code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(a_ ) class _SCREAMING_SNAKE_CASE ( a_ ): def __init__( self , **__A ) -> Optional[int]: super().__init__(**__A ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __A , **__A ) -> Optional[int]: return super().__call__(__A , **__A ) def __lowerCAmelCase ( self , **__A ) -> Dict: lowerCAmelCase_ :Optional[int] = {} if "candidate_labels" in kwargs: lowerCAmelCase_ :Optional[int] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: lowerCAmelCase_ :List[Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def __lowerCAmelCase ( self , __A , __A=None , __A="This is a photo of {}." ) -> Tuple: lowerCAmelCase_ :Dict = load_image(__A ) lowerCAmelCase_ :Optional[Any] = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase_ :List[str] = candidate_labels lowerCAmelCase_ :str = [hypothesis_template.format(__A ) for x in candidate_labels] lowerCAmelCase_ :Optional[Any] = self.tokenizer(__A , return_tensors=self.framework , padding=__A ) lowerCAmelCase_ :Tuple = [text_inputs] return inputs def __lowerCAmelCase ( self , __A ) -> Tuple: lowerCAmelCase_ :Any = model_inputs.pop("""candidate_labels""" ) lowerCAmelCase_ :Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __A ): lowerCAmelCase_ :Dict = text_inputs[0] else: # Batching case. lowerCAmelCase_ :Union[str, Any] = text_inputs[0][0] lowerCAmelCase_ :Dict = self.model(**__A , **__A ) lowerCAmelCase_ :Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def __lowerCAmelCase ( self , __A ) -> str: lowerCAmelCase_ :List[str] = model_outputs.pop("""candidate_labels""" ) lowerCAmelCase_ :str = model_outputs["""logits"""][0] if self.framework == "pt": lowerCAmelCase_ :int = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase_ :int = probs.tolist() if not isinstance(__A , __A ): lowerCAmelCase_ :Tuple = [scores] elif self.framework == "tf": lowerCAmelCase_ :Dict = stable_softmax(__A , axis=-1 ) lowerCAmelCase_ :str = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) lowerCAmelCase_ :Any = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__A , __A ) , key=lambda __A : -x[0] ) ] return result
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( a_ , unittest.TestCase ): __UpperCAmelCase : Optional[int] = GPTSanJapaneseTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = {'do_clean_text': False, 'add_prefix_space': False} def lowercase_ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCAmelCase__ = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCAmelCase__ = {"unk_token": "<unk>"} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__UpperCAmelCase ) ) def lowercase_ (self : Dict , **__UpperCAmelCase : int ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCAmelCase__ = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) return text, ids def lowercase_ (self : Optional[int] ) -> str: """simple docstring""" pass # TODO add if relevant def lowercase_ (self : List[Any] ) -> Any: """simple docstring""" pass # TODO add if relevant def lowercase_ (self : Optional[int] ) -> Tuple: """simple docstring""" pass # TODO add if relevant def lowercase_ (self : Dict ) -> str: """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = "こんにちは、世界。 こんばんは、㔺界。" UpperCAmelCase__ = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCAmelCase__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCAmelCase__ = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowercase_ (self : Union[str, Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase__ = "こんにちは、世界。" UpperCAmelCase__ = "こんばんは、㔺界。😀" UpperCAmelCase__ = "こんにちは、世界。こんばんは、世界。😀" UpperCAmelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode(__UpperCAmelCase , prefix_text=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowercase_ (self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase__ = "こんにちは、世界。" UpperCAmelCase__ = "こんばんは、㔺界。😀" UpperCAmelCase__ = len(tokenizer.encode(__UpperCAmelCase ) ) - 2 UpperCAmelCase__ = len(tokenizer.encode(__UpperCAmelCase ) ) - 2 UpperCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer(__UpperCAmelCase , prefix_text=__UpperCAmelCase ).token_type_ids self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowercase_ (self : Tuple ) -> Any: """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase__ = tokenizer.encode("あンいワ" ) UpperCAmelCase__ = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCAmelCase__ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__UpperCAmelCase ) , tokenizer.decode(__UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(__UpperCAmelCase ) , tokenizer.decode(__UpperCAmelCase ) ) self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertNotEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase__ = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCAmelCase__ = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_encode_plus(__UpperCAmelCase , padding=__UpperCAmelCase ) # fmt: off UpperCAmelCase__ = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] UpperCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , __UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , __UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , __UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , __UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , __UpperCAmelCase ) def lowercase_ (self : Optional[Any] ) -> int: """simple docstring""" pass def lowercase_ (self : str ) -> str: """simple docstring""" pass
65
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case : Optional[int] = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __snake_case : Any = { """yjernite/retribert-base-uncased""": 512, } __snake_case : Optional[Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = RetriBertTokenizer SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: List[Any]="[UNK]" , _SCREAMING_SNAKE_CASE: Tuple="[SEP]" , _SCREAMING_SNAKE_CASE: List[str]="[PAD]" , _SCREAMING_SNAKE_CASE: Optional[int]="[CLS]" , _SCREAMING_SNAKE_CASE: Union[str, Any]="[MASK]" , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , _SCREAMING_SNAKE_CASE) != do_lower_case or normalizer_state.get("strip_accents" , _SCREAMING_SNAKE_CASE) != strip_accents or normalizer_state.get("handle_chinese_chars" , _SCREAMING_SNAKE_CASE) != tokenize_chinese_chars ): __lowerCAmelCase : Dict = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("type")) __lowerCAmelCase : Union[str, Any] = do_lower_case __lowerCAmelCase : Tuple = strip_accents __lowerCAmelCase : Dict = tokenize_chinese_chars __lowerCAmelCase : List[str] = normalizer_class(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None) -> List[int]: """simple docstring""" __lowerCAmelCase : List[str] = [self.sep_token_id] __lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None) -> Tuple[str]: """simple docstring""" __lowerCAmelCase : Any = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE) return tuple(_SCREAMING_SNAKE_CASE)
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _A = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = """hf-internal-testing/tiny-random-t5""" __lowerCAmelCase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = tokenizer("""This is me""" , return_tensors="""pt""" ) __lowerCAmelCase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowerCAmelCase = model.generate(**SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowerCAmelCase = model_reloaded.generate(**SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def a ( self : int ) -> Optional[Any]: __lowerCAmelCase = """hf-internal-testing/tiny-random-t5""" __lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model.reverse_bettertransformer() model.save_pretrained(SCREAMING_SNAKE_CASE__ )
229
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
0
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _SCREAMING_SNAKE_CASE( a_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 42 SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.floataa SCREAMING_SNAKE_CASE_ : List[Any] = True def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" super().setup() __SCREAMING_SNAKE_CASE :Union[str, Any] = nn.Dense(5 ,dtype=self.dtype ) def __call__( self ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :int = super().__call__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class _SCREAMING_SNAKE_CASE( a_ ): SCREAMING_SNAKE_CASE_ : Any = FlaxBigBirdForNaturalQuestionsModule def __lowerCamelCase ( a_ : Optional[Any] , a_ : int , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Any , a_ : Optional[Any] ) -> List[str]: def cross_entropy(a_ : Dict , a_ : Tuple , a_ : Optional[int]=None ): __SCREAMING_SNAKE_CASE :Union[str, Any] = logits.shape[-1] __SCREAMING_SNAKE_CASE :str = (labels[..., None] == jnp.arange(_A )[None]).astype('''f4''' ) __SCREAMING_SNAKE_CASE :Tuple = jax.nn.log_softmax(_A , axis=-1 ) __SCREAMING_SNAKE_CASE :Optional[int] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: __SCREAMING_SNAKE_CASE :Optional[Any] = reduction(_A ) return loss __SCREAMING_SNAKE_CASE :List[str] = partial(_A , reduction=jnp.mean ) __SCREAMING_SNAKE_CASE :Union[str, Any] = cross_entropy(_A , _A ) __SCREAMING_SNAKE_CASE :Tuple = cross_entropy(_A , _A ) __SCREAMING_SNAKE_CASE :Any = cross_entropy(_A , _A ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : Optional[int] = '''google/bigbird-roberta-base''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 3000 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10500 SCREAMING_SNAKE_CASE_ : str = 128 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : Any = 5 # tx_args SCREAMING_SNAKE_CASE_ : Dict = 3E-5 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.0 SCREAMING_SNAKE_CASE_ : Dict = 20000 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.0095 SCREAMING_SNAKE_CASE_ : Tuple = '''bigbird-roberta-natural-questions''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''training-expt''' SCREAMING_SNAKE_CASE_ : List[Any] = '''data/nq-training.jsonl''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''data/nq-validation.jsonl''' def _UpperCamelCase ( self ) -> int: """simple docstring""" os.makedirs(self.base_dir ,exist_ok=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = os.path.join(self.base_dir ,self.save_dir ) __SCREAMING_SNAKE_CASE :Tuple = self.batch_size_per_device * jax.device_count() @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : Tuple = 42 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4096 # no dynamic padding on TPUs def __call__( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.collate_fn(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return batch def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = self.fetch_inputs(features['''input_ids'''] ) __SCREAMING_SNAKE_CASE :Tuple = { '''input_ids''': jnp.array(SCREAMING_SNAKE_CASE__ ,dtype=jnp.intaa ), '''attention_mask''': jnp.array(SCREAMING_SNAKE_CASE__ ,dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] ,dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] ,dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] ,dtype=jnp.intaa ), } return batch def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [self._fetch_inputs(SCREAMING_SNAKE_CASE__ ) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = [1 for _ in range(len(SCREAMING_SNAKE_CASE__ ) )] while len(SCREAMING_SNAKE_CASE__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowerCamelCase ( a_ : Union[str, Any] , a_ : str , a_ : str=None ) -> Union[str, Any]: if seed is not None: __SCREAMING_SNAKE_CASE :int = dataset.shuffle(seed=_A ) for i in range(len(_A ) // batch_size ): __SCREAMING_SNAKE_CASE :List[Any] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_A ) @partial(jax.pmap , axis_name='''batch''' ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : List[str] , **a_ : List[Any] ) -> int: def loss_fn(a_ : Dict ): __SCREAMING_SNAKE_CASE :int = model_inputs.pop('''start_labels''' ) __SCREAMING_SNAKE_CASE :Any = model_inputs.pop('''end_labels''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = model_inputs.pop('''pooled_labels''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = state.apply_fn(**_A , params=_A , dropout_rng=_A , train=_A ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[Any] = outputs return state.loss_fn( _A , _A , _A , _A , _A , _A , ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = jax.random.split(_A ) __SCREAMING_SNAKE_CASE :List[Any] = jax.value_and_grad(_A ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = grad_fn(state.params ) __SCREAMING_SNAKE_CASE :int = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) __SCREAMING_SNAKE_CASE :int = jax.lax.pmean(_A , '''batch''' ) __SCREAMING_SNAKE_CASE :Dict = state.apply_gradients(grads=_A ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def __lowerCamelCase ( a_ : Dict , **a_ : int ) -> Any: __SCREAMING_SNAKE_CASE :str = model_inputs.pop('''start_labels''' ) __SCREAMING_SNAKE_CASE :int = model_inputs.pop('''end_labels''' ) __SCREAMING_SNAKE_CASE :List[Any] = model_inputs.pop('''pooled_labels''' ) __SCREAMING_SNAKE_CASE :Optional[int] = state.apply_fn(**_A , params=state.params , train=_A ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = outputs __SCREAMING_SNAKE_CASE :Optional[int] = state.loss_fn(_A , _A , _A , _A , _A , _A ) __SCREAMING_SNAKE_CASE :Union[str, Any] = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class _SCREAMING_SNAKE_CASE( train_state.TrainState ): SCREAMING_SNAKE_CASE_ : Optional[int] = struct.field(pytree_node=a_ ) @dataclass class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : Dict = 42 SCREAMING_SNAKE_CASE_ : List[Any] = 42 SCREAMING_SNAKE_CASE_ : Tuple = 42 SCREAMING_SNAKE_CASE_ : List[str] = 42 SCREAMING_SNAKE_CASE_ : Dict = 42 SCREAMING_SNAKE_CASE_ : Optional[int] = 42 SCREAMING_SNAKE_CASE_ : int = None def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = model.params __SCREAMING_SNAKE_CASE :Union[str, Any] = TrainState.create( apply_fn=model.__call__ ,params=SCREAMING_SNAKE_CASE__ ,tx=SCREAMING_SNAKE_CASE__ ,loss_fn=SCREAMING_SNAKE_CASE__ ,) if ckpt_dir is not None: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = restore_checkpoint(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Any = build_tx(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = train_state.TrainState( step=SCREAMING_SNAKE_CASE__ ,apply_fn=model.__call__ ,params=SCREAMING_SNAKE_CASE__ ,tx=SCREAMING_SNAKE_CASE__ ,opt_state=SCREAMING_SNAKE_CASE__ ,) __SCREAMING_SNAKE_CASE :str = args __SCREAMING_SNAKE_CASE :str = data_collator __SCREAMING_SNAKE_CASE :Union[str, Any] = lr __SCREAMING_SNAKE_CASE :List[Any] = params __SCREAMING_SNAKE_CASE :Optional[Any] = jax_utils.replicate(SCREAMING_SNAKE_CASE__ ) return state def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.args __SCREAMING_SNAKE_CASE :Optional[int] = len(SCREAMING_SNAKE_CASE__ ) // args.batch_size __SCREAMING_SNAKE_CASE :str = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE :Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE__ ,jax.device_count() ) for epoch in range(args.max_epochs ): __SCREAMING_SNAKE_CASE :int = jnp.array(0 ,dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE :Any = get_batched_dataset(SCREAMING_SNAKE_CASE__ ,args.batch_size ,seed=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ ,total=SCREAMING_SNAKE_CASE__ ,desc=f'''Running EPOCH-{epoch}''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = self.data_collator(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = self.train_step_fn(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: __SCREAMING_SNAKE_CASE :Optional[int] = jax_utils.unreplicate(state.step ) __SCREAMING_SNAKE_CASE :List[str] = running_loss.item() / i __SCREAMING_SNAKE_CASE :Tuple = self.scheduler_fn(state_step - 1 ) __SCREAMING_SNAKE_CASE :List[Any] = self.evaluate(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE__ ) ) self.logger.log(SCREAMING_SNAKE_CASE__ ,commit=SCREAMING_SNAKE_CASE__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' ,state=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = get_batched_dataset(SCREAMING_SNAKE_CASE__ ,self.args.batch_size ) __SCREAMING_SNAKE_CASE :Tuple = len(SCREAMING_SNAKE_CASE__ ) // self.args.batch_size __SCREAMING_SNAKE_CASE :Tuple = jnp.array(0 ,dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE :Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ ,total=SCREAMING_SNAKE_CASE__ ,desc='''Evaluating ... ''' ): __SCREAMING_SNAKE_CASE :str = self.data_collator(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = self.val_step_fn(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = jax_utils.unreplicate(SCREAMING_SNAKE_CASE__ ) print(f'''SAVING CHECKPOINT IN {save_dir}''' ,end=''' ... ''' ) self.model_save_fn(SCREAMING_SNAKE_CASE__ ,params=state.params ) with open(os.path.join(SCREAMING_SNAKE_CASE__ ,'''opt_state.msgpack''' ) ,'''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args ,os.path.join(SCREAMING_SNAKE_CASE__ ,'''args.joblib''' ) ) joblib.dump(self.data_collator ,os.path.join(SCREAMING_SNAKE_CASE__ ,'''data_collator.joblib''' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE__ ,'''training_state.json''' ) ,'''w''' ) as f: json.dump({'''step''': state.step.item()} ,SCREAMING_SNAKE_CASE__ ) print('''DONE''' ) def __lowerCamelCase ( a_ : Tuple , a_ : Tuple ) -> Any: print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(_A , '''flax_model.msgpack''' ) , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :List[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(_A , '''opt_state.msgpack''' ) , '''rb''' ) as f: __SCREAMING_SNAKE_CASE :Any = from_bytes(state.opt_state , f.read() ) __SCREAMING_SNAKE_CASE :List[str] = joblib.load(os.path.join(_A , '''args.joblib''' ) ) __SCREAMING_SNAKE_CASE :List[str] = joblib.load(os.path.join(_A , '''data_collator.joblib''' ) ) with open(os.path.join(_A , '''training_state.json''' ) , '''r''' ) as f: __SCREAMING_SNAKE_CASE :List[Any] = json.load(_A ) __SCREAMING_SNAKE_CASE :int = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def __lowerCamelCase ( a_ : Optional[int] , a_ : Optional[int] , a_ : str , a_ : int ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :str = num_train_steps - warmup_steps __SCREAMING_SNAKE_CASE :Any = optax.linear_schedule(init_value=_A , end_value=_A , transition_steps=_A ) __SCREAMING_SNAKE_CASE :int = optax.linear_schedule(init_value=_A , end_value=1e-7 , transition_steps=_A ) __SCREAMING_SNAKE_CASE :int = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __lowerCamelCase ( a_ : List[Any] , a_ : Optional[int] , a_ : Union[str, Any] , a_ : Dict , a_ : Any ) -> List[Any]: def weight_decay_mask(a_ : int ): __SCREAMING_SNAKE_CASE :str = traverse_util.flatten_dict(_A ) __SCREAMING_SNAKE_CASE :Union[str, Any] = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(_A ) __SCREAMING_SNAKE_CASE :Any = scheduler_fn(_A , _A , _A , _A ) __SCREAMING_SNAKE_CASE :Tuple = optax.adamw(learning_rate=_A , weight_decay=_A , mask=_A ) return tx, lr
191
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case_ : int = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def A__ ( UpperCAmelCase_ , UpperCAmelCase_=None ): require_version(deps[pkg] , _A )
83
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
def lowerCamelCase_ ( ): '''simple docstring''' return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_A , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"{solution() = }")
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : int = logging.get_logger(__name__) lowerCamelCase_ : Any = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class __A ( a_ ): """simple docstring""" __lowerCAmelCase = "align_text_model" def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1E-1_2 , __A=0 , __A="absolute" , __A=True , **__A , ) -> List[str]: super().__init__(**__A ) a =vocab_size a =hidden_size a =num_hidden_layers a =num_attention_heads a =hidden_act a =intermediate_size a =hidden_dropout_prob a =attention_probs_dropout_prob a =max_position_embeddings a =type_vocab_size a =initializer_range a =layer_norm_eps a =position_embedding_type a =use_cache a =pad_token_id @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) a , a =cls.get_config_dict(__A , **__A ) # get the text config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": a =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class __A ( a_ ): """simple docstring""" __lowerCAmelCase = "align_vision_model" def __init__( self , __A = 3 , __A = 600 , __A = 2.0 , __A = 3.1 , __A = 8 , __A = [3, 3, 5, 3, 5, 5, 3] , __A = [32, 16, 24, 40, 80, 112, 192] , __A = [16, 24, 40, 80, 112, 192, 320] , __A = [] , __A = [1, 2, 2, 2, 1, 2, 1] , __A = [1, 2, 2, 3, 3, 4, 1] , __A = [1, 6, 6, 6, 6, 6, 6] , __A = 0.25 , __A = "swish" , __A = 2560 , __A = "mean" , __A = 0.02 , __A = 0.001 , __A = 0.99 , __A = 0.2 , **__A , ) -> Optional[Any]: super().__init__(**__A ) a =num_channels a =image_size a =width_coefficient a =depth_coefficient a =depth_divisor a =kernel_sizes a =in_channels a =out_channels a =depthwise_padding a =strides a =num_block_repeats a =expand_ratios a =squeeze_expansion_ratio a =hidden_act a =hidden_dim a =pooling_type a =initializer_range a =batch_norm_eps a =batch_norm_momentum a =drop_connect_rate a =sum(__A ) * 4 @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) a , a =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('''model_type''' ) == "align": a =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class __A ( a_ ): """simple docstring""" __lowerCAmelCase = "align" __lowerCAmelCase = True def __init__( self , __A=None , __A=None , __A=640 , __A=1.0 , __A=0.02 , **__A , ) -> Any: super().__init__(**__A ) if text_config is None: a ={} logger.info('''text_config is None. Initializing the AlignTextConfig with default values.''' ) if vision_config is None: a ={} logger.info('''vision_config is None. Initializing the AlignVisionConfig with default values.''' ) a =AlignTextConfig(**__A ) a =AlignVisionConfig(**__A ) a =projection_dim a =temperature_init_value a =initializer_range @classmethod def SCREAMING_SNAKE_CASE ( cls , __A , __A , **__A ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =copy.deepcopy(self.__dict__ ) a =self.text_config.to_dict() a =self.vision_config.to_dict() a =self.__class__.model_type return output
81
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class _A : """simple docstring""" def __init__( self : int , __UpperCAmelCase : Any): a : List[str] = data a : Optional[int] = None class _A : """simple docstring""" def __init__( self : Union[str, Any]): a : List[Any] = None a : List[str] = None def __iter__( self : List[Any]): a : List[str] = self.head while self.head: yield node.data a : int = node.next if node == self.head: break def __len__( self : Optional[int]): return sum(1 for _ in self) def __repr__( self : Tuple): return "->".join(str(__UpperCAmelCase) for item in iter(self)) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Any): self.insert_nth(len(self) , __UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : Any): self.insert_nth(0 , __UpperCAmelCase) def __snake_case ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any): if index < 0 or index > len(self): raise IndexError("list index out of range.") a : Any = Node(__UpperCAmelCase) if self.head is None: a : Optional[Any] = new_node # first node points itself a : Optional[int] = new_node elif index == 0: # insert at head a : Dict = self.head a : List[Any] = new_node else: a : str = self.head for _ in range(index - 1): a : Tuple = temp.next a : Any = temp.next a : List[Any] = new_node if index == len(self) - 1: # insert at tail a : Optional[Any] = new_node def __snake_case ( self : str): return self.delete_nth(0) def __snake_case ( self : Dict): return self.delete_nth(len(self) - 1) def __snake_case ( self : Dict , __UpperCAmelCase : int = 0): if not 0 <= index < len(self): raise IndexError("list index out of range.") a : List[Any] = self.head if self.head == self.tail: # just one node a : List[str] = None elif index == 0: # delete head node a : Optional[Any] = self.tail.next.next a : Any = self.head.next else: a : List[str] = self.head for _ in range(index - 1): a : Union[str, Any] = temp.next a : Optional[Any] = temp.next a : Union[str, Any] = temp.next.next if index == len(self) - 1: # delete at tail a : Any = temp return delete_node.data def __snake_case ( self : Optional[Any]): return len(self) == 0 def lowercase ( )-> None: '''simple docstring''' a : Tuple = CircularLinkedList() assert len(_A ) == 0 assert circular_linked_list.is_empty() is True assert str(_A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_A ) == i circular_linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
40
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _SCREAMING_SNAKE_CASE ( a_ ): UpperCAmelCase_ :Optional[Any] = "unispeech" def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.1 , __A=0.1 , __A=0.0_2 , __A=1E-5 , __A="group" , __A="gelu" , __A=(512, 512, 512, 512, 512, 512, 512) , __A=(5, 2, 2, 2, 2, 2, 2) , __A=(10, 3, 3, 3, 3, 2, 2) , __A=False , __A=128 , __A=16 , __A=False , __A=True , __A=0.0_5 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A=320 , __A=2 , __A=0.1 , __A=100 , __A=256 , __A=256 , __A=0.1 , __A="mean" , __A=False , __A=False , __A=256 , __A=80 , __A=0 , __A=1 , __A=2 , __A=0.5 , **__A , ) -> Tuple: super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) lowerCAmelCase_ :Optional[Any] = hidden_size lowerCAmelCase_ :List[Any] = feat_extract_norm lowerCAmelCase_ :Optional[Any] = feat_extract_activation lowerCAmelCase_ :Tuple = list(__A ) lowerCAmelCase_ :Union[str, Any] = list(__A ) lowerCAmelCase_ :List[str] = list(__A ) lowerCAmelCase_ :int = conv_bias lowerCAmelCase_ :Tuple = num_conv_pos_embeddings lowerCAmelCase_ :Dict = num_conv_pos_embedding_groups lowerCAmelCase_ :int = len(self.conv_dim ) lowerCAmelCase_ :int = num_hidden_layers lowerCAmelCase_ :List[Any] = intermediate_size lowerCAmelCase_ :Tuple = hidden_act lowerCAmelCase_ :Any = num_attention_heads lowerCAmelCase_ :Optional[Any] = hidden_dropout lowerCAmelCase_ :Union[str, Any] = attention_dropout lowerCAmelCase_ :Any = activation_dropout lowerCAmelCase_ :Optional[Any] = feat_proj_dropout lowerCAmelCase_ :Optional[Any] = final_dropout lowerCAmelCase_ :List[str] = layerdrop lowerCAmelCase_ :Union[str, Any] = layer_norm_eps lowerCAmelCase_ :Union[str, Any] = initializer_range lowerCAmelCase_ :Tuple = num_ctc_classes lowerCAmelCase_ :Tuple = vocab_size lowerCAmelCase_ :List[str] = do_stable_layer_norm lowerCAmelCase_ :List[Any] = use_weighted_layer_sum lowerCAmelCase_ :Dict = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ :Optional[Any] = apply_spec_augment lowerCAmelCase_ :str = mask_time_prob lowerCAmelCase_ :Optional[Any] = mask_time_length lowerCAmelCase_ :Union[str, Any] = mask_time_min_masks lowerCAmelCase_ :List[Any] = mask_feature_prob lowerCAmelCase_ :Optional[Any] = mask_feature_length lowerCAmelCase_ :Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase_ :List[str] = num_codevectors_per_group lowerCAmelCase_ :Dict = num_codevector_groups lowerCAmelCase_ :Optional[Any] = contrastive_logits_temperature lowerCAmelCase_ :Union[str, Any] = feat_quantizer_dropout lowerCAmelCase_ :str = num_negatives lowerCAmelCase_ :Union[str, Any] = codevector_dim lowerCAmelCase_ :int = proj_codevector_dim lowerCAmelCase_ :int = diversity_loss_weight # ctc loss lowerCAmelCase_ :Union[str, Any] = ctc_loss_reduction lowerCAmelCase_ :Tuple = ctc_zero_infinity # pretraining loss lowerCAmelCase_ :str = replace_prob @property def __lowerCAmelCase ( self ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
84
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 1_6 UpperCamelCase__ = 3_2 def lowerCAmelCase_ ( __A, __A = 16 ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCAmelCase__ = load_dataset("glue", "mrpc" ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ = tokenizer(examples["sentence1"], examples["sentence2"], truncation=_A, max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase__ = datasets.map( _A, batched=_A, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase__ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase__ = 8 else: UpperCAmelCase__ = None return tokenizer.pad( _A, padding="longest", max_length=_A, pad_to_multiple_of=_A, return_tensors="pt", ) # Instantiate dataloaders. UpperCAmelCase__ = DataLoader( tokenized_datasets["train"], shuffle=_A, collate_fn=_A, batch_size=_A ) UpperCAmelCase__ = DataLoader( tokenized_datasets["validation"], shuffle=_A, collate_fn=_A, batch_size=_A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def lowerCAmelCase_ ( __A, __A ) -> Tuple: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS", _A ) == "1": UpperCAmelCase__ = 2 # Initialize accelerator UpperCAmelCase__ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ = config["lr"] UpperCAmelCase__ = int(config["num_epochs"] ) UpperCAmelCase__ = int(config["seed"] ) UpperCAmelCase__ = int(config["batch_size"] ) UpperCAmelCase__ = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(_A ) UpperCAmelCase__ , UpperCAmelCase__ = get_dataloaders(_A, _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase__ = AdamW(params=model.parameters(), lr=_A ) # Instantiate scheduler UpperCAmelCase__ = get_linear_schedule_with_warmup( optimizer=_A, num_warmup_steps=100, num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = accelerator.prepare( _A, _A, _A, _A, _A ) # Now we train the model for epoch in range(_A ): model.train() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase__ = model(**_A ) UpperCAmelCase__ = outputs.loss UpperCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() UpperCAmelCase__ = 0 for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ = model(**_A ) UpperCAmelCase__ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase__ , UpperCAmelCase__ = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(_A ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples UpperCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=_A, references=_A, ) UpperCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", _A ) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=_A, default=_A, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_A, _A ) if __name__ == "__main__": main()
65
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Dict = logging.get_logger(__name__) __snake_case : Dict = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} __snake_case : Optional[int] = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } __snake_case : List[str] = { """abeja/gpt-neox-japanese-2.7b""": 2_048, } def _lowercase ( __snake_case ,__snake_case ) -> Optional[int]: with open(_A ,"r" ,encoding="utf-8" ) as f: __lowerCAmelCase : str = json.loads(f.read() ) __lowerCAmelCase : Any = collections.OrderedDict() __lowerCAmelCase : Optional[Any] = collections.OrderedDict() __lowerCAmelCase : Optional[int] = collections.OrderedDict() with open(_A ,"r" ,encoding="utf-8" ) as f: __lowerCAmelCase : List[str] = f.readlines() __lowerCAmelCase : int = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_A ): __lowerCAmelCase : Dict = b __lowerCAmelCase : Tuple = idx for wd in b: __lowerCAmelCase : Optional[int] = idx return vocab, raw_vocab, ids_to_tokens, emoji class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE: Optional[Any]="<|endoftext|>" , _SCREAMING_SNAKE_CASE: str="<|startoftext|>" , _SCREAMING_SNAKE_CASE: int="<|endoftext|>" , _SCREAMING_SNAKE_CASE: str=False , **_SCREAMING_SNAKE_CASE: Dict , ) -> Dict: """simple docstring""" super().__init__( unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , do_clean_text=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if not os.path.isfile(_SCREAMING_SNAKE_CASE): raise ValueError( F"""Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(_SCREAMING_SNAKE_CASE): raise ValueError( F"""Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") __lowerCAmelCase : Tuple = do_clean_text __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = load_vocab_and_emoji(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" return len(self.raw_vocab) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Dict: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" return self.subword_tokenizer.tokenize(_SCREAMING_SNAKE_CASE , clean=self.do_clean_text) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Tuple: """simple docstring""" return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token)) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Any = "".join(_SCREAMING_SNAKE_CASE).strip() return out_string def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: "Conversation") -> List[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) + [self.eos_token_id]) if len(_SCREAMING_SNAKE_CASE) > self.model_max_length: __lowerCAmelCase : Tuple = input_ids[-self.model_max_length :] return input_ids def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None) -> Tuple[str]: """simple docstring""" __lowerCAmelCase : Tuple = 0 if os.path.isdir(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) __lowerCAmelCase : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: __lowerCAmelCase : List[str] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase : List[str] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") __lowerCAmelCase : Tuple = token_index writer.write(",".join(_SCREAMING_SNAKE_CASE) + "\n") index += 1 with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8") as writer: json.dump(self.emoji , _SCREAMING_SNAKE_CASE) return vocab_file, emoji_file class A__ ( a_ ): '''simple docstring''' def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict) -> int: """simple docstring""" __lowerCAmelCase : Tuple = vocab # same as swe __lowerCAmelCase : Tuple = ids_to_tokens # same as bpe __lowerCAmelCase : List[str] = emoji __lowerCAmelCase : str = np.max([len(_SCREAMING_SNAKE_CASE) for w in self.vocab.keys()]) __lowerCAmelCase : List[Any] = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") __lowerCAmelCase : Optional[Any] = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") __lowerCAmelCase : Union[str, Any] = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") __lowerCAmelCase : Dict = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") __lowerCAmelCase : Any = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") __lowerCAmelCase : Union[str, Any] = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") __lowerCAmelCase : Optional[Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" __lowerCAmelCase : Dict = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" __lowerCAmelCase : Union[str, Any] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Tuple) -> int: """simple docstring""" return len(self.ids_to_tokens) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.content_repattera.sub("<URL>" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.content_repattera.sub("<EMAIL>" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.content_repattera.sub("<TEL>" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.content_repattera.sub("<DATE>" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = self.content_repattera.sub("<DATE>" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = self.content_repattera.sub("<PRICE>" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: __lowerCAmelCase : Optional[int] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]=False) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[Any] = text.replace(" " , "<SP>") __lowerCAmelCase : Dict = text.replace(" " , "<SP>") __lowerCAmelCase : Dict = text.replace("\r\n" , "<BR>") __lowerCAmelCase : Tuple = text.replace("\n" , "<BR>") __lowerCAmelCase : Tuple = text.replace("\r" , "<BR>") __lowerCAmelCase : Dict = text.replace("\t" , "<TAB>") __lowerCAmelCase : Optional[int] = text.replace("—" , "ー") __lowerCAmelCase : List[str] = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: __lowerCAmelCase : int = text.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if clean: __lowerCAmelCase : List[str] = self.clean_text(_SCREAMING_SNAKE_CASE) def check_simbol(_SCREAMING_SNAKE_CASE: List[str]): __lowerCAmelCase : int = x.encode() if len(_SCREAMING_SNAKE_CASE) == 1 and len(_SCREAMING_SNAKE_CASE) == 2: __lowerCAmelCase : Dict = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC2_A1 and c <= 0XC2_BF) or (c >= 0XC7_80 and c <= 0XC7_83) or (c >= 0XCA_B9 and c <= 0XCB_BF) or (c >= 0XCC_80 and c <= 0XCD_A2) ): return True return False def checkuae(_SCREAMING_SNAKE_CASE: List[str]): __lowerCAmelCase : Tuple = x.encode() if len(_SCREAMING_SNAKE_CASE) == 1 and len(_SCREAMING_SNAKE_CASE) == 3: __lowerCAmelCase : str = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE2_80_80 and c <= 0XE2_B0_7F: return True return False __lowerCAmelCase : int = 0 __lowerCAmelCase : Tuple = [] while pos < len(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = min(len(_SCREAMING_SNAKE_CASE) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 __lowerCAmelCase : str = [] # (token_id, token, pos) for e in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1): __lowerCAmelCase : int = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_SCREAMING_SNAKE_CASE) > 2: __lowerCAmelCase : Optional[int] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(_SCREAMING_SNAKE_CASE) > 0: # the smallest token_id is adopted __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE: x[0])[0] result.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = e else: __lowerCAmelCase : Any = pos + 1 __lowerCAmelCase : List[str] = text[pos:end] if check_simbol(_SCREAMING_SNAKE_CASE): result.append("<KIGOU>") elif checkuae(_SCREAMING_SNAKE_CASE): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) __lowerCAmelCase : Tuple = end return result def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str]="\n") -> List[str]: """simple docstring""" __lowerCAmelCase : str = [] __lowerCAmelCase : Dict = [] __lowerCAmelCase : int = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(_SCREAMING_SNAKE_CASE) > 0: words.append(bytearray(_SCREAMING_SNAKE_CASE).decode("utf-8" , errors="replace")) __lowerCAmelCase : List[str] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(_SCREAMING_SNAKE_CASE) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(_SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: words.append(bytearray(_SCREAMING_SNAKE_CASE).decode("utf-8" , errors="replace")) __lowerCAmelCase : List[Any] = "".join(_SCREAMING_SNAKE_CASE) return text
269
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( a__ : Any ) -> Tuple: return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( a__ : int , a__ : List[str] ) -> Tuple: return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( a__ : Dict , a__ : List[Any] , a__ : Dict ) -> List[str]: UpperCamelCase_ = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def lowerCamelCase__ ( a__ : Any , a__ : Tuple , a__ : Any , a__ : List[str]=7_0000 ) -> Tuple: UpperCamelCase_ = np.zeros(x.shape[1] ) for iterations in range(_A ): UpperCamelCase_ = np.dot(_A , _A ) UpperCamelCase_ = sigmoid_function(_A ) UpperCamelCase_ = np.dot(x.T , h - y ) / y.size UpperCamelCase_ = theta - alpha * gradient # updating the weights UpperCamelCase_ = np.dot(_A , _A ) UpperCamelCase_ = sigmoid_function(_A ) UpperCamelCase_ = cost_function(_A , _A ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _A = datasets.load_iris() _A = iris.data[:, :2] _A = (iris.target != 0) * 1 _A = 0.1 _A = logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( a__ : List[str] ) -> List[str]: return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') (_A) = (x[:, 0].min(), x[:, 0].max()) (_A) = (x[:, 1].min(), x[:, 1].max()) (_A) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _A = np.c_[xxa.ravel(), xxa.ravel()] _A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
122
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap A_ :str = """Usage of script: script_name <size_of_canvas:int>""" A_ :Tuple = [0] * 100 + [1] * 10 random.shuffle(choice) def A ( a_ ) -> list[list[bool]]: __UpperCamelCase : Any =[[False for i in range(_A )] for j in range(_A )] return canvas def A ( a_ ) -> None: for i, row in enumerate(_A ): for j, _ in enumerate(_A ): __UpperCamelCase : List[Any] =bool(random.getrandbits(1 ) ) def A ( a_ ) -> list[list[bool]]: __UpperCamelCase : Tuple =np.array(_A ) __UpperCamelCase : Union[str, Any] =np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(_A ): for c, pt in enumerate(_A ): __UpperCamelCase : Dict =__judge_point( _A ,current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __UpperCamelCase : List[str] =next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __UpperCamelCase : Dict =current_canvas.tolist() return return_canvas def A ( a_ ,a_ ) -> bool: __UpperCamelCase : str =0 __UpperCamelCase : Union[str, Any] =0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __UpperCamelCase : int =pt if pt: if alive < 2: __UpperCamelCase : List[str] =False elif alive == 2 or alive == 3: __UpperCamelCase : Any =True elif alive > 3: __UpperCamelCase : Union[str, Any] =False else: if alive == 3: __UpperCamelCase : Optional[Any] =True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) A_ :Tuple = int(sys.argv[1]) # main working structure of this module. A_ :str = create_canvas(canvas_size) seed(c) A_ :List[Any] = plt.subplots() fig.show() A_ :int = ListedColormap(['''w''', '''k''']) try: while True: A_ :Any = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
71
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
0
'''simple docstring''' import os import string import sys _A : List[Any] = 1 << 8 _A : Union[str, Any] = { """tab""": ord('''\t'''), """newline""": ord('''\r'''), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } _A : Optional[Any] = KEYMAP["""up"""] _A : Tuple = KEYMAP["""left"""] if sys.platform == "win32": _A : List[Any] = [] _A : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): _A : List[str] = ord(str(i)) def UpperCamelCase_ ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": import msvcrt __lowerCAmelCase = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke __lowerCAmelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowerCAmelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowerCAmelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) __lowerCAmelCase = chr(KEYMAP["""esc"""] ) except KeyError: __lowerCAmelCase = cha[1] else: __lowerCAmelCase = ch.decode(_A ) else: __lowerCAmelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowerCAmelCase = sys.stdin.fileno() __lowerCAmelCase = termios.tcgetattr(_A ) try: tty.setraw(_A ) __lowerCAmelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def UpperCamelCase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: __lowerCAmelCase = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: __lowerCAmelCase = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
229
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase_ = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : str = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowercase__ ( a_ , unittest.TestCase ): lowercase__ = GPTSwaTokenizer lowercase__ = False lowercase__ = True lowercase__ = False def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase : Union[str, Any] = GPTSwaTokenizer(lowerCamelCase__ ,eos_token='<unk>' ,bos_token='<unk>' ,pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = 'This is a test' _UpperCamelCase : int = 'This is a test' return input_text, output_text def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[str] = '<s>' _UpperCamelCase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(lowerCamelCase__ ) ,2000 ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,2000 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : List[str] = GPTSwaTokenizer(lowerCamelCase__ ) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[465, 287, 265, 631, 842] ) _UpperCamelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( lowerCamelCase__ ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ,) # fmt: on _UpperCamelCase : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,) _UpperCamelCase : int = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) # fmt: off self.assertListEqual( lowerCamelCase__ ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : str = GPTSwaTokenizer(lowerCamelCase__ ) _UpperCamelCase : List[Any] = ['This is a test', 'I was born in 92000, and this is falsé.'] _UpperCamelCase : Any = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertListEqual(tokenizer.encode_fast(lowerCamelCase__ ) ,lowerCamelCase__ ) # Test that decode_fast returns the input text for text, token_ids in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(tokenizer.decode_fast(lowerCamelCase__ ) ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Any = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _UpperCamelCase : List[Any] = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='AI-Sweden/gpt-sw3-126m' ,sequences=lowerCamelCase__ ,)
83
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : int = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ) -> int: """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ) -> List[str]: """simple docstring""" snake_case__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ) -> Dict: """simple docstring""" snake_case__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def a_ ( ) -> Optional[int]: """simple docstring""" assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def a_ ( ) -> Optional[Any]: """simple docstring""" # laplace diagonals snake_case__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def a_ ( ) -> Dict: """simple docstring""" assert med.median_filter(_A , 3 ).any() def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = sp.make_sepia(_A , 20 ) assert sepia.all() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[int]: """simple docstring""" snake_case__ = bs.Burkes(imread(_A , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" snake_case__ = rs.NearestNeighbour(imread(_A , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def a_ ( ) -> Any: """simple docstring""" snake_case__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ = 0 snake_case__ = 0 snake_case__ = image[x_coordinate][y_coordinate] snake_case__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
307
0
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' if collection == []: return [] # get some information about the collection lowercase : str = len(__magic_name__ ) lowercase : Any = max(__magic_name__ ) lowercase : Optional[Any] = min(__magic_name__ ) # create the counting array lowercase : List[str] = coll_max + 1 - coll_min lowercase : Optional[int] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __magic_name__ ): lowercase : Union[str, Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase : List[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __magic_name__ ) ): lowercase : List[str] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' return "".join([chr(__magic_name__ ) for i in counting_sort([ord(__magic_name__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
308
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCAmelCase_ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self : str , _A : Dict , _A : Optional[Any]=16 , _A : List[Any]=13 , _A : Dict=7 , _A : Dict=14 , _A : int=10 , _A : List[str]=19 , _A : Any=5 , _A : List[Any]=4 , _A : Optional[Any]=True , _A : List[str]=16 , _A : Any=2 , _A : Optional[int]=4 , _A : List[Any]=4 , _A : List[str]="gelu" , _A : Dict=0.1 , _A : Tuple=0.1 , _A : List[Any]=[1, 2, 3, 4, 5] , _A : List[Any]=25 , _A : List[Any]=5 , ) -> str: """simple docstring""" lowercase : int = d_model lowercase : Optional[Any] = parent lowercase : int = batch_size lowercase : List[str] = prediction_length lowercase : List[Any] = context_length lowercase : Union[str, Any] = cardinality lowercase : str = num_time_features lowercase : str = lags_sequence lowercase : Union[str, Any] = embedding_dimension lowercase : str = is_training lowercase : Dict = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : Union[str, Any] = num_attention_heads lowercase : str = intermediate_size lowercase : Optional[Any] = hidden_act lowercase : List[Any] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = context_length lowercase : Union[str, Any] = prediction_length + label_length lowercase : List[str] = label_length lowercase : str = moving_average lowercase : Optional[Any] = autocorrelation_factor def __a ( self : Any ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __a ( self : Optional[int] , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] = config.context_length + max(config.lags_sequence ) lowercase : Optional[int] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowercase : List[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowercase : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) lowercase : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowercase : List[str] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowercase : str = floats_tensor([self.batch_size, config.prediction_length] ) lowercase : Any = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def __a ( self : Any ) -> str: """simple docstring""" lowercase : Optional[Any] = self.get_config() lowercase : List[Any] = self.prepare_autoformer_inputs_dict(_A ) return config, inputs_dict def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase , lowercase : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self : List[str] , _A : List[str] , _A : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : List[str] = AutoformerModel(config=_A ).to(_A ).eval() lowercase : List[Any] = model(**_A ) lowercase : List[str] = outputs.encoder_last_hidden_state lowercase : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[str] = model.get_encoder() encoder.save_pretrained(_A ) lowercase : int = AutoformerEncoder.from_pretrained(_A ).to(_A ) lowercase , lowercase , lowercase , lowercase , lowercase : List[str] = model.create_network_inputs(**_A ) lowercase , lowercase : Union[str, Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowercase : str = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowercase : Tuple = encoder(inputs_embeds=_A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowercase : Optional[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowercase : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowercase : Optional[int] = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowercase : Tuple = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : List[str] = model.get_decoder() decoder.save_pretrained(_A ) lowercase : Union[str, Any] = AutoformerDecoder.from_pretrained(_A ).to(_A ) lowercase : Dict = decoder( trend=_A , inputs_embeds=_A , encoder_hidden_states=_A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase : List[Any] = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase : Dict = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} _UpperCamelCase : List[str] = False _UpperCamelCase : Optional[int] = False _UpperCamelCase : List[str] = False _UpperCamelCase : List[str] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[Any] = False def __a ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase : int = AutoformerModelTester(self ) lowercase : Tuple = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __a ( self : List[str] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Any ) -> str: """simple docstring""" lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowercase : str = model_class(_A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) lowercase , lowercase : Dict = model_class.from_pretrained(_A , output_loading_info=_A ) self.assertEqual(info['''missing_keys'''] , [] ) def __a ( self : Tuple ) -> str: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __a ( self : str ) -> Optional[int]: """simple docstring""" pass def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase : List[str] = inspect.signature(getattr(_A , '''forward''' ) ) # The main input is the name of the argument after `self` lowercase : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _A ) def __a ( self : Union[str, Any] ) -> str: """simple docstring""" lowercase , lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] = model_class(_A ) lowercase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Any = [*signature.parameters.keys()] lowercase : Optional[int] = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(_A )] , _A ) def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Tuple = True lowercase : Union[str, Any] = getattr(self.model_tester , '''seq_length''' , _A ) lowercase : List[Any] = getattr(self.model_tester , '''decoder_seq_length''' , _A ) lowercase : Dict = getattr(self.model_tester , '''encoder_seq_length''' , _A ) lowercase : Optional[Any] = getattr(self.model_tester , '''d_model''' , _A ) lowercase : Tuple = getattr(self.model_tester , '''num_attention_heads''' , _A ) lowercase : List[Any] = d_model // num_attention_heads for model_class in self.all_model_classes: lowercase : Any = True lowercase : Optional[Any] = False lowercase : Union[str, Any] = True lowercase : int = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : str = model(**self._prepare_for_class(_A , _A ) ) lowercase : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase : Dict = True lowercase : Optional[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : Tuple = model(**self._prepare_for_class(_A , _A ) ) lowercase : List[str] = outputs.encoder_attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowercase : Dict = len(_A ) lowercase : Tuple = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_A , _A ) # decoder attentions lowercase : str = outputs.decoder_attentions self.assertIsInstance(_A , (list, tuple) ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowercase : Union[str, Any] = outputs.cross_attentions self.assertIsInstance(_A , (list, tuple) ) self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowercase : Union[str, Any] = True lowercase : List[Any] = True lowercase : Optional[Any] = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): lowercase : List[str] = model(**self._prepare_for_class(_A , _A ) ) self.assertEqual(out_len + 2 , len(_A ) ) lowercase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __a ( self : Tuple ) -> Tuple: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def snake_case( __magic_name__="train-batch.pt" ) -> Any: '''simple docstring''' lowercase : Dict = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__magic_name__ , repo_type='''dataset''' ) lowercase : int = torch.load(__magic_name__ , map_location=__magic_name__ ) return batch @require_torch @slow class _A ( unittest.TestCase ): def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowercase : Optional[int] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(_A ) lowercase : str = prepare_batch() with torch.no_grad(): lowercase : Optional[int] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] lowercase : str = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _A ) lowercase : str = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] , _A , atol=_A ) ) def __a ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : int = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(_A ) lowercase : Any = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowercase : Optional[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state lowercase : Tuple = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _A ) lowercase : Any = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=_A ) self.assertTrue(torch.allclose(output[0, :3, :3] , _A , atol=_A ) ) def __a ( self : str ) -> List[Any]: """simple docstring""" lowercase : Any = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(_A ) lowercase : str = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowercase : List[Any] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) lowercase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _A ) lowercase : str = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=_A ) lowercase : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _A , rtol=1E-1 ) )
308
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
1
import torch from transformers import AutoModel class _A ( torch.nn.Module ): def __init__( self : Optional[int] , _A : Union[str, Any]="sayef/fsner-bert-base-uncased" ) -> Any: """simple docstring""" super(_A , self ).__init__() lowercase : Optional[Any] = AutoModel.from_pretrained(_A , return_dict=_A ) lowercase : Dict = torch.nn.CosineSimilarity(3 , 1E-08 ) lowercase : Any = torch.nn.Softmax(dim=1 ) def __a ( self : List[Any] , **_A : Optional[int] ) -> Optional[int]: """simple docstring""" return self.bert(**_A ).last_hidden_state def __a ( self : Any , _A : List[str] ) -> Any: """simple docstring""" return token_embeddings.sum(2 , keepdim=_A ) def __a ( self : List[Any] , _A : Optional[int] , _A : Dict , _A : int=1 ) -> Any: """simple docstring""" return self.softmax(T * self.cos(_A , _A ) ) def __a ( self : Optional[Any] , _A : Tuple , _A : Union[str, Any] ) -> Dict: """simple docstring""" lowercase : List[Any] = W_supports['''sizes'''].tolist() lowercase : str = W_supports['''start_token_id'''].item() lowercase : Tuple = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase : List[str] = self.BERT(**_A ) lowercase : Optional[Any] = self.BERT(**_A ) lowercase : int = None lowercase : Optional[int] = None lowercase : Dict = W_supports['''input_ids'''] == start_token_id lowercase : int = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(_A ): if i == 0: lowercase : Union[str, Any] = 0 else: lowercase : Tuple = support_sizes[i - 1] lowercase : Union[str, Any] = S[s : s + size][start_token_masks[s : s + size]] lowercase : Dict = S[s : s + size][end_token_masks[s : s + size]] lowercase : Union[str, Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase : Dict = torch.vstack((p_starts, p_start) ) lowercase : Optional[int] = torch.vstack((p_ends, p_end) ) else: lowercase : int = p_start lowercase : Optional[int] = p_end return p_starts, p_ends
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class _A ( _lowerCamelCase ): _UpperCamelCase : jnp.ndarray @flax_register_to_config class _A ( nn.Module , _lowerCamelCase , _lowerCamelCase ): _UpperCamelCase : int = 3_2 _UpperCamelCase : int = 4 _UpperCamelCase : int = 4 _UpperCamelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _UpperCamelCase : Union[bool, Tuple[bool]] = False _UpperCamelCase : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _UpperCamelCase : int = 2 _UpperCamelCase : Union[int, Tuple[int]] = 8 _UpperCamelCase : Optional[Union[int, Tuple[int]]] = None _UpperCamelCase : int = 1_2_8_0 _UpperCamelCase : float = 0.0 _UpperCamelCase : bool = False _UpperCamelCase : jnp.dtype = jnp.floataa _UpperCamelCase : bool = True _UpperCamelCase : int = 0 _UpperCamelCase : bool = False def __a ( self : Tuple , _A : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" lowercase : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) lowercase : List[Any] = jnp.zeros(_A , dtype=jnp.floataa ) lowercase : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowercase : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase , lowercase : List[Any] = jax.random.split(_A ) lowercase : int = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_A , _A , _A , _A )["params"] def __a ( self : Optional[Any] ) -> str: """simple docstring""" lowercase : List[str] = self.block_out_channels lowercase : Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase : str = self.num_attention_heads or self.attention_head_dim # input lowercase : Any = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase : Union[str, Any] = FlaxTimestepEmbedding(_A , dtype=self.dtype ) lowercase : Optional[int] = self.only_cross_attention if isinstance(_A , _A ): lowercase : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_A , _A ): lowercase : Any = (num_attention_heads,) * len(self.down_block_types ) # down lowercase : Optional[int] = [] lowercase : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowercase : str = output_channel lowercase : Dict = block_out_channels[i] lowercase : List[str] = i == len(_A ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase : Dict = FlaxCrossAttnDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowercase : List[str] = FlaxDownBlockaD( in_channels=_A , out_channels=_A , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_A ) lowercase : List[Any] = down_blocks # mid lowercase : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowercase : Optional[int] = [] lowercase : List[Any] = list(reversed(_A ) ) lowercase : Optional[Any] = list(reversed(_A ) ) lowercase : Any = list(reversed(_A ) ) lowercase : Union[str, Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowercase : Tuple = output_channel lowercase : List[str] = reversed_block_out_channels[i] lowercase : int = reversed_block_out_channels[min(i + 1 , len(_A ) - 1 )] lowercase : int = i == len(_A ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowercase : Tuple = FlaxCrossAttnUpBlockaD( in_channels=_A , out_channels=_A , prev_output_channel=_A , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowercase : str = FlaxUpBlockaD( in_channels=_A , out_channels=_A , prev_output_channel=_A , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_A ) lowercase : List[str] = output_channel lowercase : Union[str, Any] = up_blocks # out lowercase : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , _A : Optional[Any] , _A : List[str] , _A : str , _A : List[str]=None , _A : Optional[Any]=None , _A : bool = True , _A : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: """simple docstring""" if not isinstance(_A , jnp.ndarray ): lowercase : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_A , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase : List[Any] = timesteps.astype(dtype=jnp.floataa ) lowercase : Any = jnp.expand_dims(_A , 0 ) lowercase : Union[str, Any] = self.time_proj(_A ) lowercase : Dict = self.time_embedding(_A ) # 2. pre-process lowercase : List[str] = jnp.transpose(_A , (0, 2, 3, 1) ) lowercase : Any = self.conv_in(_A ) # 3. down lowercase : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_A , _A ): lowercase , lowercase : Any = down_block(_A , _A , _A , deterministic=not train ) else: lowercase , lowercase : Tuple = down_block(_A , _A , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowercase : List[str] = () for down_block_res_sample, down_block_additional_residual in zip( _A , _A ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowercase : Optional[int] = new_down_block_res_samples # 4. mid lowercase : Tuple = self.mid_block(_A , _A , _A , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowercase : Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] lowercase : Tuple = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_A , _A ): lowercase : Tuple = up_block( _A , temb=_A , encoder_hidden_states=_A , res_hidden_states_tuple=_A , deterministic=not train , ) else: lowercase : Optional[int] = up_block(_A , temb=_A , res_hidden_states_tuple=_A , deterministic=not train ) # 6. post-process lowercase : List[Any] = self.conv_norm_out(_A ) lowercase : int = nn.silu(_A ) lowercase : List[str] = self.conv_out(_A ) lowercase : Tuple = jnp.transpose(_A , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_A )
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
from math import pi, sqrt, tan def snake_case( __magic_name__ ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def snake_case( __magic_name__ ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def snake_case( __magic_name__ ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) lowercase : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(__magic_name__ , 2 ) * torus_radius * tube_radius def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def snake_case( __magic_name__ ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) lowercase : str = (sidea + sidea + sidea) / 2 lowercase : Tuple = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def snake_case( __magic_name__ ) -> float: '''simple docstring''' if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
308
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = '''deta''' _UpperCamelCase : List[str] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , _A : str=None , _A : List[Any]=900 , _A : int=2_048 , _A : int=6 , _A : int=2_048 , _A : List[Any]=8 , _A : str=6 , _A : Optional[int]=1_024 , _A : Tuple=8 , _A : Optional[Any]=0.0 , _A : Optional[int]=True , _A : str="relu" , _A : List[str]=256 , _A : List[str]=0.1 , _A : Dict=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=0.02 , _A : List[Any]=1.0 , _A : int=True , _A : str=False , _A : List[Any]="sine" , _A : int=5 , _A : List[Any]=4 , _A : List[str]=4 , _A : Any=True , _A : List[str]=300 , _A : Dict=True , _A : Tuple=True , _A : List[Any]=1 , _A : Optional[Any]=5 , _A : List[Any]=2 , _A : Tuple=1 , _A : List[Any]=1 , _A : Union[str, Any]=5 , _A : int=2 , _A : Optional[Any]=0.1 , _A : List[str]=0.25 , **_A : int , ) -> List[str]: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase : Any = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(_A , _A ): lowercase : Dict = backbone_config.pop('''model_type''' ) lowercase : Dict = CONFIG_MAPPING[backbone_model_type] lowercase : Any = config_class.from_dict(_A ) lowercase : int = backbone_config lowercase : Dict = num_queries lowercase : Dict = max_position_embeddings lowercase : Union[str, Any] = d_model lowercase : str = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : Tuple = encoder_attention_heads lowercase : List[str] = decoder_ffn_dim lowercase : Union[str, Any] = decoder_layers lowercase : List[str] = decoder_attention_heads lowercase : List[Any] = dropout lowercase : str = attention_dropout lowercase : List[str] = activation_dropout lowercase : List[str] = activation_function lowercase : Optional[int] = init_std lowercase : int = init_xavier_std lowercase : int = encoder_layerdrop lowercase : Dict = auxiliary_loss lowercase : Any = position_embedding_type # deformable attributes lowercase : List[str] = num_feature_levels lowercase : int = encoder_n_points lowercase : Optional[Any] = decoder_n_points lowercase : int = two_stage lowercase : str = two_stage_num_proposals lowercase : Optional[int] = with_box_refine lowercase : Union[str, Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase : Any = class_cost lowercase : Optional[int] = bbox_cost lowercase : Tuple = giou_cost # Loss coefficients lowercase : int = mask_loss_coefficient lowercase : Any = dice_loss_coefficient lowercase : int = bbox_loss_coefficient lowercase : Optional[Any] = giou_loss_coefficient lowercase : int = eos_coefficient lowercase : Any = focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __a ( self : int ) -> int: """simple docstring""" return self.d_model def __a ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase : List[str] = copy.deepcopy(self.__dict__ ) lowercase : Union[str, Any] = self.backbone_config.to_dict() lowercase : str = self.__class__.model_type return output
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) lowercase : Any = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__magic_name__ ) ) return round(__magic_name__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase_ = logging.getLogger(__name__) def snake_case( ) -> int: '''simple docstring''' lowercase : Union[str, Any] = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=__magic_name__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=__magic_name__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=__magic_name__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=__magic_name__ , default='''data/dump''' , help='''The dump file prefix.''' ) lowercase : Tuple = parser.parse_args() logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowercase : Dict = BertTokenizer.from_pretrained(args.tokenizer_name ) lowercase : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` lowercase : Any = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": lowercase : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowercase : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` lowercase : int = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": lowercase : int = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowercase : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` lowercase : List[str] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F"""Loading text from {args.file_path}""" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: lowercase : Dict = fp.readlines() logger.info('''Start encoding''' ) logger.info(F"""{len(__magic_name__ )} examples to process.""" ) lowercase : Optional[int] = [] lowercase : int = 0 lowercase : List[str] = 1_00_00 lowercase : List[str] = time.time() for text in data: lowercase : Optional[Any] = F"""{bos} {text.strip()} {sep}""" lowercase : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: lowercase : Optional[int] = time.time() logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowercase : Optional[int] = time.time() logger.info('''Finished binarization''' ) logger.info(F"""{len(__magic_name__ )} examples processed.""" ) lowercase : Dict = F"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowercase : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): lowercase : Any = [np.uintaa(__magic_name__ ) for d in rslt] else: lowercase : Any = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"""Dump to {dp_file}""" ) with open(__magic_name__ , '''wb''' ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
lowerCAmelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCAmelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> list[int]: '''simple docstring''' lowercase : Any = True lowercase : Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) order.append(__magic_name__ ) return order def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> list[int]: '''simple docstring''' lowercase : Tuple = True lowercase : Any = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(__magic_name__ , __magic_name__ , __magic_name__ ) return component def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : List[Any] = len(__magic_name__ ) * [False] lowercase : dict[int, list[int]] = {vert: [] for vert in range(len(__magic_name__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(__magic_name__ ) lowercase : List[str] = [] for i, was_visited in enumerate(__magic_name__ ): if not was_visited: order += topology_sort(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase : Optional[int] = [] lowercase : str = len(__magic_name__ ) * [False] for i in range(len(__magic_name__ ) ): lowercase : List[str] = order[len(__magic_name__ ) - i - 1] if not visited[vert]: lowercase : Tuple = find_components(__magic_name__ , __magic_name__ , __magic_name__ ) components_list.append(__magic_name__ ) return components_list
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[Any] = '''microsoft/speecht5_tts''' _UpperCamelCase : Dict = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _UpperCamelCase : Any = '''text_reader''' _UpperCamelCase : Dict = SpeechTaProcessor _UpperCamelCase : Dict = SpeechTaForTextToSpeech _UpperCamelCase : List[Any] = SpeechTaHifiGan _UpperCamelCase : Optional[Any] = ['''text'''] _UpperCamelCase : str = ['''audio'''] def __a ( self : Dict ) -> List[Any]: """simple docstring""" if self.post_processor is None: lowercase : Union[str, Any] = '''microsoft/speecht5_hifigan''' super().setup() def __a ( self : Dict , _A : Optional[int] , _A : Optional[int]=None ) -> str: """simple docstring""" lowercase : Optional[int] = self.pre_processor(text=_A , return_tensors='''pt''' , truncation=_A ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) lowercase : Any = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) lowercase : Optional[Any] = torch.tensor(embeddings_dataset[7_305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __a ( self : Union[str, Any] , _A : Union[str, Any] ) -> str: """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**_A ) def __a ( self : Dict , _A : Optional[Any] ) -> Optional[int]: """simple docstring""" with torch.no_grad(): return self.post_processor(_A ).cpu().detach()
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
1
import os import numpy import onnx def snake_case( __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : List[str] = a.name lowercase : Any = b.name lowercase : str = '''''' lowercase : int = '''''' lowercase : Optional[Any] = a == b lowercase : Optional[Any] = name_a lowercase : List[Any] = name_b return res def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__magic_name__ , __magic_name__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __magic_name__ , __magic_name__ ) _graph_replace_input_with(node_proto.attribute[1].g , __magic_name__ , __magic_name__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(__magic_name__ , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Dict = list(model.graph.initializer ) lowercase : Optional[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase : List[str] = inits[i].name lowercase : List[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Union[str, Any] = os.path.dirname(__magic_name__ ) lowercase : Union[str, Any] = os.path.basename(__magic_name__ ) lowercase : int = onnx.load(os.path.join(__magic_name__ , __magic_name__ ) ) lowercase : Tuple = list(model.graph.initializer ) lowercase : Tuple = set() lowercase : Any = {} lowercase : List[Any] = [] lowercase : str = 0 for i in range(len(__magic_name__ ) ): if i in dup_set: continue for j in range(i + 1 , len(__magic_name__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__magic_name__ ) dup_set.add(__magic_name__ ) lowercase : Union[str, Any] = inits[j].data_type lowercase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , __magic_name__ ) total_reduced_size += mem_size lowercase : str = inits[i].name lowercase : Optional[int] = inits[j].name if name_i in dup_map: dup_map[name_i].append(__magic_name__ ) else: lowercase : int = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 10_24 / 10_24 / 10_24 , '''GB''' ) lowercase : str = sorted(__magic_name__ ) _remove_dup_initializers_from_model(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase : int = '''optimized_''' + model_file_name lowercase : Union[str, Any] = os.path.join(__magic_name__ , __magic_name__ ) onnx.save(__magic_name__ , __magic_name__ ) return new_model
308
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = BlenderbotSmallTokenizer _UpperCamelCase : List[str] = False def __a ( self : Optional[int] ) -> int: """simple docstring""" super().setUp() lowercase : Optional[int] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowercase : int = dict(zip(_A , range(len(_A ) ) ) ) lowercase : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowercase : str = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def __a ( self : Optional[int] , **_A : List[Any] ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_A ) def __a ( self : Union[str, Any] , _A : Optional[Any] ) -> str: """simple docstring""" lowercase : Any = '''adapt act apte''' lowercase : Union[str, Any] = '''adapt act apte''' return input_text, output_text def __a ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase : Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase : Optional[int] = '''adapt act apte''' lowercase : List[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] lowercase : Dict = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowercase : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase : List[str] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_384] lowercase : Union[str, Any] = '''I am a small frog.''' lowercase : Dict = tok([src_text] , padding=_A , truncation=_A )['''input_ids'''] lowercase : Dict = tok.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __a ( self : str ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowercase : List[str] = '''I am a small frog .''' lowercase : Any = '''.''' lowercase : List[str] = tok(_A )['''input_ids'''] lowercase : Optional[int] = tok(_A )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
308
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
1
from __future__ import annotations lowerCAmelCase_ = 8.988E9 # units = N * m^s * C^-2 def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> dict[str, float]: '''simple docstring''' lowercase : str = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if distance < 0: raise ValueError('''Distance cannot be negative''' ) if force == 0: lowercase : str = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowercase : Union[str, Any] = abs(__magic_name__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowercase : Dict = abs(__magic_name__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowercase : Dict = (COULOMBS_CONSTANT * charge_product / abs(__magic_name__ )) ** 0.5 return {"distance": distance} raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
1
from PIL import Image def snake_case( __magic_name__ , __magic_name__ ) -> Image: '''simple docstring''' def brightness(__magic_name__ ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__magic_name__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 lowerCAmelCase_ = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
308
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class _A ( unittest.TestCase , _lowerCamelCase ): def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : Any = load_tool('''text-to-speech''' ) self.tool.setup() def __a ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase : Optional[int] = self.tool('''hey''' ) lowercase : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def __a ( self : int ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase : Dict = self.tool('''hey''' ) lowercase : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
308
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin lowerCAmelCase_ = False @skip_mps class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : List[Any] = StableDiffusionAttendAndExcitePipeline _UpperCamelCase : Optional[Any] = False _UpperCamelCase : List[Any] = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) _UpperCamelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCamelCase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __a ( cls : Dict ) -> str: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(_A ) @classmethod def __a ( cls : List[Any] ) -> Union[str, Any]: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(_A ) def __a ( self : List[str] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_A , ) lowercase : Optional[int] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) lowercase : Union[str, Any] = CLIPTextModel(_A ) lowercase : int = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase : Any = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __a ( self : Optional[Any] , _A : str , _A : Union[str, Any]=0 ) -> int: """simple docstring""" if str(_A ).startswith('''mps''' ): lowercase : Dict = torch.manual_seed(_A ) else: lowercase : Tuple = torch.Generator(device=_A ).manual_seed(_A ) lowercase : List[str] = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = '''cpu''' lowercase : Optional[Any] = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) lowercase : Tuple = self.get_dummy_inputs(_A ) lowercase : Any = pipe(**_A ).images lowercase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) lowercase : int = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1E-3 ) def __a ( self : Optional[int] ) -> Dict: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __a ( self : int ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def __a ( self : Optional[int] ) -> Tuple: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __a ( self : List[Any] ) -> int: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def __a ( self : int ) -> str: """simple docstring""" super().test_save_load_local(expected_max_difference=5E-4 ) def __a ( self : Any ) -> Any: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class _A ( unittest.TestCase ): @classmethod def __a ( cls : Any ) -> Optional[Any]: """simple docstring""" super().setUpClass() torch.use_deterministic_algorithms(_A ) @classmethod def __a ( cls : Union[str, Any] ) -> Tuple: """simple docstring""" super().tearDownClass() torch.use_deterministic_algorithms(_A ) def __a ( self : Tuple ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] ) -> List[str]: """simple docstring""" lowercase : Tuple = torch.manual_seed(51 ) lowercase : Tuple = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=_A , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) lowercase : List[Any] = '''a painting of an elephant with glasses''' lowercase : List[str] = [5, 7] lowercase : List[str] = pipe( prompt=_A , token_indices=_A , guidance_scale=7.5 , generator=_A , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] lowercase : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
def snake_case( __magic_name__ ) -> int: '''simple docstring''' assert column_title.isupper() lowercase : Optional[int] = 0 lowercase : Optional[int] = len(__magic_name__ ) - 1 lowercase : Optional[int] = 0 while index >= 0: lowercase : Optional[int] = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = '''xglm''' _UpperCamelCase : int = ['''past_key_values'''] _UpperCamelCase : Tuple = { '''num_attention_heads''': '''attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , _A : List[str]=256_008 , _A : int=2_048 , _A : Dict=1_024 , _A : Dict=4_096 , _A : Optional[Any]=24 , _A : Union[str, Any]=16 , _A : Union[str, Any]="gelu" , _A : List[str]=0.1 , _A : Any=0.1 , _A : List[str]=0.0 , _A : Union[str, Any]=0.0 , _A : List[Any]=0.02 , _A : int=True , _A : Any=True , _A : Dict=2 , _A : Any=1 , _A : Dict=0 , _A : str=2 , **_A : List[Any] , ) -> str: """simple docstring""" lowercase : List[Any] = vocab_size lowercase : List[str] = max_position_embeddings lowercase : Dict = d_model lowercase : Optional[int] = ffn_dim lowercase : Union[str, Any] = num_layers lowercase : int = attention_heads lowercase : int = activation_function lowercase : Dict = dropout lowercase : Optional[int] = attention_dropout lowercase : Union[str, Any] = activation_dropout lowercase : Optional[Any] = layerdrop lowercase : Dict = init_std lowercase : int = scale_embedding # scale factor will be sqrt(d_model) if True lowercase : Dict = use_cache super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] lowerCAmelCase_ = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def snake_case( __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[str] = torch.load(__magic_name__ , map_location='''cpu''' ) return sd def snake_case( __magic_name__ , __magic_name__ , __magic_name__=rename_keys_prefix ) -> int: '''simple docstring''' lowercase : List[str] = OrderedDict() lowercase : Optional[Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase : Dict = key for name_pair in rename_keys_prefix: lowercase : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) lowercase : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase : Tuple = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: lowercase : Union[str, Any] = '''pretraining''' if "vcr" in checkpoint_path: lowercase : Any = {'''visual_embedding_dim''': 5_12} elif "vqa_advanced" in checkpoint_path: lowercase : List[str] = {'''visual_embedding_dim''': 20_48} elif "vqa" in checkpoint_path: lowercase : int = {'''visual_embedding_dim''': 20_48} elif "nlvr" in checkpoint_path: lowercase : Union[str, Any] = {'''visual_embedding_dim''': 10_24} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: lowercase : Tuple = {'''visual_embedding_dim''': 5_12} lowercase : str = '''multichoice''' elif "vqa_advanced" in checkpoint_path: lowercase : int = {'''visual_embedding_dim''': 20_48} lowercase : List[Any] = '''vqa_advanced''' elif "vqa" in checkpoint_path: lowercase : str = {'''visual_embedding_dim''': 20_48, '''num_labels''': 31_29} lowercase : Any = '''vqa''' elif "nlvr" in checkpoint_path: lowercase : Optional[Any] = { '''visual_embedding_dim''': 10_24, '''num_labels''': 2, } lowercase : List[str] = '''nlvr''' lowercase : int = VisualBertConfig(**__magic_name__ ) # Load State Dict lowercase : List[Any] = load_state_dict(__magic_name__ ) lowercase : Any = get_new_dict(__magic_name__ , __magic_name__ ) if model_type == "pretraining": lowercase : Any = VisualBertForPreTraining(__magic_name__ ) elif model_type == "vqa": lowercase : Any = VisualBertForQuestionAnswering(__magic_name__ ) elif model_type == "nlvr": lowercase : int = VisualBertForVisualReasoning(__magic_name__ ) elif model_type == "multichoice": lowercase : int = VisualBertForMultipleChoice(__magic_name__ ) model.load_state_dict(__magic_name__ ) # Save Checkpoints Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
308
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = ['''input_values''', '''padding_mask'''] def __init__( self : Dict , _A : int = 1 , _A : int = 24_000 , _A : float = 0.0 , _A : float = None , _A : float = None , **_A : Dict , ) -> str: """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) lowercase : Dict = chunk_length_s lowercase : str = overlap @property def __a ( self : int ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Optional[int] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : Optional[Union[bool, str, PaddingStrategy]] = None , _A : Optional[bool] = False , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs lowercase : Union[str, Any] = True lowercase : List[str] = bool( isinstance(_A , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : int = [np.asarray(_A , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : Tuple = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowercase : List[str] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray(_A ).T] # verify inputs are valid for idx, example in enumerate(_A ): if example.ndim > 2: raise ValueError(f"""Expected input shape (channels, length) but got shape {example.shape}""" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"""Expected mono audio but example has {example.shape[-1]} channels""" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"""Expected stereo audio but example has {example.shape[-1]} channels""" ) lowercase : Optional[int] = None lowercase : List[Any] = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowercase : int = min(array.shape[0] for array in raw_audio ) lowercase : Any = int(np.floor(max_length / self.chunk_stride ) ) lowercase : int = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowercase : Optional[Any] = max(array.shape[0] for array in raw_audio ) lowercase : int = int(np.ceil(max_length / self.chunk_stride ) ) lowercase : str = (nb_step - 1) * self.chunk_stride + self.chunk_length lowercase : List[str] = '''max_length''' else: lowercase : List[Any] = input_values # normal padding on batch if padded_inputs is None: lowercase : int = self.pad( _A , max_length=_A , truncation=_A , padding=_A , return_attention_mask=_A , ) if padding: lowercase : Any = padded_inputs.pop('''attention_mask''' ) lowercase : Any = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: lowercase : Optional[Any] = example[..., None] input_values.append(example.T ) lowercase : List[str] = input_values if return_tensors is not None: lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(_A ) return padded_inputs
308
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : Dict = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> str: '''simple docstring''' if token is None: lowercase : Any = HfFolder.get_token() if organization is None: lowercase : List[Any] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Any = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : List[str] = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Union[str, Any] = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> Optional[int]: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : str = str(Path(__magic_name__ ).as_posix() ) lowercase : Union[str, Any] = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[str] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : Union[str, Any] = old_diffusers_cache lowercase : Optional[Any] = Path(__magic_name__ ).expanduser() lowercase : int = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : Union[str, Any] = weights_name.split('''.''' ) lowercase : List[Any] = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> str: '''simple docstring''' lowercase : Optional[Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : Any = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : str = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : int = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
308
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _A ( _lowerCamelCase ): _UpperCamelCase : int = ['''image_processor''', '''tokenizer'''] _UpperCamelCase : str = '''CLIPImageProcessor''' _UpperCamelCase : List[str] = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , _A : str=None , _A : Tuple=None , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _A , ) lowercase : List[Any] = kwargs.pop('''feature_extractor''' ) lowercase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_A , _A ) def __call__( self : Any , _A : str=None , _A : str=None , _A : str=None , **_A : Optional[int] ) -> Dict: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase : Optional[int] = self.tokenizer(_A , return_tensors=_A , **_A ) if images is not None: lowercase : int = self.image_processor(_A , return_tensors=_A , **_A ) if text is not None and images is not None: lowercase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_A ) , tensor_type=_A ) def __a ( self : Optional[Any] , *_A : Dict , **_A : List[Any] ) -> str: """simple docstring""" return self.tokenizer.batch_decode(*_A , **_A ) def __a ( self : List[str] , *_A : Union[str, Any] , **_A : Tuple ) -> str: """simple docstring""" return self.tokenizer.decode(*_A , **_A ) @property def __a ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.tokenizer.model_input_names lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __a ( self : Dict ) -> str: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _A , ) return self.image_processor_class @property def __a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _A , ) return self.image_processor
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _A : pass
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase : List[Any] = str(bin(__magic_name__ ) )[2:] # remove the leading "0b" lowercase : Union[str, Any] = str(bin(__magic_name__ ) )[2:] lowercase : Optional[int] = max(len(__magic_name__ ) , len(__magic_name__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__magic_name__ ) , b_binary.zfill(__magic_name__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
308
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
1
import string def snake_case( __magic_name__ ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): lowercase : Optional[int] = '''''' for symbol in message: if symbol in string.ascii_uppercase: lowercase : Tuple = string.ascii_uppercase.find(__magic_name__ ) lowercase : Tuple = num - key if num < 0: lowercase : str = num + len(string.ascii_uppercase ) lowercase : str = translated + string.ascii_uppercase[num] else: lowercase : Any = translated + symbol print(F"""Decryption using Key #{key}: {translated}""" ) def snake_case( ) -> None: '''simple docstring''' lowercase : Dict = input('''Encrypted message: ''' ) lowercase : Tuple = message.upper() decrypt(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase_ = { 'allenai/led-base-16384': 1_63_84, } class _A ( _lowerCamelCase ): _UpperCamelCase : int = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : int = LEDTokenizer _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _A : Dict=None , _A : Dict=None , _A : Dict=None , _A : str="replace" , _A : Dict="<s>" , _A : Union[str, Any]="</s>" , _A : List[str]="</s>" , _A : int="<s>" , _A : str="<unk>" , _A : Any="<pad>" , _A : Union[str, Any]="<mask>" , _A : Any=False , _A : Dict=True , **_A : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__( _A , _A , tokenizer_file=_A , errors=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , trim_offsets=_A , **_A , ) lowercase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _A ) != add_prefix_space: lowercase : Union[str, Any] = getattr(_A , pre_tok_state.pop('''type''' ) ) lowercase : Dict = add_prefix_space lowercase : Tuple = pre_tok_class(**_A ) lowercase : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase : Optional[Any] = '''post_processor''' lowercase : List[Any] = getattr(self.backend_tokenizer , _A , _A ) if tokenizer_component_instance: lowercase : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: lowercase : Dict = tuple(state['''cls'''] ) lowercase : Union[str, Any] = False if state.get('''add_prefix_space''' , _A ) != add_prefix_space: lowercase : str = add_prefix_space lowercase : str = True if state.get('''trim_offsets''' , _A ) != trim_offsets: lowercase : str = trim_offsets lowercase : List[Any] = True if changes_to_apply: lowercase : Optional[int] = getattr(_A , state.pop('''type''' ) ) lowercase : Dict = component_class(**_A ) setattr(self.backend_tokenizer , _A , _A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __a ( self : List[str] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __a ( self : Dict , _A : Tuple ) -> Any: """simple docstring""" lowercase : Tuple = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else value lowercase : Union[str, Any] = value def __a ( self : int , *_A : List[str] , **_A : str ) -> BatchEncoding: """simple docstring""" lowercase : Union[str, Any] = kwargs.get('''is_split_into_words''' , _A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_A , **_A ) def __a ( self : Tuple , *_A : Any , **_A : Any ) -> BatchEncoding: """simple docstring""" lowercase : Optional[int] = kwargs.get('''is_split_into_words''' , _A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_A , **_A ) def __a ( self : Optional[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : Optional[int] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def __a ( self : Optional[Any] , _A : Dict , _A : List[Any]=None ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : str = [self.sep_token_id] lowercase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self : int , _A : Union[Dict[str, EncodedInput], BatchEncoding] , _A : Optional[int] = None , _A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _A : Optional[int] = None , _A : Optional[bool] = None , ) -> dict: """simple docstring""" lowercase : Optional[Any] = super()._pad( encoded_inputs=_A , max_length=_A , padding_strategy=_A , pad_to_multiple_of=_A , return_attention_mask=_A , ) # Load from model defaults if return_attention_mask is None: lowercase : List[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : List[str] = len(encoded_inputs['''global_attention_mask'''] ) != len(_A ) if needs_to_be_padded: lowercase : Any = len(_A ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : Optional[int] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : List[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
from __future__ import annotations def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowercase , lowercase : Union[str, Any] = array[indexa], array[indexa] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if length > 1: lowercase : Union[str, Any] = int(length / 2 ) for i in range(__magic_name__ , low + middle ): comp_and_swap(__magic_name__ , __magic_name__ , i + middle , __magic_name__ ) bitonic_merge(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) bitonic_merge(__magic_name__ , low + middle , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if length > 1: lowercase : Optional[int] = int(length / 2 ) bitonic_sort(__magic_name__ , __magic_name__ , __magic_name__ , 1 ) bitonic_sort(__magic_name__ , low + middle , __magic_name__ , 0 ) bitonic_merge(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : int = AudioLDMPipeline _UpperCamelCase : Tuple = TEXT_TO_AUDIO_PARAMS _UpperCamelCase : int = TEXT_TO_AUDIO_BATCH_PARAMS _UpperCamelCase : int = frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_A , ) lowercase : Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_A , set_alpha_to_one=_A , ) torch.manual_seed(0 ) lowercase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase : str = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) lowercase : Optional[Any] = ClapTextModelWithProjection(_A ) lowercase : Any = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) lowercase : Dict = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_A , ) lowercase : Any = SpeechTaHifiGan(_A ) lowercase : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def __a ( self : Union[str, Any] , _A : str , _A : Any=0 ) -> Union[str, Any]: """simple docstring""" if str(_A ).startswith('''mps''' ): lowercase : Union[str, Any] = torch.manual_seed(_A ) else: lowercase : Dict = torch.Generator(device=_A ).manual_seed(_A ) lowercase : int = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def __a ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = self.get_dummy_components() lowercase : int = AudioLDMPipeline(**_A ) lowercase : int = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Dict = self.get_dummy_inputs(_A ) lowercase : Dict = audioldm_pipe(**_A ) lowercase : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 256 lowercase : int = audio[:10] lowercase : Any = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __a ( self : List[str] ) -> str: """simple docstring""" lowercase : Optional[int] = self.get_dummy_components() lowercase : Union[str, Any] = AudioLDMPipeline(**_A ) lowercase : Any = audioldm_pipe.to(_A ) lowercase : Union[str, Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[Any] = self.get_dummy_inputs(_A ) lowercase : Tuple = 3 * [inputs['''prompt''']] # forward lowercase : Any = audioldm_pipe(**_A ) lowercase : Optional[Any] = output.audios[0] lowercase : Any = self.get_dummy_inputs(_A ) lowercase : Any = 3 * [inputs.pop('''prompt''' )] lowercase : Optional[Any] = audioldm_pipe.tokenizer( _A , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors='''pt''' , ) lowercase : Any = text_inputs['''input_ids'''].to(_A ) lowercase : Union[str, Any] = audioldm_pipe.text_encoder( _A , ) lowercase : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase : str = F.normalize(_A , dim=-1 ) lowercase : List[str] = prompt_embeds # forward lowercase : Dict = audioldm_pipe(**_A ) lowercase : Tuple = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __a ( self : Optional[Any] ) -> Any: """simple docstring""" lowercase : Tuple = self.get_dummy_components() lowercase : Optional[Any] = AudioLDMPipeline(**_A ) lowercase : Tuple = audioldm_pipe.to(_A ) lowercase : int = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : List[str] = self.get_dummy_inputs(_A ) lowercase : str = 3 * ['''this is a negative prompt'''] lowercase : Any = negative_prompt lowercase : Any = 3 * [inputs['''prompt''']] # forward lowercase : List[str] = audioldm_pipe(**_A ) lowercase : List[str] = output.audios[0] lowercase : Optional[Any] = self.get_dummy_inputs(_A ) lowercase : Union[str, Any] = 3 * [inputs.pop('''prompt''' )] lowercase : Dict = [] for p in [prompt, negative_prompt]: lowercase : List[str] = audioldm_pipe.tokenizer( _A , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_A , return_tensors='''pt''' , ) lowercase : Union[str, Any] = text_inputs['''input_ids'''].to(_A ) lowercase : int = audioldm_pipe.text_encoder( _A , ) lowercase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowercase : int = F.normalize(_A , dim=-1 ) embeds.append(_A ) lowercase , lowercase : Any = embeds # forward lowercase : List[Any] = audioldm_pipe(**_A ) lowercase : Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __a ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=_A ) lowercase : Dict = AudioLDMPipeline(**_A ) lowercase : Union[str, Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : str = self.get_dummy_inputs(_A ) lowercase : Optional[Any] = '''egg cracking''' lowercase : Union[str, Any] = audioldm_pipe(**_A , negative_prompt=_A ) lowercase : int = output.audios[0] assert audio.ndim == 1 assert len(_A ) == 256 lowercase : List[Any] = audio[:10] lowercase : Dict = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __a ( self : Optional[Any] ) -> str: """simple docstring""" lowercase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : Optional[Any] = self.get_dummy_components() lowercase : int = PNDMScheduler(skip_prk_steps=_A ) lowercase : int = AudioLDMPipeline(**_A ) lowercase : Any = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : List[str] = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) lowercase : Optional[Any] = audioldm_pipe(_A , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowercase : Any = 2 lowercase : Any = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowercase : Dict = 2 lowercase : Union[str, Any] = audioldm_pipe(_A , num_inference_steps=2 , num_waveforms_per_prompt=_A ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowercase : Optional[Any] = 2 lowercase : List[Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_A ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase : str = self.get_dummy_components() lowercase : Optional[Any] = AudioLDMPipeline(**_A ) lowercase : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Dict = audioldm_pipe.vocoder.config.sampling_rate lowercase : Optional[int] = self.get_dummy_inputs(_A ) lowercase : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 , **_A ) lowercase : Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.016 lowercase : Dict = audioldm_pipe(audio_length_in_s=0.032 , **_A ) lowercase : List[str] = output.audios[0] assert audio.ndim == 1 assert len(_A ) / vocoder_sampling_rate == 0.032 def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : str = self.get_dummy_components() lowercase : Optional[Any] = AudioLDMPipeline(**_A ) lowercase : Tuple = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : List[str] = ['''hey'''] lowercase : Dict = audioldm_pipe(_A , num_inference_steps=1 ) lowercase : Optional[Any] = output.audios.shape assert audio_shape == (1, 256) lowercase : Union[str, Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowercase : Optional[int] = SpeechTaHifiGan(_A ).to(_A ) lowercase : Dict = audioldm_pipe(_A , num_inference_steps=1 ) lowercase : List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __a ( self : Tuple ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_A ) def __a ( self : int ) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=_A ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_A ) @slow class _A ( unittest.TestCase ): def __a ( self : str ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[int] , _A : List[Any] , _A : str="cpu" , _A : Dict=torch.floataa , _A : str=0 ) -> int: """simple docstring""" lowercase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) lowercase : List[str] = np.random.RandomState(_A ).standard_normal((1, 8, 128, 16) ) lowercase : List[Any] = torch.from_numpy(_A ).to(device=_A , dtype=_A ) lowercase : Optional[Any] = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : Tuple = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase : Dict = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = self.get_inputs(_A ) lowercase : Any = 25 lowercase : str = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 81_920 lowercase : Dict = audio[77_230:77_240] lowercase : Any = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) lowercase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __a ( self : List[Any] ) -> str: """simple docstring""" lowercase : Tuple = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) lowercase : str = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowercase : List[Any] = audioldm_pipe.to(_A ) audioldm_pipe.set_progress_bar_config(disable=_A ) lowercase : Optional[int] = self.get_inputs(_A ) lowercase : Tuple = audioldm_pipe(**_A ).audios[0] assert audio.ndim == 1 assert len(_A ) == 81_920 lowercase : Dict = audio[27_780:27_790] lowercase : int = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) lowercase : Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' with open(__magic_name__ ) as metadata_file: lowercase : Dict = json.load(__magic_name__ ) lowercase : str = LukeConfig(use_entity_aware_attention=__magic_name__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path lowercase : str = torch.load(__magic_name__ , map_location='''cpu''' ) # Load the entity vocab file lowercase : Union[str, Any] = load_entity_vocab(__magic_name__ ) lowercase : Tuple = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks lowercase : int = AddedToken('''<ent>''' , lstrip=__magic_name__ , rstrip=__magic_name__ ) lowercase : Dict = AddedToken('''<ent2>''' , lstrip=__magic_name__ , rstrip=__magic_name__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__magic_name__ ) with open(os.path.join(__magic_name__ , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__magic_name__ , __magic_name__ ) lowercase : Tuple = LukeTokenizer.from_pretrained(__magic_name__ ) # Initialize the embeddings of the special tokens lowercase : Tuple = state_dict['''embeddings.word_embeddings.weight'''] lowercase : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) lowercase : str = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) lowercase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase : Any = F"""encoder.layer.{layer_index}.attention.self.""" lowercase : Any = state_dict[prefix + matrix_name] lowercase : Any = state_dict[prefix + matrix_name] lowercase : List[str] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase : Any = state_dict['''entity_embeddings.entity_embeddings.weight'''] lowercase : List[Any] = entity_emb[entity_vocab['''[MASK]''']] lowercase : Any = LukeModel(config=__magic_name__ ).eval() lowercase , lowercase : Optional[Any] = model.load_state_dict(__magic_name__ , strict=__magic_name__ ) if not (len(__magic_name__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {', '.join(__magic_name__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs lowercase : Any = LukeTokenizer.from_pretrained(__magic_name__ , task='''entity_classification''' ) lowercase : List[Any] = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) lowercase : List[Any] = (39, 42) lowercase : List[Any] = tokenizer(__magic_name__ , entity_spans=[span] , add_prefix_space=__magic_name__ , return_tensors='''pt''' ) lowercase : int = model(**__magic_name__ ) # Verify word hidden states if model_size == "large": lowercase : Optional[int] = torch.Size((1, 42, 10_24) ) lowercase : List[Any] = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base lowercase : List[str] = torch.Size((1, 42, 7_68) ) lowercase : List[str] = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __magic_name__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowercase : List[Any] = torch.Size((1, 1, 10_24) ) lowercase : Optional[int] = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base lowercase : Optional[Any] = torch.Size((1, 1, 7_68) ) lowercase : Any = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __magic_name__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__magic_name__ ) ) model.save_pretrained(__magic_name__ ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : int = {} with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): lowercase , lowercase : Optional[Any] = line.rstrip().split('''\t''' ) lowercase : Optional[Any] = index return entity_vocab if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowerCAmelCase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , _A : Dict[str, int] , _A : List[str] , _A : int = None , _A : int = None ) -> Tuple: """simple docstring""" super().__init__() lowercase : Tuple = pad_token_id lowercase : Any = max_length lowercase : int = vocab lowercase : Optional[int] = merges lowercase : List[Any] = BytePairTokenizer(_A , _A , sequence_length=_A ) @classmethod def __a ( cls : List[Any] , _A : GPTaTokenizer , *_A : Optional[int] , **_A : Dict ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = [''' '''.join(_A ) for m in tokenizer.bpe_ranks.keys()] lowercase : Dict = tokenizer.get_vocab() return cls(_A , _A , *_A , **_A ) @classmethod def __a ( cls : Any , _A : Union[str, os.PathLike] , *_A : List[str] , **_A : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : Optional[Any] = GPTaTokenizer.from_pretrained(_A , *_A , **_A ) return cls.from_tokenizer(_A , *_A , **_A ) @classmethod def __a ( cls : int , _A : List[Any] ) -> Optional[Any]: """simple docstring""" return cls(**_A ) def __a ( self : str ) -> Optional[Any]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __a ( self : Any , _A : Optional[int] , _A : int = None ) -> Tuple: """simple docstring""" lowercase : Optional[int] = self.tf_tokenizer(_A ) lowercase : Any = tf.ones_like(_A ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: lowercase , lowercase : List[str] = pad_model_inputs( _A , max_seq_length=_A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1
from collections import namedtuple import requests from lxml import html # type: ignore lowerCAmelCase_ = namedtuple('covid_data', 'cases deaths recovered') def snake_case( __magic_name__ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' lowercase : str = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__magic_name__ ).content ).xpath(__magic_name__ ) ) lowerCAmelCase_ = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
308
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _A ( _lowerCamelCase ): _UpperCamelCase : Optional[int] = '''big_bird''' def __init__( self : Any , _A : Optional[int]=50_358 , _A : Union[str, Any]=768 , _A : List[str]=12 , _A : Optional[int]=12 , _A : int=3_072 , _A : Optional[int]="gelu_new" , _A : str=0.1 , _A : List[str]=0.1 , _A : int=4_096 , _A : List[Any]=2 , _A : Union[str, Any]=0.02 , _A : Union[str, Any]=1E-12 , _A : Dict=True , _A : Optional[int]=0 , _A : int=1 , _A : List[Any]=2 , _A : Dict=66 , _A : int="block_sparse" , _A : Union[str, Any]=True , _A : Any=False , _A : Union[str, Any]=64 , _A : Optional[Any]=3 , _A : Tuple=None , **_A : int , ) -> Any: """simple docstring""" super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , sep_token_id=_A , **_A , ) lowercase : str = vocab_size lowercase : Union[str, Any] = max_position_embeddings lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : int = intermediate_size lowercase : str = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : str = attention_probs_dropout_prob lowercase : Tuple = initializer_range lowercase : Optional[int] = type_vocab_size lowercase : Tuple = layer_norm_eps lowercase : Union[str, Any] = use_cache lowercase : Optional[Any] = rescale_embeddings lowercase : str = attention_type lowercase : Dict = use_bias lowercase : Optional[int] = block_size lowercase : Any = num_random_blocks lowercase : int = classifier_dropout class _A ( _lowerCamelCase ): @property def __a ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowercase : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowercase : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
308
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
1
from __future__ import annotations lowerCAmelCase_ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class _A : def __init__( self : List[Any] , _A : dict[str, list[str]] , _A : str ) -> None: """simple docstring""" lowercase : List[str] = graph # mapping node to its parent in resulting breadth first tree lowercase : dict[str, str | None] = {} lowercase : Any = source_vertex def __a ( self : int ) -> None: """simple docstring""" lowercase : List[str] = {self.source_vertex} lowercase : Optional[Any] = None lowercase : Optional[int] = [self.source_vertex] # first in first out queue while queue: lowercase : Tuple = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_A ) lowercase : Union[str, Any] = vertex queue.append(_A ) def __a ( self : str , _A : str ) -> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowercase : int = self.parent.get(_A ) if target_vertex_parent is None: lowercase : Dict = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(_A ) return self.shortest_path(_A ) + f"""->{target_vertex}""" if __name__ == "__main__": lowerCAmelCase_ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
1
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = '''huggingface/label-files''' lowercase : Union[str, Any] = '''imagenet-1k-id2label.json''' lowercase : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Optional[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Tuple = {v: k for k, v in idalabel.items()} lowercase : str = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase : Union[str, Any] = BitConfig( conv_layer=__magic_name__ , num_labels=10_00 , idalabel=__magic_name__ , labelaid=__magic_name__ , ) return config def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowercase : Dict = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase : List[Any] = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase : Any = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase : List[str] = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase : Optional[int] = '''bit.encoder.''' + name return name def snake_case( ) -> Any: '''simple docstring''' lowercase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Tuple = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) return im @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = get_config(__magic_name__ ) # load original model from timm lowercase : Optional[int] = create_model(__magic_name__ , pretrained=__magic_name__ ) timm_model.eval() # load state_dict of original model lowercase : Union[str, Any] = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase : Optional[int] = state_dict.pop(__magic_name__ ) lowercase : Optional[Any] = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase : str = BitForImageClassification(__magic_name__ ) model.eval() model.load_state_dict(__magic_name__ ) # create image processor lowercase : Dict = create_transform(**resolve_data_config({} , model=__magic_name__ ) ) lowercase : Tuple = transform.transforms lowercase : str = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase : Union[str, Any] = BitImageProcessor( do_resize=__magic_name__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase : Optional[int] = prepare_img() lowercase : Any = transform(__magic_name__ ).unsqueeze(0 ) lowercase : Optional[int] = processor(__magic_name__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__magic_name__ , __magic_name__ ) # verify logits with torch.no_grad(): lowercase : int = model(__magic_name__ ) lowercase : int = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase : Optional[int] = timm_model(__magic_name__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__magic_name__ , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) lowerCAmelCase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
def snake_case( __magic_name__ = 10**9 ) -> int: '''simple docstring''' lowercase : Any = 1 lowercase : int = 2 lowercase : Any = 0 lowercase : str = 0 lowercase : Tuple = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase : List[str] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _A ( unittest.TestCase ): def __init__( self : Union[str, Any] , _A : int , _A : Any=7 , _A : List[Any]=3 , _A : Union[str, Any]=30 , _A : str=400 , _A : Optional[int]=True , _A : Dict=None , _A : Tuple=True , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : List[Any]=[0.5, 0.5, 0.5] , _A : Optional[Any]=True , _A : List[Any]=1 / 255 , _A : Dict=True , ) -> int: """simple docstring""" lowercase : Tuple = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1_333} lowercase : List[Any] = parent lowercase : Tuple = batch_size lowercase : int = num_channels lowercase : int = min_resolution lowercase : Optional[Any] = max_resolution lowercase : int = do_resize lowercase : Any = size lowercase : str = do_normalize lowercase : Dict = image_mean lowercase : Any = image_std lowercase : List[Any] = do_rescale lowercase : Any = rescale_factor lowercase : Any = do_pad def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self : int , _A : Union[str, Any] , _A : Optional[int]=False ) -> Any: """simple docstring""" if not batched: lowercase : str = image_inputs[0] if isinstance(_A , Image.Image ): lowercase , lowercase : Dict = image.size else: lowercase , lowercase : Union[str, Any] = image.shape[1], image.shape[2] if w < h: lowercase : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) lowercase : Dict = self.size['''shortest_edge'''] elif w > h: lowercase : Tuple = self.size['''shortest_edge'''] lowercase : Union[str, Any] = int(self.size['''shortest_edge'''] * w / h ) else: lowercase : Optional[int] = self.size['''shortest_edge'''] lowercase : Any = self.size['''shortest_edge'''] else: lowercase : Union[str, Any] = [] for image in image_inputs: lowercase , lowercase : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : int = max(_A , key=lambda _A : item[0] )[0] lowercase : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DetaImageProcessor if is_vision_available() else None def __a ( self : Any ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = DetaImageProcessingTester(self ) @property def __a ( self : List[str] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def __a ( self : Tuple ) -> int: """simple docstring""" lowercase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1_333} ) self.assertEqual(image_processor.do_pad , _A ) def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input lowercase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Any = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase : Union[str, Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) lowercase : str = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Tuple = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Tuple = image_processing(_A , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : List[str] = image_processing(_A , return_tensors='''pt''' ).pixel_values lowercase , lowercase : List[str] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase : List[str] = json.loads(f.read() ) lowercase : List[Any] = {'''image_id''': 39_769, '''annotations''': target} # encode them lowercase : Tuple = DetaImageProcessor() lowercase : Union[str, Any] = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values lowercase : Optional[Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) lowercase : Dict = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area lowercase : Dict = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes lowercase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) lowercase : Union[str, Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id lowercase : int = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd lowercase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels lowercase : Optional[int] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size lowercase : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size lowercase : int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def __a ( self : Tuple ) -> Any: """simple docstring""" lowercase : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase : Tuple = json.loads(f.read() ) lowercase : Optional[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39_769, '''segments_info''': target} lowercase : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase : Optional[int] = DetaImageProcessor(format='''coco_panoptic''' ) lowercase : Tuple = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values lowercase : int = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) lowercase : Union[str, Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area lowercase : List[str] = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes lowercase : str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) lowercase : Optional[int] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id lowercase : Optional[int] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd lowercase : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels lowercase : Dict = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks lowercase : List[Any] = 822_873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size lowercase : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size lowercase : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
from __future__ import annotations from statistics import mean def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> list[int]: '''simple docstring''' lowercase : List[str] = [0] * no_of_processes lowercase : List[Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__magic_name__ ): lowercase : Dict = burst_time[i] lowercase : list[int] = [] lowercase : Union[str, Any] = 0 lowercase : str = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowercase : List[str] = [] lowercase : Optional[int] = -1 for i in range(__magic_name__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__magic_name__ ) if len(__magic_name__ ) > 0: lowercase : int = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowercase : Union[str, Any] = i total_time += burst_time[target_process] completed += 1 lowercase : int = 0 lowercase : List[Any] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> list[int]: '''simple docstring''' lowercase : List[Any] = [0] * no_of_processes for i in range(__magic_name__ ): lowercase : List[str] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') lowerCAmelCase_ = 4 lowerCAmelCase_ = [2, 5, 3, 7] lowerCAmelCase_ = [0, 0, 0, 0] lowerCAmelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
308
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = 'Hello world! cécé herlolip' lowerCAmelCase_ = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case( __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Any = BertAbsConfig( temp_dir='''.''' , finetune_bert=__magic_name__ , large=__magic_name__ , share_emb=__magic_name__ , use_bert_emb=__magic_name__ , encoder='''bert''' , max_pos=5_12 , enc_layers=6 , enc_hidden_size=5_12 , enc_heads=8 , enc_ff_size=5_12 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_68 , dec_heads=8 , dec_ff_size=20_48 , dec_dropout=0.2 , ) lowercase : Any = torch.load(__magic_name__ , lambda __magic_name__ , __magic_name__ : storage ) lowercase : Optional[int] = AbsSummarizer(__magic_name__ , torch.device('''cpu''' ) , __magic_name__ ) original.eval() lowercase : str = BertAbsSummarizer(__magic_name__ , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) lowercase : List[str] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs lowercase : Optional[int] = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(__magic_name__ )) ) lowercase : Tuple = torch.tensor(__magic_name__ ).unsqueeze(0 ) lowercase : Tuple = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_12 - len(__magic_name__ )) ) lowercase : List[Any] = torch.tensor(__magic_name__ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowercase : Union[str, Any] = encoder_input_ids lowercase : List[Any] = decoder_input_ids lowercase : str = None lowercase : Any = None lowercase : str = None lowercase : Optional[int] = None lowercase : int = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowercase : Tuple = original(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )[0] lowercase : List[str] = original.generator(__magic_name__ ) lowercase : Tuple = new_model( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )[0] lowercase : Optional[int] = new_model.generator(__magic_name__ ) lowercase : Optional[int] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(__magic_name__ ) ) lowercase : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(__magic_name__ ) ) lowercase : Tuple = torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) lowerCAmelCase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _A ( _lowerCamelCase ): @staticmethod @abstractmethod def __a ( _A : ArgumentParser ) -> Dict: """simple docstring""" raise NotImplementedError() @abstractmethod def __a ( self : Dict ) -> List[Any]: """simple docstring""" raise NotImplementedError()
308
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case( __magic_name__=32 , __magic_name__=10 , __magic_name__=1_00 , __magic_name__=10_26 , __magic_name__=True , __magic_name__="data/tokenized_stories_train_wikitext103.jbl" , __magic_name__="igf_context_pairs.jbl" , ) -> List[str]: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set lowercase , lowercase : str = generate_datasets( __magic_name__ , __magic_name__ , number=__magic_name__ , min_len=10_26 , trim=__magic_name__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase : Optional[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowercase : List[Any] = load_gpta('''gpt2''' ).to(__magic_name__ ) print('''computing perplexity on objective set''' ) lowercase : Optional[int] = compute_perplexity(__magic_name__ , __magic_name__ , __magic_name__ ).item() print('''perplexity on objective set:''' , __magic_name__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case( __magic_name__ , __magic_name__=15 , __magic_name__=1_28 , __magic_name__=1_00 , __magic_name__="igf_model.pt" , ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) # Load pre-trained model lowercase : Optional[int] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowercase : Tuple = SecondaryLearner(__magic_name__ ) # Train secondary learner lowercase : Any = train_secondary_learner( __magic_name__ , __magic_name__ , max_epochs=__magic_name__ , batch_size=__magic_name__ , eval_freq=1_00 , igf_model_path=__magic_name__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=32 , __magic_name__=10_00 , __magic_name__=16 , __magic_name__=1.0 , __magic_name__=recopy_gpta , __magic_name__=None , __magic_name__=10 , __magic_name__="gpt2_finetuned.pt" , ) -> Optional[Any]: '''simple docstring''' lowercase : Dict = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowercase : List[str] = RandomSampler(__magic_name__ ) lowercase : Optional[Any] = DataLoader(__magic_name__ , sampler=__magic_name__ ) lowercase : int = max_steps // (len(__magic_name__ )) + 1 lowercase : Tuple = 0 lowercase : List[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=__magic_name__ ) lowercase , lowercase , lowercase : Dict = recopy_model(__magic_name__ , __magic_name__ , __magic_name__ ) model.train() if secondary_learner is not None: secondary_learner.to(__magic_name__ ) secondary_learner.eval() lowercase : Dict = [] lowercase : List[str] = 0 lowercase : List[str] = [] lowercase : Optional[Any] = [] # Compute the performance of the transformer model at the beginning lowercase : List[str] = compute_perplexity(__magic_name__ , __magic_name__ , __magic_name__ ) test_perps.append(__magic_name__ ) print('''Test perplexity, step''' , __magic_name__ , ''':''' , __magic_name__ ) for epoch in range(int(__magic_name__ ) ): for step, example in enumerate(__magic_name__ ): torch.cuda.empty_cache() lowercase : Tuple = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase : int = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : Any = True if secondary_learner is not None: lowercase : str = secondary_learner.forward( torch.tensor(__magic_name__ , dtype=torch.long , device=__magic_name__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__magic_name__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase : Dict = -1 if predicted_q < threshold: lowercase : Optional[Any] = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase : Union[str, Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase : Optional[Any] = compute_perplexity(__magic_name__ , __magic_name__ , __magic_name__ ) test_perps.append(__magic_name__ ) print('''Test perplexity, step''' , __magic_name__ , ''':''' , __magic_name__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __magic_name__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : Any = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=__magic_name__ , default=__magic_name__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=__magic_name__ , default=__magic_name__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=__magic_name__ , type=__magic_name__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=__magic_name__ , default=__magic_name__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=__magic_name__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=__magic_name__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=__magic_name__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=__magic_name__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=__magic_name__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=__magic_name__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=__magic_name__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=__magic_name__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=__magic_name__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=__magic_name__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=__magic_name__ , type=__magic_name__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=__magic_name__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=__magic_name__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=__magic_name__ , type=__magic_name__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=__magic_name__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowercase : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowercase : List[Any] = training_secondary_learner( __magic_name__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowercase : int = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase , lowercase : int = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=__magic_name__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __magic_name__ , __magic_name__ , __magic_name__ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=__magic_name__ , secondary_learner=__magic_name__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
from functools import lru_cache @lru_cache def snake_case( __magic_name__ ) -> int: '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
from ..utils import DummyObject, requires_backends class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : List[Any] = ['''flax'''] def __init__( self : Tuple , *_A : Any , **_A : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Optional[int] , *_A : int , **_A : List[Any] ) -> Any: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : Union[str, Any] , *_A : Dict , **_A : Optional[int] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : Dict = ['''flax'''] def __init__( self : List[Any] , *_A : str , **_A : Optional[Any] ) -> Tuple: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Union[str, Any] , *_A : int , **_A : int ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : List[Any] , *_A : Optional[int] , **_A : Dict ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : int = ['''flax'''] def __init__( self : str , *_A : Dict , **_A : int ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : int , *_A : List[str] , **_A : str ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : List[str] , *_A : str , **_A : str ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : Optional[int] = ['''flax'''] def __init__( self : str , *_A : Any , **_A : str ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : List[Any] , *_A : Tuple , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : List[Any] , *_A : List[str] , **_A : List[str] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : Optional[int] = ['''flax'''] def __init__( self : Optional[int] , *_A : Optional[Any] , **_A : Tuple ) -> Optional[Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : List[Any] , *_A : int , **_A : Optional[int] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : Any , *_A : str , **_A : Tuple ) -> int: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : List[str] = ['''flax'''] def __init__( self : Optional[int] , *_A : str , **_A : List[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Any , *_A : Dict , **_A : Optional[Any] ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : str , *_A : Tuple , **_A : str ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : str = ['''flax'''] def __init__( self : Optional[Any] , *_A : List[Any] , **_A : str ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Optional[int] , *_A : str , **_A : str ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : Optional[Any] , *_A : List[str] , **_A : str ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : List[str] = ['''flax'''] def __init__( self : List[str] , *_A : Dict , **_A : Tuple ) -> List[str]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : str , *_A : Tuple , **_A : Union[str, Any] ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : str , *_A : List[str] , **_A : str ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : Any = ['''flax'''] def __init__( self : str , *_A : Tuple , **_A : Tuple ) -> List[str]: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : List[Any] , *_A : Optional[int] , **_A : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : str , *_A : List[Any] , **_A : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : List[Any] = ['''flax'''] def __init__( self : List[Any] , *_A : Tuple , **_A : int ) -> int: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Tuple , *_A : List[Any] , **_A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : List[str] , *_A : str , **_A : Any ) -> Dict: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : int = ['''flax'''] def __init__( self : str , *_A : List[str] , **_A : Any ) -> Any: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Any , *_A : Tuple , **_A : Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : int , *_A : List[str] , **_A : str ) -> Tuple: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : Any = ['''flax'''] def __init__( self : Tuple , *_A : Any , **_A : Optional[Any] ) -> int: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : int , *_A : Optional[int] , **_A : Tuple ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : Dict , *_A : str , **_A : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''flax'''] ) class _A ( metaclass=_lowerCamelCase ): _UpperCamelCase : List[Any] = ['''flax'''] def __init__( self : List[Any] , *_A : str , **_A : List[Any] ) -> int: """simple docstring""" requires_backends(self , ['''flax'''] ) @classmethod def __a ( cls : Union[str, Any] , *_A : Any , **_A : int ) -> str: """simple docstring""" requires_backends(cls , ['''flax'''] ) @classmethod def __a ( cls : Dict , *_A : Any , **_A : Tuple ) -> Optional[int]: """simple docstring""" requires_backends(cls , ['''flax'''] )
308
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
1
from __future__ import annotations def snake_case( __magic_name__ = 4 ) -> list[list[int]]: '''simple docstring''' lowercase : Tuple = abs(__magic_name__ ) or 4 return [[1 + x + y * row_size for x in range(__magic_name__ )] for y in range(__magic_name__ )] def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' return reverse_row(transpose(__magic_name__ ) ) # OR.. transpose(reverse_column(matrix)) def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' return reverse_row(reverse_column(__magic_name__ ) ) # OR.. reverse_column(reverse_row(matrix)) def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' return reverse_column(transpose(__magic_name__ ) ) # OR.. transpose(reverse_row(matrix)) def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : Optional[Any] = [list(__magic_name__ ) for x in zip(*__magic_name__ )] return matrix def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : Any = matrix[::-1] return matrix def snake_case( __magic_name__ ) -> list[list[int]]: '''simple docstring''' lowercase : List[str] = [x[::-1] for x in matrix] return matrix def snake_case( __magic_name__ ) -> None: '''simple docstring''' for i in matrix: print(*__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) lowerCAmelCase_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) lowerCAmelCase_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
def snake_case( __magic_name__ = 1_00_00_00 ) -> int: '''simple docstring''' lowercase : Any = limit + 1 lowercase : Union[str, Any] = [0] * limit for first_term in range(1 , __magic_name__ ): for n in range(__magic_name__ , __magic_name__ , __magic_name__ ): lowercase : List[str] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase : Union[str, Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCAmelCase_ = { 'E': 1_2.7_0, 'T': 9.0_6, 'A': 8.1_7, 'O': 7.5_1, 'I': 6.9_7, 'N': 6.7_5, 'S': 6.3_3, 'H': 6.0_9, 'R': 5.9_9, 'D': 4.2_5, 'L': 4.0_3, 'C': 2.7_8, 'U': 2.7_6, 'M': 2.4_1, 'W': 2.3_6, 'F': 2.2_3, 'G': 2.0_2, 'Y': 1.9_7, 'P': 1.9_3, 'B': 1.2_9, 'V': 0.9_8, 'K': 0.7_7, 'J': 0.1_5, 'X': 0.1_5, 'Q': 0.1_0, 'Z': 0.0_7, } lowerCAmelCase_ = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' lowerCAmelCase_ = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def snake_case( __magic_name__ ) -> dict[str, int]: '''simple docstring''' lowercase : Union[str, Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def snake_case( __magic_name__ ) -> str: '''simple docstring''' return x[0] def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[int] = get_letter_count(__magic_name__ ) lowercase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__magic_name__ ) lowercase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__magic_name__ ) lowercase : Any = ''''''.join(freq_to_letter[freq] ) lowercase : int = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__magic_name__ , reverse=__magic_name__ ) lowercase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__magic_name__ ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Tuple = get_frequency_order(__magic_name__ ) lowercase : Optional[int] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _A ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : Union[str, Any] , _A : float , _A : Callable , _A : int , _A : float = 1.0 , _A : str = None , ) -> List[Any]: """simple docstring""" super().__init__() lowercase : Dict = initial_learning_rate lowercase : str = warmup_steps lowercase : str = power lowercase : Dict = decay_schedule_fn lowercase : str = name def __call__( self : Any , _A : List[str] ) -> Optional[Any]: """simple docstring""" with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. lowercase : Any = tf.cast(_A , tf.floataa ) lowercase : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa ) lowercase : List[Any] = global_step_float / warmup_steps_float lowercase : List[str] = self.initial_learning_rate * tf.math.pow(_A , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_A , ) def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 0.0 , __magic_name__ = 0.9 , __magic_name__ = 0.9_9_9 , __magic_name__ = 1e-8 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0.0 , __magic_name__ = 1.0 , __magic_name__ = None , ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__magic_name__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__magic_name__ , ) if num_warmup_steps: lowercase : List[Any] = WarmUp( initial_learning_rate=__magic_name__ , decay_schedule_fn=__magic_name__ , warmup_steps=__magic_name__ , ) if weight_decay_rate > 0.0: lowercase : List[str] = AdamWeightDecay( learning_rate=__magic_name__ , weight_decay_rate=__magic_name__ , beta_a=__magic_name__ , beta_a=__magic_name__ , epsilon=__magic_name__ , clipnorm=__magic_name__ , global_clipnorm=__magic_name__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=__magic_name__ , ) else: lowercase : Any = tf.keras.optimizers.Adam( learning_rate=__magic_name__ , beta_a=__magic_name__ , beta_a=__magic_name__ , epsilon=__magic_name__ , clipnorm=__magic_name__ , global_clipnorm=__magic_name__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _A ( _lowerCamelCase ): def __init__( self : Optional[Any] , _A : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _A : float = 0.9 , _A : float = 0.999 , _A : float = 1E-7 , _A : bool = False , _A : float = 0.0 , _A : Optional[List[str]] = None , _A : Optional[List[str]] = None , _A : str = "AdamWeightDecay" , **_A : Dict , ) -> str: """simple docstring""" super().__init__(_A , _A , _A , _A , _A , _A , **_A ) lowercase : Any = weight_decay_rate lowercase : Union[str, Any] = include_in_weight_decay lowercase : Optional[Any] = exclude_from_weight_decay @classmethod def __a ( cls : Tuple , _A : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Union[str, Any] = {'''WarmUp''': WarmUp} return super(_A , cls ).from_config(_A , custom_objects=_A ) def __a ( self : Dict , _A : Optional[int] , _A : List[Any] , _A : Optional[int] ) -> List[str]: """simple docstring""" super(_A , self )._prepare_local(_A , _A , _A ) lowercase : Dict = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def __a ( self : List[Any] , _A : str , _A : Union[str, Any] , _A : Optional[int] ) -> List[str]: """simple docstring""" lowercase : Dict = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def __a ( self : int , _A : int , _A : List[Any]=None , **_A : List[Any] ) -> List[str]: """simple docstring""" lowercase , lowercase : Dict = list(zip(*_A ) ) return super(_A , self ).apply_gradients(zip(_A , _A ) , name=_A , **_A ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : List[str] , _A : List[Any] ) -> List[str]: """simple docstring""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} lowercase : Any = apply_state or {} lowercase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: lowercase : List[Any] = self._fallback_apply_state(_A , _A ) lowercase : int = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __a ( self : Any , _A : List[Any] , _A : Optional[int] , _A : int=None ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , _A ) lowercase : Any = self._decay_weights_op(_A , _A , _A ) with tf.control_dependencies([decay] ): return super(_A , self )._resource_apply_dense(_A , _A , **_A ) def __a ( self : Tuple , _A : Tuple , _A : Dict , _A : Tuple , _A : int=None ) -> List[Any]: """simple docstring""" lowercase , lowercase : Any = self._get_lr(var.device , var.dtype.base_dtype , _A ) lowercase : Optional[Any] = self._decay_weights_op(_A , _A , _A ) with tf.control_dependencies([decay] ): return super(_A , self )._resource_apply_sparse(_A , _A , _A , **_A ) def __a ( self : int ) -> Any: """simple docstring""" lowercase : int = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def __a ( self : Any , _A : int ) -> Union[str, Any]: """simple docstring""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_A , _A ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_A , _A ) is not None: return False return True class _A ( _lowerCamelCase ): def __init__( self : List[Any] ) -> Any: """simple docstring""" lowercase : Optional[int] = [] lowercase : Any = None @property def __a ( self : Dict ) -> int: """simple docstring""" if self._accum_steps is None: lowercase : Optional[int] = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_A , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __a ( self : Tuple ) -> Any: """simple docstring""" if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : int , _A : Optional[int] ) -> Dict: """simple docstring""" if not self._gradients: lowercase : str = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_A ) , trainable=_A , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_A ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(_A )}""" ) for accum_gradient, gradient in zip(self._gradients , _A ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_A ) self._accum_steps.assign_add(1 ) def __a ( self : List[Any] ) -> Dict: """simple docstring""" if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_A ) )
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( _lowerCamelCase ): _UpperCamelCase : Tuple = ['''pixel_values'''] def __init__( self : List[Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = True , **_A : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : str = get_size_dict(_A , default_to_square=_A , param_name='''crop_size''' ) lowercase : Optional[int] = do_resize lowercase : List[Any] = size lowercase : Optional[Any] = resample lowercase : Tuple = do_center_crop lowercase : Union[str, Any] = crop_size lowercase : int = do_rescale lowercase : List[str] = rescale_factor lowercase : Optional[int] = do_normalize lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowercase : Dict = do_convert_rgb def __a ( self : Optional[int] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: """simple docstring""" lowercase : str = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase : Dict = get_resize_output_image_size(_A , size=size['''shortest_edge'''] , default_to_square=_A ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ) -> np.ndarray: """simple docstring""" lowercase : Dict = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Tuple , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> int: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : Tuple , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : str , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : int = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : bool = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , **_A : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase : Union[str, Any] = size if size is not None else self.size lowercase : List[str] = get_size_dict(_A , param_name='''size''' , default_to_square=_A ) lowercase : Union[str, Any] = resample if resample is not None else self.resample lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Dict = crop_size if crop_size is not None else self.crop_size lowercase : Any = get_size_dict(_A , param_name='''crop_size''' , default_to_square=_A ) lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : int = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[Any] = image_mean if image_mean is not None else self.image_mean lowercase : int = image_std if image_std is not None else self.image_std lowercase : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase : List[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase : Union[str, Any] = [convert_to_rgb(_A ) for image in images] # All transformations expect numpy arrays. lowercase : Dict = [to_numpy_array(_A ) for image in images] if do_resize: lowercase : Union[str, Any] = [self.resize(image=_A , size=_A , resample=_A ) for image in images] if do_center_crop: lowercase : Any = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: lowercase : str = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: lowercase : Dict = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] lowercase : List[Any] = [to_channel_dimension_format(_A , _A ) for image in images] lowercase : Any = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
def snake_case( __magic_name__ ) -> int: '''simple docstring''' if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] lowercase : List[str] = grid[0] for row_n in range(1 , len(__magic_name__ ) ): lowercase : Optional[Any] = grid[row_n] lowercase : List[Any] = fill_row(__magic_name__ , __magic_name__ ) lowercase : Optional[int] = grid[row_n] return grid[-1][-1] def snake_case( __magic_name__ , __magic_name__ ) -> list: '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(__magic_name__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1
import math def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__magic_name__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
308
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
1
import itertools import string from collections.abc import Generator, Iterable def snake_case( __magic_name__ , __magic_name__ ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' lowercase : Tuple = iter(__magic_name__ ) while True: lowercase : str = tuple(itertools.islice(__magic_name__ , __magic_name__ ) ) if not chunk: return yield chunk def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : List[Any] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowercase : Dict = '''''' if len(__magic_name__ ) < 2: return dirty for i in range(len(__magic_name__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__magic_name__ ) & 1: clean += "X" return clean def snake_case( __magic_name__ ) -> list[str]: '''simple docstring''' lowercase : Any = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowercase : List[str] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__magic_name__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__magic_name__ ) return table def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[int] = generate_table(__magic_name__ ) lowercase : Union[str, Any] = prepare_input(__magic_name__ ) lowercase : List[str] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): lowercase , lowercase : Optional[Any] = divmod(table.index(__magic_name__ ) , 5 ) lowercase , lowercase : Union[str, Any] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def snake_case( __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Optional[int] = generate_table(__magic_name__ ) lowercase : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): lowercase , lowercase : Dict = divmod(table.index(__magic_name__ ) , 5 ) lowercase , lowercase : Any = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
308
from __future__ import annotations from typing import Any def snake_case( __magic_name__ ) -> None: '''simple docstring''' create_state_space_tree(__magic_name__ , [] , 0 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' if index == len(__magic_name__ ): print(__magic_name__ ) return create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__magic_name__ , __magic_name__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase_ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
308
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
1
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' if curr_ind == len(__magic_name__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(__magic_name__ ) ): if valid_connection(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): # Insert current vertex into path as next transition lowercase : Optional[int] = next_ver # Validate created path if util_hamilton_cycle(__magic_name__ , __magic_name__ , curr_ind + 1 ): return True # Backtrack lowercase : List[Any] = -1 return False def snake_case( __magic_name__ , __magic_name__ = 0 ) -> list[int]: '''simple docstring''' lowercase : Any = [-1] * (len(__magic_name__ ) + 1) # initialize start and end of path with starting index lowercase : Optional[int] = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__magic_name__ , __magic_name__ , 1 ) else []
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self : int , _A : Optional[int] , _A : Any=13 , _A : List[Any]=7 , _A : List[Any]=True , _A : Optional[Any]=True , _A : str=True , _A : Any=True , _A : Dict=True , _A : Optional[Any]=False , _A : Any=False , _A : List[str]=False , _A : Optional[int]=2 , _A : List[Any]=99 , _A : str=0 , _A : Dict=32 , _A : Dict=5 , _A : List[Any]=4 , _A : Optional[Any]=0.1 , _A : Optional[int]=0.1 , _A : Optional[Any]=512 , _A : Optional[Any]=2 , _A : Optional[Any]=0.02 , _A : Optional[int]=2 , _A : Tuple=4 , _A : List[Any]="last" , _A : List[str]=True , _A : Tuple=None , _A : Optional[Any]=0 , ) -> Any: """simple docstring""" lowercase : str = parent lowercase : Optional[Any] = batch_size lowercase : Union[str, Any] = seq_length lowercase : str = is_training lowercase : str = use_input_lengths lowercase : List[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : Tuple = gelu_activation lowercase : Dict = sinusoidal_embeddings lowercase : Any = causal lowercase : str = asm lowercase : Optional[Any] = n_langs lowercase : Dict = vocab_size lowercase : Dict = n_special lowercase : List[Any] = hidden_size lowercase : str = num_hidden_layers lowercase : int = num_attention_heads lowercase : str = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_sequence_label_size lowercase : List[str] = initializer_range lowercase : List[str] = num_labels lowercase : int = num_choices lowercase : int = summary_type lowercase : Tuple = use_proj lowercase : Union[str, Any] = scope lowercase : List[str] = bos_token_id def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_input_lengths: lowercase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : Union[str, Any] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Tuple = ids_tensor([self.batch_size] , 2 ).float() lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __a ( self : Any ) -> List[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __a ( self : int , _A : str , _A : Optional[Any] , _A : int , _A : List[str] , _A : Any , _A : Dict , _A : Tuple , _A : Union[str, Any] , _A : Tuple , ) -> List[Any]: """simple docstring""" lowercase : List[Any] = XLMModel(config=_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , lengths=_A , langs=_A ) lowercase : Dict = model(_A , langs=_A ) lowercase : int = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : int , _A : Dict , _A : int , _A : int , _A : Union[str, Any] , _A : Tuple , _A : Union[str, Any] , _A : Any , _A : Union[str, Any] , _A : Dict , ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel(_A ) model.to(_A ) model.eval() lowercase : Tuple = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Union[str, Any] , _A : List[str] , _A : Union[str, Any] , _A : List[str] , _A : Optional[int] , _A : Optional[Any] , _A : int , _A : Union[str, Any] , _A : Tuple , _A : int , ) -> Union[str, Any]: """simple docstring""" lowercase : Dict = XLMForQuestionAnsweringSimple(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Any = model(_A , start_positions=_A , end_positions=_A ) lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any] , _A : List[str] , _A : Any , _A : Any , _A : str , _A : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase : Optional[int] = XLMForQuestionAnswering(_A ) model.to(_A ) model.eval() lowercase : Any = model(_A ) lowercase : Tuple = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , p_mask=_A , ) lowercase : Optional[int] = model( _A , start_positions=_A , end_positions=_A , cls_index=_A , is_impossible=_A , ) ((lowercase) , ) : Optional[int] = result_with_labels.to_tuple() lowercase : List[str] = model(_A , start_positions=_A , end_positions=_A ) ((lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __a ( self : Union[str, Any] , _A : Optional[int] , _A : Dict , _A : int , _A : List[Any] , _A : List[str] , _A : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str , ) -> int: """simple docstring""" lowercase : List[str] = XLMForSequenceClassification(_A ) model.to(_A ) model.eval() lowercase : List[str] = model(_A ) lowercase : Union[str, Any] = model(_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self : Union[str, Any] , _A : str , _A : int , _A : List[str] , _A : Optional[int] , _A : Union[str, Any] , _A : Tuple , _A : Dict , _A : Any , _A : Tuple , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = self.num_labels lowercase : Tuple = XLMForTokenClassification(_A ) model.to(_A ) model.eval() lowercase : str = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _A : List[str] , _A : Dict , _A : str , _A : List[str] , _A : List[str] , _A : Union[str, Any] , _A : Tuple , _A : Any , _A : Any , ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.num_choices lowercase : List[Any] = XLMForMultipleChoice(config=_A ) model.to(_A ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Dict = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class _A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _UpperCamelCase : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _UpperCamelCase : Tuple = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __a ( self : List[Any] , _A : Tuple , _A : List[str] , _A : Dict , _A : Union[str, Any] , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __a ( self : Dict , _A : Tuple , _A : List[str] , _A : int=False ) -> Optional[Any]: """simple docstring""" lowercase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": lowercase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def __a ( self : Any ) -> List[str]: """simple docstring""" lowercase : List[str] = XLMModelTester(self ) lowercase : Any = ConfigTester(self , config_class=_A , emb_dim=37 ) def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __a ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_A ) def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_A ) def __a ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_A ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_A ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_A ) def __a ( self : Dict ) -> int: """simple docstring""" lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_A ) def __a ( self : Any ) -> List[Any]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_A ) def __a ( self : int , _A : Union[str, Any] , _A : int , _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] , _A : List[Any]=False , _A : Optional[int]=1 ) -> Any: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_attentions in attentions] , [True] * len(_A ) ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_A ): # adds PAD dummy token lowercase : List[Any] = min_length + idx + 1 lowercase : str = min_length + idx + 1 lowercase : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_A ) ) def __a ( self : int , _A : Optional[int] , _A : Dict , _A : Any , _A : List[str] , _A : Optional[int] , _A : List[Any]=False , _A : List[Any]=1 ) -> str: """simple docstring""" self.assertIsInstance(_A , _A ) self.assertListEqual( [isinstance(_A , _A ) for iter_hidden_states in hidden_states] , [True] * len(_A ) , ) self.assertEqual(len(_A ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_A ): # adds PAD dummy token lowercase : Union[str, Any] = min_length + idx + 1 lowercase : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_A ) , ) pass @slow def __a ( self : Optional[int] ) -> Any: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Any = XLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class _A ( unittest.TestCase ): @slow def __a ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(_A ) lowercase : str = torch.tensor([[14, 447]] , dtype=torch.long , device=_A ) # the president lowercase : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference lowercase : Dict = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _A )
308
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
def snake_case( __magic_name__ = 50 ) -> int: '''simple docstring''' lowercase : Union[str, Any] = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCAmelCase_ = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False , ) -> List[str]: '''simple docstring''' output_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , use_external_data_format=__magic_name__ , enable_onnx_checker=__magic_name__ , opset_version=__magic_name__ , ) else: export( __magic_name__ , __magic_name__ , f=output_path.as_posix() , input_names=__magic_name__ , output_names=__magic_name__ , dynamic_axes=__magic_name__ , do_constant_folding=__magic_name__ , opset_version=__magic_name__ , ) @torch.no_grad() def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> Optional[Any]: '''simple docstring''' lowercase : str = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase : Union[str, Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase : int = '''cpu''' lowercase : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=__magic_name__ ).to(__magic_name__ ) lowercase : Tuple = Path(__magic_name__ ) # TEXT ENCODER lowercase : List[Any] = pipeline.text_encoder.config.max_position_embeddings lowercase : Optional[Any] = pipeline.text_encoder.config.hidden_size lowercase : Dict = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__magic_name__ , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=__magic_name__ , ) del pipeline.text_encoder # UNET lowercase : Tuple = pipeline.unet.config.in_channels lowercase : str = pipeline.unet.config.sample_size lowercase : str = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), torch.randn(2 ).to(device=__magic_name__ , dtype=__magic_name__ ), torch.randn(2 , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=__magic_name__ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=__magic_name__ , use_external_data_format=__magic_name__ , ) lowercase : List[str] = str(unet_path.absolute().as_posix() ) lowercase : Optional[int] = os.path.dirname(__magic_name__ ) lowercase : Optional[Any] = onnx.load(__magic_name__ ) # clean up existing tensor files shutil.rmtree(__magic_name__ ) os.mkdir(__magic_name__ ) # collate external tensor files into one onnx.save_model( __magic_name__ , __magic_name__ , save_as_external_data=__magic_name__ , all_tensors_to_one_file=__magic_name__ , location='''weights.pb''' , convert_attribute=__magic_name__ , ) del pipeline.unet # VAE ENCODER lowercase : Union[str, Any] = pipeline.vae lowercase : Tuple = vae_encoder.config.in_channels lowercase : Any = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase : int = lambda __magic_name__ , __magic_name__ : vae_encoder.encode(__magic_name__ , __magic_name__ )[0].sample() onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__magic_name__ , ) # VAE DECODER lowercase : int = pipeline.vae lowercase : Union[str, Any] = vae_decoder.config.latent_channels lowercase : List[str] = vae_decoder.config.out_channels # forward only through the decoder part lowercase : Optional[Any] = vae_encoder.decode onnx_export( __magic_name__ , model_args=( torch.randn(1 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=__magic_name__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase : Dict = pipeline.safety_checker lowercase : Union[str, Any] = safety_checker.config.vision_config.num_channels lowercase : str = safety_checker.config.vision_config.image_size lowercase : Union[str, Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __magic_name__ , __magic_name__ , __magic_name__ , ).to(device=__magic_name__ , dtype=__magic_name__ ), torch.randn(1 , __magic_name__ , __magic_name__ , __magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=__magic_name__ , ) del pipeline.safety_checker lowercase : Dict = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowercase : Dict = pipeline.feature_extractor else: lowercase : int = None lowercase : List[Any] = None lowercase : Dict = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__magic_name__ ) print('''ONNX pipeline saved to''' , __magic_name__ ) del pipeline del onnx_pipeline lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(__magic_name__ , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') lowerCAmelCase_ = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
308
import os def snake_case( __magic_name__ = "input.txt" ) -> int: '''simple docstring''' with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: lowercase : Any = [ [int(__magic_name__ ) for element in line.split(''',''' )] for line in input_file.readlines() ] lowercase : List[Any] = len(__magic_name__ ) lowercase : Any = len(matrix[0] ) lowercase : Tuple = [[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): lowercase : str = matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): lowercase : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase_ = '\\n Text data.\n Second line of data.' lowerCAmelCase_ = 'file' @pytest.fixture(scope='''session''' ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Dict = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase : List[str] = bytes(__magic_name__ , '''utf-8''' ) with zstd.open(__magic_name__ , '''wb''' ) as f: f.write(__magic_name__ ) return path @pytest.fixture def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __magic_name__ ) , '''w''' ) as f: f.write(__magic_name__ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : str = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase : Union[str, Any] = input_paths[compression_format] lowercase : Optional[Any] = tmp_path / '''cache''' lowercase : List[Any] = DownloadConfig(cache_dir=__magic_name__ , extract_compressed_file=__magic_name__ ) lowercase : Union[str, Any] = cached_path(__magic_name__ , download_config=__magic_name__ ) with open(__magic_name__ ) as f: lowercase : Optional[Any] = f.read() with open(__magic_name__ ) as f: lowercase : Any = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = '''custom_cache''' lowercase : Optional[Any] = '''custom_extracted_dir''' lowercase : Union[str, Any] = tmp_path / '''custom_extracted_path''' if default_extracted: lowercase : str = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , __magic_name__ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__magic_name__ ) ) lowercase : Dict = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase : Tuple = xz_file lowercase : List[Any] = ( DownloadConfig(extract_compressed_file=__magic_name__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__magic_name__ ) ) lowercase : Any = cached_path(__magic_name__ , download_config=__magic_name__ ) assert Path(__magic_name__ ).parent.parts[-2:] == expected def snake_case( __magic_name__ ) -> Any: '''simple docstring''' lowercase : Tuple = str(Path(__magic_name__ ).resolve() ) assert cached_path(__magic_name__ ) == text_file # relative path lowercase : List[Any] = str(Path(__magic_name__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__magic_name__ ) == text_file def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Union[str, Any] = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(__magic_name__ ): cached_path(__magic_name__ ) # relative path lowercase : str = '''./__missing_file__.txt''' with pytest.raises(__magic_name__ ): cached_path(__magic_name__ ) def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(__magic_name__ ) as f: lowercase : Optional[int] = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( ) -> int: '''simple docstring''' with pytest.raises(__magic_name__ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__magic_name__ ): http_get('''https://huggingface.co''' , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__magic_name__ ): ftp_get('''ftp://huggingface.co''' , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , __magic_name__ ) def snake_case( __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Any = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(__magic_name__ ): fsspec_get('''s3://huggingface.co''' , temp_file=__magic_name__ ) with pytest.raises(__magic_name__ ): fsspec_head('''s3://huggingface.co''' )
308
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): @slow def __a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) lowercase : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowercase : Optional[Any] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids lowercase : Dict = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids lowercase : List[Any] = model(_A , labels=_A ).loss lowercase : Dict = -tf.math.reduce_mean(_A ).numpy() lowercase : Union[str, Any] = -21.228_168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
308
1
class _A : def __init__( self : Dict , _A : int ) -> Any: """simple docstring""" lowercase : List[Any] = n lowercase : Optional[int] = [None] * self.n lowercase : Tuple = 0 # index of the first element lowercase : List[str] = 0 lowercase : int = 0 def __len__( self : str ) -> int: """simple docstring""" return self.size def __a ( self : List[str] ) -> bool: """simple docstring""" return self.size == 0 def __a ( self : Tuple ) -> List[Any]: """simple docstring""" return False if self.is_empty() else self.array[self.front] def __a ( self : Tuple , _A : List[str] ) -> str: """simple docstring""" if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) lowercase : str = data lowercase : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def __a ( self : Dict ) -> int: """simple docstring""" if self.size == 0: raise Exception('''UNDERFLOW''' ) lowercase : Optional[Any] = self.array[self.front] lowercase : Any = None lowercase : List[str] = (self.front + 1) % self.n self.size -= 1 return temp
308
from heapq import heappop, heappush import numpy as np def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' lowercase , lowercase : Optional[int] = grid.shape lowercase : Optional[int] = [-1, 1, 0, 0] lowercase : List[str] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowercase , lowercase : Union[str, Any] = [(0, source)], set() lowercase : List[str] = np.full((rows, cols) , np.inf ) lowercase : Dict = 0 lowercase : Dict = np.empty((rows, cols) , dtype=__magic_name__ ) lowercase : Any = None while queue: ((lowercase) , (lowercase)) : Optional[Any] = heappop(__magic_name__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowercase : Tuple = [] while (x, y) != source: path.append((x, y) ) lowercase , lowercase : Optional[int] = predecessors[x, y] path.append(__magic_name__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__magic_name__ ) ): lowercase , lowercase : Optional[int] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowercase : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__magic_name__ , (dist + 1, (nx, ny)) ) lowercase : int = dist + 1 lowercase : Optional[Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
308
1
from __future__ import annotations import requests def snake_case( __magic_name__ ) -> dict: '''simple docstring''' lowercase : Tuple = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(__magic_name__ ).json() def snake_case( __magic_name__ = 10 ) -> list[dict]: '''simple docstring''' lowercase : List[str] = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowercase : Dict = requests.get(__magic_name__ ).json()[:max_stories] return [get_hackernews_story(__magic_name__ ) for story_id in story_ids] def snake_case( __magic_name__ = 10 ) -> str: '''simple docstring''' lowercase : Any = hackernews_top_stories(__magic_name__ ) return "\n".join('''* [{title}]({url})'''.format(**__magic_name__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
308
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _A ( _lowerCamelCase ): _UpperCamelCase : Any = '''yolos''' def __init__( self : Optional[Any] , _A : Dict=768 , _A : Optional[int]=12 , _A : List[str]=12 , _A : Dict=3_072 , _A : Union[str, Any]="gelu" , _A : List[str]=0.0 , _A : Optional[int]=0.0 , _A : List[Any]=0.02 , _A : Optional[Any]=1E-12 , _A : Tuple=[512, 864] , _A : List[str]=16 , _A : int=3 , _A : Tuple=True , _A : Optional[int]=100 , _A : Optional[int]=True , _A : Tuple=False , _A : List[Any]=1 , _A : Any=5 , _A : Any=2 , _A : str=5 , _A : List[Any]=2 , _A : Any=0.1 , **_A : List[str] , ) -> str: """simple docstring""" super().__init__(**_A ) lowercase : Optional[int] = hidden_size lowercase : List[Any] = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : Dict = intermediate_size lowercase : str = hidden_act lowercase : str = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Any = initializer_range lowercase : List[str] = layer_norm_eps lowercase : List[Any] = image_size lowercase : Dict = patch_size lowercase : Any = num_channels lowercase : Union[str, Any] = qkv_bias lowercase : str = num_detection_tokens lowercase : List[Any] = use_mid_position_embeddings lowercase : Tuple = auxiliary_loss # Hungarian matcher lowercase : Dict = class_cost lowercase : Tuple = bbox_cost lowercase : str = giou_cost # Loss coefficients lowercase : List[str] = bbox_loss_coefficient lowercase : Tuple = giou_loss_coefficient lowercase : Tuple = eos_coefficient class _A ( _lowerCamelCase ): _UpperCamelCase : int = version.parse('''1.11''' ) @property def __a ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __a ( self : int ) -> float: """simple docstring""" return 1E-4 @property def __a ( self : Any ) -> int: """simple docstring""" return 12
308
def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : List[Any] = abs(__magic_name__ ) lowercase : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = abs(__magic_name__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case( __magic_name__ ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for c in str(abs(__magic_name__ ) ) ) def snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__magic_name__ , __magic_name__ ) -> None: lowercase : str = F"""{func.__name__}({value})""" lowercase : Any = timeit(F"""__main__.{call}""" , setup='''import __main__''' ) print(F"""{call:56} = {func(__magic_name__ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__magic_name__ , __magic_name__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
308
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def snake_case( ) -> List[str]: '''simple docstring''' lowercase : Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__magic_name__ ) env_command_parser(subparsers=__magic_name__ ) launch_command_parser(subparsers=__magic_name__ ) tpu_command_parser(subparsers=__magic_name__ ) test_command_parser(subparsers=__magic_name__ ) # Let's go lowercase : Dict = parser.parse_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__magic_name__ ) if __name__ == "__main__": main()
308
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase_ = 25_60_47 lowerCAmelCase_ = 25_61_45 @require_sentencepiece @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = NllbTokenizer _UpperCamelCase : Optional[Any] = NllbTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : List[str] = True _UpperCamelCase : Optional[int] = {} def __a ( self : Dict ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase : str = NllbTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : List[str] ) -> Dict: """simple docstring""" lowercase : Tuple = NllbTokenizer(_A , keep_accents=_A ) lowercase : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[Any] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Tuple = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) lowercase : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) lowercase : str = tempfile.mkdtemp() lowercase : Any = tokenizer_r.save_pretrained(_A ) lowercase : Dict = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase : int = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way lowercase : int = tokenizer_r.from_pretrained(_A ) lowercase : Tuple = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True lowercase : Dict = tempfile.mkdtemp() lowercase : Any = tokenizer_r.save_pretrained(_A , legacy_format=_A ) lowercase : int = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way lowercase : Optional[int] = tokenizer_r.from_pretrained(_A ) lowercase : Optional[int] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False lowercase : Optional[int] = tempfile.mkdtemp() lowercase : str = tokenizer_r.save_pretrained(_A , legacy_format=_A ) lowercase : Any = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase : Optional[int] = tokenizer_r.from_pretrained(_A ) lowercase : Dict = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @require_torch def __a ( self : str ) -> List[Any]: """simple docstring""" if not self.test_seqaseq: return lowercase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. lowercase : Tuple = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowercase : str = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowercase : int = tokenizer.prepare_seqaseq_batch( src_texts=_A , tgt_texts=_A , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowercase : Any = tokenizer.prepare_seqaseq_batch( _A , tgt_texts=_A , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowercase : str = tokenizer.prepare_seqaseq_batch( src_texts=_A , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , _A ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def __a ( self : Tuple ) -> List[str]: """simple docstring""" pass def __a ( self : Any ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : Dict = [AddedToken('''<special>''' , lstrip=_A )] lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , **_A ) lowercase : List[str] = tokenizer_r.encode('''Hey this is a <special> token''' ) lowercase : int = tokenizer_r.encode('''<special>''' , add_special_tokens=_A )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowercase : str = self.rust_tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , **_A , ) lowercase : Any = self.tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , **_A ) lowercase : Dict = tokenizer_p.encode('''Hey this is a <special> token''' ) lowercase : str = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(_A , _A ) self.assertEqual(_A , _A ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): _UpperCamelCase : Optional[Any] = '''facebook/nllb-200-distilled-600M''' _UpperCamelCase : int = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] _UpperCamelCase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] _UpperCamelCase : str = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __a ( cls : str ) -> str: """simple docstring""" lowercase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) lowercase : List[str] = 1 return cls def __a ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 256_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 256_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 256_057 ) def __a ( self : Optional[int] ) -> List[str]: """simple docstring""" lowercase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __a ( self : Union[str, Any] ) -> int: """simple docstring""" self.assertIn(_A , self.tokenizer.all_special_ids ) # fmt: off lowercase : List[str] = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047] # fmt: on lowercase : Tuple = self.tokenizer.decode(_A , skip_special_tokens=_A ) lowercase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __a ( self : Optional[int] ) -> Tuple: """simple docstring""" lowercase : List[Any] = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _A ) lowercase : int = 10 lowercase : List[Any] = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _A ) self.assertEqual(len(_A ) , _A ) def __a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [256_203, 3] ) def __a ( self : Optional[int] ) -> Any: """simple docstring""" lowercase : Dict = tempfile.mkdtemp() lowercase : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) lowercase : Optional[Any] = NllbTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def __a ( self : int ) -> Union[str, Any]: """simple docstring""" lowercase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase : str = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowercase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(_A , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __a ( self : Optional[Any] ) -> int: """simple docstring""" lowercase : Dict = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='''pt''' ) lowercase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors='''pt''' ) lowercase : Dict = targets['''input_ids'''] lowercase : str = shift_tokens_right( _A , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self : Dict ) -> Optional[Any]: """simple docstring""" lowercase : Dict = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX '''input_ids''': [[256_047, 70, 7_356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 256_057, } , ) @require_torch def __a ( self : List[Any] ) -> Any: """simple docstring""" lowercase : Any = True lowercase : Any = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047] ) lowercase : Union[str, Any] = False lowercase : Tuple = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2] )
308
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def snake_case( __magic_name__ , __magic_name__=False ) -> List[str]: '''simple docstring''' lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case( __magic_name__ , __magic_name__ , __magic_name__=False ) -> Union[str, Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase : Optional[int] = '''''' else: lowercase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase : Tuple = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) lowercase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase : str = in_proj_bias[: config.hidden_size] lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase : Any = in_proj_weight[ -config.hidden_size :, : ] lowercase : Optional[int] = in_proj_bias[-config.hidden_size :] def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : List[Any] = dct.pop(__magic_name__ ) lowercase : Union[str, Any] = val def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = ViTMSNConfig() lowercase : str = 10_00 lowercase : List[str] = '''datasets/huggingface/label-files''' lowercase : List[str] = '''imagenet-1k-id2label.json''' lowercase : Any = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ ) , '''r''' ) ) lowercase : Union[str, Any] = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase : Any = idalabel lowercase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: lowercase : int = 3_84 lowercase : Optional[Any] = 15_36 lowercase : Tuple = 6 elif "l16" in checkpoint_url: lowercase : Union[str, Any] = 10_24 lowercase : List[str] = 40_96 lowercase : int = 24 lowercase : Union[str, Any] = 16 lowercase : Tuple = 0.1 elif "b4" in checkpoint_url: lowercase : Union[str, Any] = 4 elif "l7" in checkpoint_url: lowercase : Dict = 7 lowercase : List[Any] = 10_24 lowercase : str = 40_96 lowercase : int = 24 lowercase : Dict = 16 lowercase : Tuple = 0.1 lowercase : int = ViTMSNModel(__magic_name__ ) lowercase : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location='''cpu''' )['''target_encoder'''] lowercase : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(__magic_name__ ) lowercase : List[str] = create_rename_keys(__magic_name__ , base_model=__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) read_in_q_k_v(__magic_name__ , __magic_name__ , base_model=__magic_name__ ) model.load_state_dict(__magic_name__ ) model.eval() lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ) lowercase : Dict = ViTImageProcessor( size=config.image_size , image_mean=__magic_name__ , image_std=__magic_name__ ) lowercase : List[str] = image_processor(images=__magic_name__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) lowercase : int = model(**__magic_name__ ) lowercase : Optional[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: lowercase : List[str] = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: lowercase : Any = torch.tensor([[1_4.2_8_8_9, -1_8.9_0_4_5, 1_1.7_2_8_1]] ) elif "l16" in checkpoint_url: lowercase : Dict = torch.tensor([[4_1.5_0_2_8, -2_2.8_6_8_1, 4_5.6_4_7_5]] ) elif "b4" in checkpoint_url: lowercase : Tuple = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: lowercase : Optional[int] = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __magic_name__ , atol=1e-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__magic_name__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
1
def snake_case( __magic_name__ = 10 , __magic_name__ = 10_00 , __magic_name__ = True ) -> int: '''simple docstring''' assert ( isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' return int((number_a + number_a) / 2 ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> None: '''simple docstring''' assert ( isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(__magic_name__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) lowercase : Dict = lower lowercase : str = higher lowercase : List[str] = [] while True: lowercase : Tuple = get_avg(__magic_name__ , __magic_name__ ) last_numbers.append(__magic_name__ ) if answer(__magic_name__ ) == "low": lowercase : Any = number elif answer(__magic_name__ ) == "high": lowercase : Optional[Any] = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def snake_case( ) -> None: '''simple docstring''' lowercase : int = int(input('''Enter lower value : ''' ).strip() ) lowercase : Optional[Any] = int(input('''Enter high value : ''' ).strip() ) lowercase : List[Any] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(__magic_name__ , __magic_name__ , __magic_name__ ) if __name__ == "__main__": main()
308
def snake_case( __magic_name__ , __magic_name__ ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.2_5) = }''') print(f'''{price_plus_tax(1_2_5.5_0, 0.0_5) = }''')
308
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCAmelCase_ = logging.getLogger(__name__) lowerCAmelCase_ = 'pytorch_model.bin' @dataclasses.dataclass class _A : _UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class _A : _UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _UpperCamelCase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''The name of the task to train on.'''} , ) _UpperCamelCase : Optional[List[str]] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class _A : _UpperCamelCase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) _UpperCamelCase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=1_0 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) _UpperCamelCase : Optional[bool] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) _UpperCamelCase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _UpperCamelCase : Optional[int] = dataclasses.field( default=_lowerCamelCase , metadata={'''help''': '''Random seed for initialization.'''} , ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Optional[int] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowercase : Union[str, Any] = dataset.filter(lambda __magic_name__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowercase : int = int(eval_result * len(__magic_name__ ) ) print(__magic_name__ ) lowercase : List[Any] = dataset.sort('''probability''' , reverse=__magic_name__ ) lowercase : Optional[int] = dataset.select(range(__magic_name__ ) ) lowercase : Any = dataset.remove_columns(['''label''', '''probability'''] ) lowercase : List[Any] = dataset.rename_column('''prediction''' , '''label''' ) lowercase : List[str] = dataset.map(lambda __magic_name__ : {"label": idalabel[example["label"]]} ) lowercase : Union[str, Any] = dataset.shuffle(seed=args.seed ) lowercase : Any = os.path.join(__magic_name__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__magic_name__ , index=__magic_name__ ) else: dataset.to_json(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowercase : Optional[Any] = STModelArguments(model_name_or_path=__magic_name__ ) lowercase : Optional[Any] = STDataArguments(train_file=__magic_name__ , infer_file=__magic_name__ ) lowercase : Tuple = STTrainingArguments(output_dir=__magic_name__ ) lowercase : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__magic_name__ ).items(): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) for key, value in kwargs.items(): if hasattr(__magic_name__ , __magic_name__ ): setattr(__magic_name__ , __magic_name__ , __magic_name__ ) # Sanity checks lowercase : Optional[int] = {} lowercase : Dict = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowercase : Tuple = args.train_file lowercase : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowercase : Union[str, Any] = args.eval_file for key in data_files: lowercase : Dict = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: lowercase : Optional[Any] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) lowercase : Tuple = F"""{args.output_dir}/self-train_iter-{{}}""".format lowercase : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) accelerator.wait_for_everyone() lowercase : Any = None lowercase : Optional[int] = None lowercase : str = 0 lowercase : Optional[int] = False # Show the progress bar lowercase : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowercase : Optional[int] = data_dir_format(__magic_name__ ) assert os.path.exists(__magic_name__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowercase : Union[str, Any] = os.path.join(__magic_name__ , '''stage-1''' ) lowercase : List[Any] = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__magic_name__ , __magic_name__ ): arguments_dict.update({key: value} ) lowercase : Dict = os.path.join(__magic_name__ , '''best-checkpoint''' , __magic_name__ ) if os.path.exists(__magic_name__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , __magic_name__ , __magic_name__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , __magic_name__ ) finetune(**__magic_name__ ) accelerator.wait_for_everyone() assert os.path.exists(__magic_name__ ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , __magic_name__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowercase : List[str] = os.path.join(__magic_name__ , '''best-checkpoint''' ) lowercase : List[str] = os.path.join(__magic_name__ , '''stage-2''' ) # Update arguments_dict lowercase : Dict = model_path lowercase : int = data_files['''train'''] lowercase : Dict = current_output_dir lowercase : Optional[Any] = os.path.join(__magic_name__ , '''best-checkpoint''' , __magic_name__ ) if os.path.exists(__magic_name__ ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , __magic_name__ , __magic_name__ , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , __magic_name__ ) finetune(**__magic_name__ ) accelerator.wait_for_everyone() assert os.path.exists(__magic_name__ ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , __magic_name__ ) lowercase : int = iteration lowercase : int = data_dir_format(iteration + 1 ) lowercase : Optional[Any] = AutoConfig.from_pretrained(os.path.join(__magic_name__ , '''best-checkpoint''' ) ) lowercase : Union[str, Any] = config.idalabel lowercase : List[str] = os.path.join(__magic_name__ , '''eval_results_best-checkpoint.json''' ) lowercase : List[Any] = os.path.join(__magic_name__ , '''test_results_best-checkpoint.json''' ) assert os.path.exists(__magic_name__ ) with open(__magic_name__ , '''r''' ) as f: lowercase : List[Any] = float(json.load(__magic_name__ )[args.eval_metric] ) lowercase : Optional[Any] = os.path.join(__magic_name__ , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(__magic_name__ ) # Loading the dataset from local csv or json files. lowercase : List[Any] = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] lowercase : str = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) shutil.copy(__magic_name__ , os.path.join(__magic_name__ , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__magic_name__ ): shutil.copy(__magic_name__ , os.path.join(__magic_name__ , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) accelerator.wait_for_everyone() lowercase : Any = os.path.join(__magic_name__ , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowercase : Tuple = eval_result if best_iteration is None: lowercase : Optional[int] = new_iteration lowercase : Union[str, Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowercase : Optional[Any] = new_iteration lowercase : Optional[int] = new_eval_result lowercase : Any = 0 else: if new_eval_result == best_eval_result: lowercase : Tuple = new_iteration lowercase : int = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowercase : Any = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , __magic_name__ ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , __magic_name__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__magic_name__ , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(__magic_name__ , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , __magic_name__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__magic_name__ , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__magic_name__ , '''eval_results_best-iteration.json''' ) , )
308
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def snake_case( ) -> int: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__magic_name__ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def snake_case( ) -> List[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def snake_case( ) -> Any: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__magic_name__ ): http_head('''https://huggingface.co''' )
308
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> Optional[Any]: '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = '''mock-s3-bucket''' lowercase : Optional[int] = F"""s3://{mock_bucket}""" lowercase : List[Any] = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False lowercase : Optional[int] = '''./local/path''' lowercase : Dict = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple = is_remote_filesystem(__magic_name__ ) assert is_remote is True lowercase : int = fsspec.filesystem('''file''' ) lowercase : Optional[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowercase : List[Any] = input_paths[compression_fs_class.protocol] if input_path is None: lowercase : Dict = F"""for '{compression_fs_class.protocol}' compression protocol, """ if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) lowercase : Any = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) lowercase : List[Any] = os.path.basename(__magic_name__ ) lowercase : Tuple = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Optional[Any] = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowercase : List[str] = compressed_file_paths[protocol] lowercase : str = '''dataset.jsonl''' lowercase : List[str] = F"""{protocol}://{member_file_path}::{compressed_file_path}""" lowercase , *lowercase : Tuple = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' lowercase : Optional[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) lowercase : int = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"""A filesystem protocol was already set for {protocol} and will be overwritten.""" )
308
1
lowerCAmelCase_ = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def snake_case( __magic_name__ ) -> str: '''simple docstring''' assert type(__magic_name__ ) in (int, float) and decimal == int(__magic_name__ ) lowercase : List[str] = int(__magic_name__ ) lowercase : Tuple = '''''' lowercase : str = False if decimal < 0: lowercase : Dict = True decimal *= -1 while decimal > 0: lowercase , lowercase : Tuple = divmod(__magic_name__ , 16 ) lowercase : List[str] = values[remainder] + hexadecimal lowercase : Any = '''0x''' + hexadecimal if negative: lowercase : Dict = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
308
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) class _A ( enum.Enum ): _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : Any = 1 @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[Any] = '''generated''' def __init__( self : str , *_A : int , **_A : str ) -> Union[str, Any]: """simple docstring""" super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self : int , _A : Union[str, Any]=None , _A : Optional[Any]=None , _A : Dict=None , _A : Dict=None , _A : Union[str, Any]=None , _A : int=None , **_A : Optional[int] , ) -> List[Any]: """simple docstring""" lowercase : str = {} if truncation is not None: lowercase : Tuple = truncation lowercase : Tuple = generate_kwargs lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: lowercase : int = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase : Dict = return_type if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase : Dict = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowercase : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self : str , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" return True def __a ( self : Union[str, Any] , *_A : Union[str, Any] , _A : List[Any] ) -> Dict: """simple docstring""" lowercase : Tuple = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , _A ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowercase : List[Any] = ([prefix + arg for arg in args[0]],) lowercase : Dict = True elif isinstance(args[0] , _A ): lowercase : Optional[int] = (prefix + args[0],) lowercase : Union[str, Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowercase : Any = self.tokenizer(*_A , padding=_A , truncation=_A , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Union[str, Any] , *_A : Optional[int] , **_A : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase : Any = super().__call__(*_A , **_A ) if ( isinstance(args[0] , _A ) and all(isinstance(_A , _A ) for el in args[0] ) and all(len(_A ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_A : List[str] ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self._parse_and_tokenize(_A , truncation=_A , **_A ) return inputs def __a ( self : int , _A : Optional[Any] , **_A : Any ) -> Any: """simple docstring""" if self.framework == "pt": lowercase , lowercase : List[Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowercase , lowercase : Optional[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowercase : int = generate_kwargs.get('''min_length''' , self.model.config.min_length ) lowercase : Optional[int] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(_A , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) lowercase : int = self.model.generate(**_A , **_A ) lowercase : int = output_ids.shape[0] if self.framework == "pt": lowercase : Optional[Any] = output_ids.reshape(_A , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowercase : Tuple = tf.reshape(_A , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self : Union[str, Any] , _A : str , _A : Optional[int]=ReturnType.TEXT , _A : Optional[int]=False ) -> Tuple: """simple docstring""" lowercase : Any = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase : Union[str, Any] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) } records.append(_A ) return records @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''summary''' def __call__( self : List[Any] , *_A : List[str] , **_A : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().__call__(*_A , **_A ) def __a ( self : Any , _A : int , _A : int , _A : int ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_lowerCamelCase ) class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = '''translation''' def __a ( self : Union[str, Any] , _A : int , _A : int , _A : int ) -> List[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def __a ( self : Optional[Any] , *_A : Optional[Any] , _A : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , _A : List[Any]=None , _A : Any=None ) -> Dict: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , _A ): return self.tokenizer._build_translation_inputs( *_A , return_tensors=self.framework , truncation=_A , src_lang=_A , tgt_lang=_A ) else: return super()._parse_and_tokenize(*_A , truncation=_A ) def __a ( self : Any , _A : Tuple=None , _A : Any=None , **_A : Any ) -> Optional[int]: """simple docstring""" lowercase , lowercase , lowercase : Dict = super()._sanitize_parameters(**_A ) if src_lang is not None: lowercase : Optional[Any] = src_lang if tgt_lang is not None: lowercase : Dict = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase : Dict = kwargs.get('''task''' , self.task ) lowercase : List[str] = task.split('''_''' ) if task and len(_A ) == 4: # translation, XX, to YY lowercase : Any = items[1] lowercase : List[str] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : Tuple , *_A : Union[str, Any] , **_A : List[Any] ) -> List[Any]: """simple docstring""" return super().__call__(*_A , **_A )
308
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_lowerCamelCase ) , '''Tatoeba directory does not exist.''' ) class _A ( unittest.TestCase ): @cached_property def __a ( self : int ) -> Dict: """simple docstring""" lowercase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=_A ) @slow def __a ( self : Any ) -> List[Any]: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def __a ( self : int ) -> Tuple: """simple docstring""" lowercase , lowercase : Optional[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=_A ) assert mmeta["long_pair"] == "heb-eng"
308
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase_ = get_logger(__name__) class _A : _UpperCamelCase : int = '''dummy_data''' _UpperCamelCase : Tuple = '''datasets''' _UpperCamelCase : Optional[int] = False def __init__( self : Any , _A : str , _A : str , _A : Union[Version, str] , _A : Optional[str] = None , _A : bool = False , _A : bool = True , _A : Optional[List[Callable]] = None , ) -> Dict: """simple docstring""" lowercase : Tuple = 0 lowercase : List[Any] = dataset_name lowercase : int = cache_dir lowercase : str = use_local_dummy_data lowercase : Union[str, Any] = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Union[str, Any] = str(_A ) # to be downloaded lowercase : Tuple = None lowercase : Optional[int] = None @property def __a ( self : str ) -> Dict: """simple docstring""" if self._dummy_file is None: lowercase : Optional[Any] = self.download_dummy_data() return self._dummy_file @property def __a ( self : int ) -> Optional[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __a ( self : List[Any] ) -> int: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __a ( self : str ) -> int: """simple docstring""" lowercase : str = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : List[str] = cached_path( _A , cache_dir=self.cache_dir , extract_compressed_file=_A , force_extract=_A ) return os.path.join(_A , self.dummy_file_name ) @property def __a ( self : str ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" if self._bucket_url is None: lowercase : Optional[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __a ( self : Tuple ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __a ( self : Union[str, Any] , _A : Dict , *_A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Union[str, Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_A , _A ): return self.create_dummy_data_dict(_A , _A ) elif isinstance(_A , (list, tuple) ): return self.create_dummy_data_list(_A , _A ) else: return self.create_dummy_data_single(_A , _A ) def __a ( self : str , _A : Union[str, Any] , *_A : Dict ) -> Dict: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : str , _A : List[str] , _A : Any ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_A ) def __a ( self : Optional[int] , _A : Tuple , *_A : str , **_A : Any ) -> Optional[Any]: """simple docstring""" return path def __a ( self : List[str] ) -> str: """simple docstring""" return {} def __a ( self : List[str] , _A : Union[str, Any] , _A : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase : Any = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_A , _A ): for single_url in single_urls: download_callback(_A ) else: lowercase : List[str] = single_urls download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_A , _A ): lowercase : int = [os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Any = os.path.join(_A , urllib.parse.quote_plus(Path(_A ).name ) ) lowercase : str = value # make sure that values are unique if all(isinstance(_A , _A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __a ( self : Optional[int] , _A : List[Any] , _A : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Union[str, Any] = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , _A ) ) for url in data_url ) lowercase : str = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : List[str] = [data_url[0]] * len(_A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Optional[int] = os.path.join(_A , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_A ) return dummy_data_list def __a ( self : Optional[Any] , _A : List[str] , _A : Union[str, Any] ) -> List[str]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Dict = os.path.join(_A , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __a ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def __a ( self : Any ) -> Dict: """simple docstring""" pass def __a ( self : int , _A : Optional[Any] ) -> Dict: """simple docstring""" def _iter_archive_members(_A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowercase : int = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : Optional[int] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_A ) lowercase : Tuple = Path(_A ) lowercase : List[Any] = _iter_archive_members(_A ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_A ).as_posix(), file_path.open('''rb''' ) def __a ( self : Optional[Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" if not isinstance(_A , _A ): lowercase : Dict = [paths] for path in paths: if os.path.isfile(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_A ): if os.path.basename(_A ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_A ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_A , _A )
308
1
from __future__ import annotations import bisect def snake_case( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> int: '''simple docstring''' if hi < 0: lowercase : Union[str, Any] = len(__magic_name__ ) while lo < hi: lowercase : str = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase : Dict = mid + 1 else: lowercase : List[str] = mid return lo def snake_case( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> int: '''simple docstring''' if hi < 0: lowercase : Dict = len(__magic_name__ ) while lo < hi: lowercase : str = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase : Optional[Any] = mid + 1 else: lowercase : Optional[int] = mid return lo def snake_case( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> int | None: '''simple docstring''' lowercase : int = 0 lowercase : Union[str, Any] = len(__magic_name__ ) - 1 while left <= right: lowercase : str = left + (right - left) // 2 lowercase : List[Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase : List[Any] = midpoint - 1 else: lowercase : Tuple = midpoint + 1 return None def snake_case( __magic_name__ , __magic_name__ ) -> int | None: '''simple docstring''' lowercase : Any = bisect.bisect_left(__magic_name__ , __magic_name__ ) if index != len(__magic_name__ ) and sorted_collection[index] == item: return index return None def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> int | None: '''simple docstring''' if right < left: return None lowercase : Optional[Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__magic_name__ , __magic_name__ , __magic_name__ , midpoint - 1 ) else: return binary_search_by_recursion(__magic_name__ , __magic_name__ , midpoint + 1 , __magic_name__ ) if __name__ == "__main__": lowerCAmelCase_ = input('Enter numbers separated by comma:\n').strip() lowerCAmelCase_ = sorted(int(item) for item in user_input.split(',')) lowerCAmelCase_ = int(input('Enter a single number to be found in the list:\n')) lowerCAmelCase_ = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
308
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' lowercase : Union[str, Any] = [False] * len(__magic_name__ ) lowercase : Optional[int] = [] queue.append(__magic_name__ ) lowercase : int = True while queue: lowercase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__magic_name__ ) lowercase : Dict = True lowercase : List[str] = u return visited[t] def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : List[str] = [-1] * (len(__magic_name__ )) lowercase : Tuple = 0 while bfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowercase : Any = float('''Inf''' ) lowercase : str = sink while s != source: # Find the minimum value in select path lowercase : Any = min(__magic_name__ , graph[parent[s]][s] ) lowercase : Dict = parent[s] max_flow += path_flow lowercase : Union[str, Any] = sink while v != source: lowercase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase : Optional[int] = parent[v] return max_flow lowerCAmelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] lowerCAmelCase_ , lowerCAmelCase_ = 0, 5 print(ford_fulkerson(graph, source, sink))
308
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = (DPMSolverSDEScheduler,) _UpperCamelCase : Union[str, Any] = 1_0 def __a ( self : int , **_A : Any ) -> Dict: """simple docstring""" lowercase : Optional[Any] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_A ) return config def __a ( self : str ) -> int: """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_A ) def __a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def __a ( self : Dict ) -> List[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def __a ( self : Optional[int] ) -> str: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def __a ( self : int ) -> str: """simple docstring""" lowercase : int = self.scheduler_classes[0] lowercase : List[Any] = self.get_scheduler_config() lowercase : Optional[Any] = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) lowercase : Union[str, Any] = self.dummy_model() lowercase : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase : Optional[Any] = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): lowercase : Union[str, Any] = scheduler.scale_model_input(_A , _A ) lowercase : Optional[int] = model(_A , _A ) lowercase : List[Any] = scheduler.step(_A , _A , _A ) lowercase : Optional[Any] = output.prev_sample lowercase : Optional[int] = torch.sum(torch.abs(_A ) ) lowercase : Union[str, Any] = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : List[str] = self.scheduler_classes[0] lowercase : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase : int = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) lowercase : List[Any] = self.dummy_model() lowercase : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase : Optional[Any] = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): lowercase : int = scheduler.scale_model_input(_A , _A ) lowercase : Dict = model(_A , _A ) lowercase : Optional[Any] = scheduler.step(_A , _A , _A ) lowercase : List[str] = output.prev_sample lowercase : Dict = torch.sum(torch.abs(_A ) ) lowercase : int = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def __a ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase : Tuple = self.scheduler_classes[0] lowercase : Optional[int] = self.get_scheduler_config() lowercase : Optional[Any] = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) lowercase : Tuple = self.dummy_model() lowercase : Dict = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase : Any = scheduler.scale_model_input(_A , _A ) lowercase : List[Any] = model(_A , _A ) lowercase : List[str] = scheduler.step(_A , _A , _A ) lowercase : Any = output.prev_sample lowercase : Any = torch.sum(torch.abs(_A ) ) lowercase : Optional[Any] = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __a ( self : Tuple ) -> Any: """simple docstring""" lowercase : Optional[Any] = self.scheduler_classes[0] lowercase : Dict = self.get_scheduler_config() lowercase : Tuple = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) lowercase : List[str] = self.dummy_model() lowercase : Optional[int] = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma lowercase : List[str] = sample.to(_A ) for t in scheduler.timesteps: lowercase : Union[str, Any] = scheduler.scale_model_input(_A , _A ) lowercase : Dict = model(_A , _A ) lowercase : Tuple = scheduler.step(_A , _A , _A ) lowercase : Dict = output.prev_sample lowercase : Optional[int] = torch.sum(torch.abs(_A ) ) lowercase : Union[str, Any] = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
308
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt'} lowerCAmelCase_ = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } lowerCAmelCase_ = { 'openbmb/cpm-ant-10b': 10_24, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' lowercase : Optional[int] = collections.OrderedDict() with open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase : str = reader.readlines() for index, token in enumerate(__magic_name__ ): lowercase : Union[str, Any] = token.rstrip('''\n''' ) lowercase : List[Any] = index return vocab class _A ( _lowerCamelCase ): def __init__( self : List[str] , _A : Any , _A : List[str]="<unk>" , _A : Union[str, Any]=200 ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = vocab lowercase : List[str] = unk_token lowercase : Any = max_input_chars_per_word def __a ( self : List[str] , _A : Tuple ) -> str: """simple docstring""" lowercase : Dict = list(_A ) if len(_A ) > self.max_input_chars_per_word: return [self.unk_token] lowercase : int = 0 lowercase : Dict = [] while start < len(_A ): lowercase : Optional[Any] = len(_A ) lowercase : List[str] = None while start < end: lowercase : List[Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowercase : Union[str, Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_A ) lowercase : Dict = end return sub_tokens class _A ( _lowerCamelCase ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : int = False def __init__( self : List[str] , _A : int , _A : Optional[Any]="<d>" , _A : Any="</d>" , _A : Optional[Any]="<s>" , _A : Any="</s>" , _A : Any="<pad>" , _A : List[Any]="<unk>" , _A : Optional[Any]="</n>" , _A : List[str]="</_>" , _A : Optional[Any]="left" , **_A : str , ) -> Tuple: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_A , eod_token=_A , bos_token=_A , eos_token=_A , pad_token=_A , unk_token=_A , line_token=_A , space_token=_A , padding_side=_A , **_A , ) lowercase : str = bod_token lowercase : str = eod_token lowercase : Any = load_vocab(_A ) lowercase : List[Any] = self.encoder[space_token] lowercase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowercase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) lowercase : int = {v: k for k, v in self.encoder.items()} lowercase : Optional[Any] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Dict ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[str] ) -> List[str]: """simple docstring""" return self.encoder["\n"] @property def __a ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : str , _A : List[str] ) -> Tuple: """simple docstring""" lowercase : int = [] for x in jieba.cut(_A , cut_all=_A ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_A ) ) return output_tokens def __a ( self : List[Any] , _A : Tuple , **_A : Optional[int] ) -> Any: """simple docstring""" lowercase : List[str] = [i for i in token_ids if i >= 0] lowercase : Any = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_A , **_A ) def __a ( self : List[Any] , _A : int ) -> Optional[Any]: """simple docstring""" return token in self.encoder def __a ( self : Dict , _A : List[str] ) -> str: """simple docstring""" return "".join(_A ) def __a ( self : List[str] , _A : List[str] ) -> Any: """simple docstring""" return self.encoder.get(_A , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _A : Union[str, Any] ) -> Tuple: """simple docstring""" return self.decoder.get(_A , self.unk_token ) def __a ( self : List[Any] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(_A ): lowercase : str = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase : Optional[int] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowercase : Any = 0 if " " in self.encoder: lowercase : List[Any] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowercase : Dict = self.encoder['''\n'''] del self.encoder["\n"] lowercase : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _A : x[1] ) ) with open(_A , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase : Any = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __a ( self : str , _A : List[int] , _A : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : int , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) return [1] + ([0] * len(_A ))
308
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCAmelCase_ = 'bert-base-cased' lowerCAmelCase_ = 'fp16' lowerCAmelCase_ = 'bf16' lowerCAmelCase_ = [FPaa, BFaa] @require_fsdp @require_cuda class _A ( _lowerCamelCase ): def __a ( self : List[str] ) -> Any: """simple docstring""" super().setUp() lowercase : Optional[int] = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(_A ): lowercase : int = self.dist_env.copy() lowercase : Dict = f"""{i + 1}""" lowercase : Dict = strategy with mockenv_context(**_A ): lowercase : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __a ( self : List[Any] ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(_A ): lowercase : List[str] = self.dist_env.copy() lowercase : Any = prefetch_policy with mockenv_context(**_A ): lowercase : Optional[int] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __a ( self : Any ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(_A ): lowercase : int = self.dist_env.copy() lowercase : Union[str, Any] = state_dict_type with mockenv_context(**_A ): lowercase : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] = AutoModel.from_pretrained(_A ) for policy in FSDP_AUTO_WRAP_POLICY: lowercase : List[Any] = self.dist_env.copy() lowercase : Optional[Any] = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase : Dict = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": lowercase : Tuple = '''2000''' with mockenv_context(**_A ): lowercase : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) lowercase : Any = self.dist_env.copy() lowercase : Dict = '''TRANSFORMER_BASED_WRAP''' lowercase : str = '''T5Layer''' with mockenv_context(**_A ): lowercase : Dict = FullyShardedDataParallelPlugin() with self.assertRaises(_A ) as cm: fsdp_plugin.set_auto_wrap_policy(_A ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) lowercase : Optional[Any] = self.dist_env.copy() lowercase : Optional[int] = '''SIZE_BASED_WRAP''' lowercase : Any = '''0''' with mockenv_context(**_A ): lowercase : Optional[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(_A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __a ( self : Any ) -> Dict: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase : str = self.dist_env.copy() lowercase : Optional[int] = mp_dtype with mockenv_context(**_A ): lowercase : Any = Accelerator() if mp_dtype == "fp16": lowercase : int = torch.floataa elif mp_dtype == "bf16": lowercase : Optional[Any] = torch.bfloataa lowercase : List[str] = MixedPrecision(param_dtype=_A , reduce_dtype=_A , buffer_dtype=_A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , _A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , _A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(_A ) def __a ( self : str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase : Optional[Any] = self.dist_env.copy() lowercase : List[str] = str(_A ).lower() with mockenv_context(**_A ): lowercase : Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=_A ) ) @require_fsdp @require_multi_gpu @slow class _A ( _lowerCamelCase ): def __a ( self : int ) -> List[str]: """simple docstring""" super().setUp() lowercase : List[str] = 0.82 lowercase : Optional[Any] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] lowercase : List[str] = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase : str = 160 lowercase : Union[str, Any] = 160 lowercase : Optional[int] = inspect.getfile(accelerate.test_utils ) lowercase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __a ( self : Dict ) -> Optional[int]: """simple docstring""" lowercase : str = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) lowercase : Any = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: lowercase : int = cmd.copy() for i, strategy in enumerate(_A ): if strategy.lower() in config: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" lowercase : Union[str, Any] = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) lowercase : int = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(_A ): lowercase : Dict = cmd.copy() cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue lowercase : str = len(_A ) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase : Optional[int] = cmd_config[:state_dict_config_index] cmd_config.append(f"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) lowercase : Union[str, Any] = cmd_config[:-1] lowercase : List[Any] = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() ) def __a ( self : int ) -> int: """simple docstring""" lowercase : List[Any] = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) lowercase : int = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase : Optional[int] = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(_A ): if strategy.lower() in spec: cmd_config.append(f"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f"""--output_dir={self.tmpdir}""", f"""--peak_memory_upper_bound={peak_mem_upper_bound}""", f"""--n_train={self.n_train}""", f"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_A , env=os.environ.copy() )
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
from __future__ import annotations from random import choice def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' return choice(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' lowercase : List[str] = random_pivot(__magic_name__ ) # partition based on pivot # linear time lowercase : Union[str, Any] = [e for e in lst if e < pivot] lowercase : List[Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__magic_name__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__magic_name__ ) < k - 1: return kth_number(__magic_name__ , k - len(__magic_name__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__magic_name__ , __magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
308
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case( ) -> int: '''simple docstring''' lowercase : List[str] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__magic_name__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__magic_name__ , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__magic_name__ ) return parser.parse_args() def snake_case( ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] = parse_args() # Import training_script as a module. lowercase : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase : int = script_fpath.stem lowercase : List[Any] = importlib.import_module(__magic_name__ ) # Patch sys.argv lowercase : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
1
def snake_case( __magic_name__ = 10_00 ) -> int: '''simple docstring''' lowercase : str = 2**power lowercase : Dict = 0 while n: lowercase , lowercase : List[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
308
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def snake_case( __magic_name__ ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _A ( _lowerCamelCase ): _UpperCamelCase : str = ['''pixel_values'''] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Optional[int] , ) -> None: """simple docstring""" super().__init__(**_A ) lowercase : List[Any] = size if size is not None else {'''shortest_edge''': 224} lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) lowercase : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowercase : Dict = get_size_dict(_A , param_name='''crop_size''' ) lowercase : List[str] = do_resize lowercase : Optional[Any] = size lowercase : List[str] = do_center_crop lowercase : List[Any] = crop_size lowercase : str = resample lowercase : Tuple = do_rescale lowercase : Any = rescale_factor lowercase : Tuple = do_normalize lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Tuple = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: lowercase : Dict = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __a ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ) -> np.ndarray: """simple docstring""" lowercase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def __a ( self : Union[str, Any] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(_A , scale=_A , data_format=_A , **_A ) def __a ( self : str , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: """simple docstring""" return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __a ( self : int , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(_A ) if do_resize: lowercase : List[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: lowercase : Optional[int] = self.center_crop(_A , size=_A ) if do_rescale: lowercase : Tuple = self.rescale(image=_A , scale=_A ) if do_normalize: lowercase : Union[str, Any] = self.normalize(image=_A , mean=_A , std=_A ) lowercase : Any = to_channel_dimension_format(_A , _A ) return image def __a ( self : List[Any] , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" lowercase : str = do_resize if do_resize is not None else self.do_resize lowercase : Optional[Any] = resample if resample is not None else self.resample lowercase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : str = do_rescale if do_rescale is not None else self.do_rescale lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_A , default_to_square=_A ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : str = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowercase : Union[str, Any] = make_batched(_A ) lowercase : Dict = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] lowercase : Tuple = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
308
1