = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase_ = pipe("""This is a test""" ) self.assertEqual( _A , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase_ = pipe("""This is a test""" ) self.assertEqual( _A , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase_ = pipe("""This is a test""" ) self.assertEqual( _A , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def lowerCamelCase_ ( self ): """simple docstring""" import torch UpperCamelCase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase_ ( self ): """simple docstring""" import torch UpperCamelCase_ = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=_A , top_p=0.5 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = '''Hello world''' UpperCamelCase_ = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": UpperCamelCase_ = logging.get_logger("""transformers.generation.tf_utils""" ) else: UpperCamelCase_ = logging.get_logger("""transformers.generation.utils""" ) UpperCamelCase_ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_A ) as cl: UpperCamelCase_ = text_generator(_A , max_length=1_0 , max_new_tokens=1 ) self.assertIn(_A , cl.out ) # The user only sets one -> no warning with CaptureLogger(_A ) as cl: UpperCamelCase_ = text_generator(_A , max_new_tokens=1 ) self.assertNotIn(_A , cl.out ) with CaptureLogger(_A ) as cl: UpperCamelCase_ = text_generator(_A , max_length=1_0 ) self.assertNotIn(_A , cl.out )
122
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0