code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
101
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", } } SCREAMING_SNAKE_CASE : Union[str, Any] = { """camembert-base""": 512, } SCREAMING_SNAKE_CASE : List[Any] = """▁""" class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] def __init__(self , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=["<s>NOTUSED", "</s>NOTUSED"] , a_ = None , **a_ , ): '''simple docstring''' __snake_case : List[Any] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token __snake_case : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , additional_special_tokens=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) __snake_case : Optional[Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __snake_case : List[Any] = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} __snake_case : str = len(self.fairseq_tokens_to_ids ) __snake_case : List[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __snake_case : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] __snake_case : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Optional[int] = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.sp_model.encode(a_ , out_type=a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(a_ ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = [] __snake_case : Dict = '''''' __snake_case : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token __snake_case : Tuple = True __snake_case : Any = [] else: current_sub_tokens.append(a_ ) __snake_case : int = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def __getstate__(self ): '''simple docstring''' __snake_case : Dict = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__(self , a_ ): '''simple docstring''' __snake_case : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __snake_case : Optional[Any] = {} __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : List[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , '''wb''' ) as fi: __snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,)
102
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __snake_case ( UpperCamelCase_ ,unittest.TestCase ): _a = BertTokenizer _a = BertTokenizerFast _a = True _a = True _a = filter_non_english def UpperCAmelCase__ ( self : Optional[Any]): super().setUp() lowerCAmelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def UpperCAmelCase__ ( self : int , A_ : Any): lowerCAmelCase_ : str = '''UNwant\u00E9d,running''' lowerCAmelCase_ : Union[str, Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[int] = self.tokenizer_class(self.vocab_file) lowerCAmelCase_ : Union[str, Any] = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(A_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_) , [9, 6, 7, 1_2, 1_0, 1_1]) def UpperCAmelCase__ ( self : int): if not self.test_rust_tokenizer: return lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : str = self.get_rust_tokenizer() lowerCAmelCase_ : Optional[Any] = '''UNwant\u00E9d,running''' lowerCAmelCase_ : Any = tokenizer.tokenize(A_) lowerCAmelCase_ : Optional[Any] = rust_tokenizer.tokenize(A_) self.assertListEqual(A_ , A_) lowerCAmelCase_ : str = tokenizer.encode(A_ , add_special_tokens=A_) lowerCAmelCase_ : int = rust_tokenizer.encode(A_ , add_special_tokens=A_) self.assertListEqual(A_ , A_) lowerCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer() lowerCAmelCase_ : Optional[int] = tokenizer.encode(A_) lowerCAmelCase_ : Optional[int] = rust_tokenizer.encode(A_) self.assertListEqual(A_ , A_) # With lower casing lowerCAmelCase_ : Optional[Any] = self.get_tokenizer(do_lower_case=A_) lowerCAmelCase_ : Tuple = self.get_rust_tokenizer(do_lower_case=A_) lowerCAmelCase_ : Dict = '''UNwant\u00E9d,running''' lowerCAmelCase_ : Tuple = tokenizer.tokenize(A_) lowerCAmelCase_ : Any = rust_tokenizer.tokenize(A_) self.assertListEqual(A_ , A_) lowerCAmelCase_ : Any = tokenizer.encode(A_ , add_special_tokens=A_) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(A_ , add_special_tokens=A_) self.assertListEqual(A_ , A_) lowerCAmelCase_ : List[str] = self.get_rust_tokenizer() lowerCAmelCase_ : int = tokenizer.encode(A_) lowerCAmelCase_ : Tuple = rust_tokenizer.encode(A_) self.assertListEqual(A_ , A_) def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : List[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') , ['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=A_) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : str = BasicTokenizer(do_lower_case=A_ , strip_accents=A_) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''h\u00E9llo''']) def UpperCAmelCase__ ( self : Optional[int]): lowerCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=A_ , strip_accents=A_) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=A_) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''hello''']) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : int = BasicTokenizer(do_lower_case=A_) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Any = BasicTokenizer(do_lower_case=A_ , strip_accents=A_) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase__ ( self : Dict): lowerCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=A_ , strip_accents=A_) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def UpperCAmelCase__ ( self : List[str]): lowerCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=A_ , never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def UpperCAmelCase__ ( self : Any): lowerCAmelCase_ : Dict = BasicTokenizer() lowerCAmelCase_ : str = '''a\n\'ll !!to?\'d of, can\'t.''' lowerCAmelCase_ : Dict = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(A_) , A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCAmelCase_ : Optional[Any] = {} for i, token in enumerate(A_): lowerCAmelCase_ : Union[str, Any] = i lowerCAmelCase_ : Optional[Any] = WordpieceTokenizer(vocab=A_ , unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') , []) self.assertListEqual(tokenizer.tokenize('''unwanted running''') , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') , ['''[UNK]''', '''runn''', '''##ing''']) def UpperCAmelCase__ ( self : str): self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def UpperCAmelCase__ ( self : Tuple): self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def UpperCAmelCase__ ( self : List[str]): self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = self.get_tokenizer() lowerCAmelCase_ : str = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) self.assertListEqual( [rust_tokenizer.tokenize(A_) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']]) @slow def UpperCAmelCase__ ( self : Optional[Any]): lowerCAmelCase_ : str = self.tokenizer_class.from_pretrained('''bert-base-uncased''') lowerCAmelCase_ : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=A_) lowerCAmelCase_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_) lowerCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(A_) lowerCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(A_ , A_) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def UpperCAmelCase__ ( self : Any): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(A_ , **A_) lowerCAmelCase_ : Union[str, Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCAmelCase_ : Tuple = tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) lowerCAmelCase_ : Tuple = tokenizer_r.do_lower_case if hasattr(A_ , '''do_lower_case''') else False lowerCAmelCase_ : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping''']) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : Dict = ['''的''', '''人''', '''有'''] lowerCAmelCase_ : str = ''''''.join(A_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained(A_ , **A_) lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(A_ , **A_) lowerCAmelCase_ : Dict = tokenizer_p.encode(A_ , add_special_tokens=A_) lowerCAmelCase_ : Union[str, Any] = tokenizer_r.encode(A_ , add_special_tokens=A_) lowerCAmelCase_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(A_) lowerCAmelCase_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(A_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_) self.assertListEqual(A_ , A_) lowerCAmelCase_ : int = False lowerCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained(A_ , **A_) lowerCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained(A_ , **A_) lowerCAmelCase_ : Tuple = tokenizer_r.encode(A_ , add_special_tokens=A_) lowerCAmelCase_ : List[Any] = tokenizer_p.encode(A_ , add_special_tokens=A_) lowerCAmelCase_ : Dict = tokenizer_r.convert_ids_to_tokens(A_) lowerCAmelCase_ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(A_) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ : int = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(A_) ] self.assertListEqual(A_ , A_) self.assertListEqual(A_ , A_)
103
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['pixel_values'] def __init__( self : Optional[int] ,lowercase__ : bool = True ,lowercase__ : Optional[Dict[str, int]] = None ,lowercase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : Dict[str, int] = None ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,**lowercase__ : Tuple ,): super().__init__(**lowercase__ ) __lowercase = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __lowercase = get_size_dict(lowercase__ ) __lowercase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} __lowercase = get_size_dict(lowercase__ ,default_to_square=lowercase__ ,param_name='''crop_size''' ) __lowercase = do_resize __lowercase = do_rescale __lowercase = do_normalize __lowercase = do_center_crop __lowercase = crop_size __lowercase = size __lowercase = resample __lowercase = rescale_factor __lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Optional[Any] ,): __lowercase = get_size_dict(lowercase__ ) if "shortest_edge" in size: __lowercase = get_resize_output_image_size(lowercase__ ,size=size['''shortest_edge'''] ,default_to_square=lowercase__ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __lowercase = (size['''height'''], size['''width''']) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(lowercase__ ,size=lowercase__ ,resample=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : np.ndarray ,lowercase__ : Dict[str, int] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : int ,): __lowercase = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(lowercase__ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : np.ndarray ,lowercase__ : float ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : Any ): return rescale(lowercase__ ,scale=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : np.ndarray ,lowercase__ : Union[float, List[float]] ,lowercase__ : Union[float, List[float]] ,lowercase__ : Optional[Union[str, ChannelDimension]] = None ,**lowercase__ : List[str] ,): return normalize(lowercase__ ,mean=lowercase__ ,std=lowercase__ ,data_format=lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : ImageInput ,lowercase__ : Optional[bool] = None ,lowercase__ : Dict[str, int] = None ,lowercase__ : PILImageResampling = None ,lowercase__ : bool = None ,lowercase__ : int = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[float] = None ,lowercase__ : Optional[bool] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[float, List[float]]] = None ,lowercase__ : Optional[Union[str, TensorType]] = None ,lowercase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowercase__ : Tuple ,): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(lowercase__ ,param_name='''crop_size''' ,default_to_square=lowercase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = size if size is not None else self.size __lowercase = get_size_dict(lowercase__ ) if not is_batched(lowercase__ ): __lowercase = [images] if not valid_images(lowercase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=lowercase__ ,size=lowercase__ ,resample=lowercase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=lowercase__ ,size=lowercase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=lowercase__ ,scale=lowercase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=lowercase__ ,mean=lowercase__ ,std=lowercase__ ) for image in images] __lowercase = [to_channel_dimension_format(lowercase__ ,lowercase__ ) for image in images] __lowercase = {'''pixel_values''': images} return BatchFeature(data=lowercase__ ,tensor_type=lowercase__ )
104
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _SCREAMING_SNAKE_CASE ( _lowercase : Features ) ->Optional[int]: '''simple docstring''' a : str = np.inf def set_batch_size(_lowercase : FeatureType ) -> None: nonlocal batch_size if isinstance(_lowercase , _lowercase ): a : Dict = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_lowercase , _lowercase ): a : Tuple = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_lowercase , _lowercase ) and feature.dtype == "binary": a : Optional[int] = min(_lowercase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_lowercase , _lowercase ) return None if batch_size is np.inf else batch_size class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : Union[str, Any] = path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} a : Dict = _PACKAGED_DATASETS_MODULES["parquet"][1] a : str = Parquet( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , hash=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __a ( self ) -> Any: # Build iterable dataset if self.streaming: a : List[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a : int = None a : Any = None a : Optional[int] = None a : Optional[Any] = None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) a : List[Any] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: a : Tuple = dataset a : int = path_or_buf a : List[str] = batch_size or get_writer_batch_size(dataset.features ) a : Any = parquet_writer_kwargs def __a ( self ) -> int: a : Dict = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: a : Any = self._write(file_obj=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , **self.parquet_writer_kwargs ) else: a : Optional[Any] = self._write(file_obj=self.path_or_buf , batch_size=lowerCAmelCase__ , **self.parquet_writer_kwargs ) return written def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: a : Optional[int] = 0 a : Union[str, Any] = parquet_writer_kwargs.pop("path_or_buf" , lowerCAmelCase__ ) a : Any = self.dataset.features.arrow_schema a : Optional[Any] = pq.ParquetWriter(lowerCAmelCase__ , schema=lowerCAmelCase__ , **lowerCAmelCase__ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowerCAmelCase__ ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): a : Dict = query_table( table=self.dataset._data , key=slice(lowerCAmelCase__ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCAmelCase__ ) written += batch.nbytes writer.close() return written
105
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
0
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : """simple docstring""" lowercase__ = 42 lowercase__ = None @staticmethod def __lowerCAmelCase ( ): raise NotImplementedError def __lowerCAmelCase ( self : List[Any] ,lowercase_ : List[Any] ,lowercase_ : int ,lowercase_ : str ,**lowercase_ : List[str] ): raise NotImplementedError def __lowerCAmelCase ( self : int ,lowercase_ : int ): raise NotImplementedError def __lowerCAmelCase ( self : List[str] ): if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __lowerCAmelCase ( cls : str ): return F'`pip install {cls.pip_package or cls.name}`' class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "optuna" @staticmethod def __lowerCAmelCase ( ): return is_optuna_available() def __lowerCAmelCase ( self : Any ,lowercase_ : List[str] ,lowercase_ : int ,lowercase_ : str ,**lowercase_ : Any ): return run_hp_search_optuna(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ): return default_hp_space_optuna(lowercase_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "ray" lowercase__ = "'ray[tune]'" @staticmethod def __lowerCAmelCase ( ): return is_ray_available() def __lowerCAmelCase ( self : str ,lowercase_ : int ,lowercase_ : int ,lowercase_ : str ,**lowercase_ : str ): return run_hp_search_ray(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Tuple ): return default_hp_space_ray(lowercase_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "sigopt" @staticmethod def __lowerCAmelCase ( ): return is_sigopt_available() def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[str] ,lowercase_ : int ,lowercase_ : str ,**lowercase_ : List[Any] ): return run_hp_search_sigopt(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : str ,lowercase_ : Union[str, Any] ): return default_hp_space_sigopt(lowercase_ ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "wandb" @staticmethod def __lowerCAmelCase ( ): return is_wandb_available() def __lowerCAmelCase ( self : str ,lowercase_ : Optional[int] ,lowercase_ : int ,lowercase_ : str ,**lowercase_ : List[Any] ): return run_hp_search_wandb(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[int] ): return default_hp_space_wandb(lowercase_ ) __UpperCamelCase : Dict = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(A_ ) > 0: lowerCAmelCase__ : Optional[int] = available_backends[0].name if len(A_ ) > 1: logger.info( f'{len(A_ )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
106
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=13 , __lowerCamelCase : Tuple=10 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : str=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=10 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="divided_space_time" , __lowerCamelCase : Tuple=None , ) -> Optional[int]: a = parent a = batch_size a = image_size a = num_channels a = patch_size a = num_frames a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = attention_type a = initializer_range a = scope a = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token a = (image_size // patch_size) ** 2 a = (num_frames) * self.num_patches_per_frame + 1 def __UpperCAmelCase ( self : Dict ) -> Dict: a = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Any ) -> List[str]: a = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) a = self.num_labels return config def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict ) -> Tuple: a = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) # verify the logits shape a = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : str = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Any = False SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : List[Any] ) -> Any: a = TimesformerModelTester(self ) a = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any=False ) -> Any: a = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def __UpperCAmelCase ( self : List[Any] ) -> int: pass def __UpperCAmelCase ( self : Optional[int] ) -> Any: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : int ) -> Tuple: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> str: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : int ) -> List[str]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: if not self.has_attentions: pass else: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True for model_class in self.all_model_classes: a = self.model_tester.seq_length a = self.model_tester.num_frames a = True a = False a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) a = len(__lowerCamelCase ) # Check attention is always last and order is fine a = True a = True a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) a = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Any ): a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) a = outputs.hidden_states a = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) a = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) a = np.load(A ) return list(A ) @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : List[str] ) -> List[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : int ) -> List[Any]: a = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) a = self.default_image_processor a = prepare_video() a = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) # verify the logits a = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) a = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
107
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def a__ ( SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' lowerCAmelCase : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' i -= len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = i // 3 lowerCAmelCase : List[Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase : Union[str, Any] = ( chars_incl + random(SCREAMING_SNAKE_CASE , quotient + remainder ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) + random(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = list(SCREAMING_SNAKE_CASE ) shuffle(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return "".join(secrets.choice(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 8 ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase : Optional[Any] = any(char in ascii_uppercase for char in password ) lowerCAmelCase : List[str] = any(char in ascii_lowercase for char in password ) lowerCAmelCase : Optional[int] = any(char in digits for char in password ) lowerCAmelCase : Union[str, Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def a__ ( ): '''simple docstring''' lowerCAmelCase : int = int(input("Please indicate the max length of your password: " ).strip() ) lowerCAmelCase : int = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(SCREAMING_SNAKE_CASE ) ) print( "Alternative Password generated:" , alternative_password_generator(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
108
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) A: Dict = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: int = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys A: Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : int = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ) -> int: """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ) -> List[str]: """simple docstring""" snake_case__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ) -> Dict: """simple docstring""" snake_case__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def a_ ( ) -> Optional[int]: """simple docstring""" assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def a_ ( ) -> Optional[Any]: """simple docstring""" # laplace diagonals snake_case__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def a_ ( ) -> Dict: """simple docstring""" assert med.median_filter(_A , 3 ).any() def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = sp.make_sepia(_A , 20 ) assert sepia.all() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[int]: """simple docstring""" snake_case__ = bs.Burkes(imread(_A , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" snake_case__ = rs.NearestNeighbour(imread(_A , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def a_ ( ) -> Any: """simple docstring""" snake_case__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ = 0 snake_case__ = 0 snake_case__ = image[x_coordinate][y_coordinate] snake_case__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
307
0
from __future__ import annotations UpperCamelCase_ = [True] * 1000001 UpperCamelCase_ = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): UpperCamelCase_ = False i += 1 def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' return seive[n] def lowerCamelCase_ ( _a : Any ): '''simple docstring''' return any(digit in """02468""" for digit in str(_A ) ) def lowerCamelCase_ ( _a : List[Any] = 100_0000 ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(_A ) and not contains_an_even_digit(_A ): UpperCAmelCase_ : List[Any] = str(_A ) UpperCAmelCase_ : str = [int(str_num[j:] + str_num[:j] ) for j in range(len(_A ) )] if all(is_prime(_A ) for i in list_nums ): result.append(_A ) return result def lowerCamelCase_ ( ): '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F"{len(find_circular_primes()) = }")
345
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_A ): for j in range(_A ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def _A ( lowercase , lowercase ): """simple docstring""" a =[[float('''inf''' ) for _ in range(_A )] for _ in range(_A )] for i in range(_A ): for j in range(_A ): a =graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_A ): # looping through rows of graph array for i in range(_A ): # looping through columns of graph array for j in range(_A ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): a =dist[i][k] + dist[k][j] _print_dist(_A , _A ) return dist, v if __name__ == "__main__": lowerCamelCase_ : Tuple = int(input("""Enter number of vertices: """)) lowerCamelCase_ : int = int(input("""Enter number of edges: """)) lowerCamelCase_ : Dict = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): lowerCamelCase_ : Optional[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) lowerCamelCase_ : List[str] = int(input("""Enter source:""")) lowerCamelCase_ : int = int(input("""Enter destination:""")) lowerCamelCase_ : Union[str, Any] = float(input("""Enter weight:""")) lowerCamelCase_ : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
0
"""simple docstring""" from math import isclose, sqrt def lowercase ( A_ , A_ , A_ )-> tuple[float, float, float]: '''simple docstring''' a : Optional[int] = point_y / 4 / point_x a : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) a : Dict = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) a : Dict = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 a : List[str] = outgoing_gradient**2 + 4 a : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) a : Union[str, Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 a : Optional[int] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) a : str = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point a : Tuple = x_minus if isclose(_A , _A ) else x_plus a : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowercase ( A_ = 1.4 , A_ = -9.6 )-> int: '''simple docstring''' a : Dict = 0 a : List[str] = first_x_coord a : Union[str, Any] = first_y_coord a : Tuple = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): a , a , a : List[str] = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
40
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
0
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class _SCREAMING_SNAKE_CASE ( a_ ): UpperCAmelCase_ :List[str] = (DPMSolverSDEScheduler,) UpperCAmelCase_ :List[Any] = 10 def __lowerCAmelCase ( self , **__A ) -> str: lowerCAmelCase_ :Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__A ) return config def __lowerCAmelCase ( self ) -> Dict: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def __lowerCAmelCase ( self ) -> Optional[Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def __lowerCAmelCase ( self ) -> Optional[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def __lowerCAmelCase ( self ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[Any] = self.scheduler_classes[0] lowerCAmelCase_ :Dict = self.get_scheduler_config() lowerCAmelCase_ :Optional[int] = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ :List[str] = self.dummy_model() lowerCAmelCase_ :List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ :List[Any] = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ :Optional[Any] = scheduler.scale_model_input(__A , __A ) lowerCAmelCase_ :int = model(__A , __A ) lowerCAmelCase_ :List[str] = scheduler.step(__A , __A , __A ) lowerCAmelCase_ :List[str] = output.prev_sample lowerCAmelCase_ :List[Any] = torch.sum(torch.abs(__A ) ) lowerCAmelCase_ :str = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Tuple = self.scheduler_classes[0] lowerCAmelCase_ :int = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase_ :Dict = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase_ :Any = self.dummy_model() lowerCAmelCase_ :str = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase_ :Optional[int] = sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ :Tuple = scheduler.scale_model_input(__A , __A ) lowerCAmelCase_ :List[Any] = model(__A , __A ) lowerCAmelCase_ :List[Any] = scheduler.step(__A , __A , __A ) lowerCAmelCase_ :Tuple = output.prev_sample lowerCAmelCase_ :Optional[int] = torch.sum(torch.abs(__A ) ) lowerCAmelCase_ :Optional[Any] = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = self.scheduler_classes[0] lowerCAmelCase_ :List[str] = self.get_scheduler_config() lowerCAmelCase_ :Optional[Any] = scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) lowerCAmelCase_ :int = self.dummy_model() lowerCAmelCase_ :Union[str, Any] = self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase_ :Dict = scheduler.scale_model_input(__A , __A ) lowerCAmelCase_ :int = model(__A , __A ) lowerCAmelCase_ :Tuple = scheduler.step(__A , __A , __A ) lowerCAmelCase_ :Dict = output.prev_sample lowerCAmelCase_ :Union[str, Any] = torch.sum(torch.abs(__A ) ) lowerCAmelCase_ :Optional[Any] = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ :Union[str, Any] = self.get_scheduler_config() lowerCAmelCase_ :List[str] = scheduler_class(**__A , use_karras_sigmas=__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) lowerCAmelCase_ :Dict = self.dummy_model() lowerCAmelCase_ :Dict = self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma lowerCAmelCase_ :Union[str, Any] = sample.to(__A ) for t in scheduler.timesteps: lowerCAmelCase_ :Dict = scheduler.scale_model_input(__A , __A ) lowerCAmelCase_ :str = model(__A , __A ) lowerCAmelCase_ :Union[str, Any] = scheduler.step(__A , __A , __A ) lowerCAmelCase_ :Tuple = output.prev_sample lowerCAmelCase_ :List[Any] = torch.sum(torch.abs(__A ) ) lowerCAmelCase_ :Dict = torch.mean(torch.abs(__A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase__ = logging.get_logger(__name__) class A ( a_ , a_ ): __UpperCAmelCase : Dict = 'maskformer-swin' __UpperCAmelCase : str = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self : List[Any] , __UpperCAmelCase : Any=2_2_4 , __UpperCAmelCase : int=4 , __UpperCAmelCase : str=3 , __UpperCAmelCase : List[Any]=9_6 , __UpperCAmelCase : List[str]=[2, 2, 6, 2] , __UpperCAmelCase : str=[3, 6, 1_2, 2_4] , __UpperCAmelCase : Any=7 , __UpperCAmelCase : List[Any]=4.0 , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Tuple=0.1 , __UpperCAmelCase : str="gelu" , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Tuple=1E-5 , __UpperCAmelCase : int=None , __UpperCAmelCase : int=None , **__UpperCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = len(__UpperCAmelCase ) UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) UpperCAmelCase__ = ["stem"] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCAmelCase ) + 1 )] UpperCAmelCase__ , UpperCAmelCase__ = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
65
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
0
"""simple docstring""" def _lowercase ( __snake_case ) -> str: return "".join([hex(_A )[2:].zfill(2 ).upper() for byte in list(_A )] ) def _lowercase ( __snake_case ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(_A ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_A ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(_A ) ,2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
def lowerCamelCase__ ( a__ : Optional[Any] , a__ : List[str] ) -> int: while second != 0: UpperCamelCase_ = first & second first ^= second UpperCamelCase_ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _A = int(input('''Enter the first number: ''').strip()) _A = int(input('''Enter the second number: ''').strip()) print(F'''{add(first, second) = }''')
122
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
0
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A_ :List[str] = re.compile(R'''\s+''') def A ( a_ ) -> Union[str, Any]: return {"hash": hashlib.mda(re.sub(_A ,'' ,example['content'] ).encode('utf-8' ) ).hexdigest()} def A ( a_ ) -> Optional[Any]: __UpperCamelCase : Union[str, Any] =[len(_A ) for line in example['content'].splitlines()] return {"line_mean": np.mean(_A ), "line_max": max(_A )} def A ( a_ ) -> str: __UpperCamelCase : Tuple =np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def A ( a_ ,a_ ) -> Union[str, Any]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def A ( a_ ,a_=5 ) -> Tuple: __UpperCamelCase : Dict =['auto-generated', 'autogenerated', 'automatically generated'] __UpperCamelCase : List[str] =example['content'].splitlines() for _, line in zip(range(_A ) ,_A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A ( a_ ,a_=5 ,a_=0.05 ) -> Dict: __UpperCamelCase : Any =['unit tests', 'test file', 'configuration file'] __UpperCamelCase : Dict =example['content'].splitlines() __UpperCamelCase : Dict =0 __UpperCamelCase : Tuple =0 # first test for _, line in zip(range(_A ) ,_A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test __UpperCamelCase : Dict =example['content'].count('\n' ) __UpperCamelCase : List[str] =int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A ( a_ ) -> List[str]: __UpperCamelCase : Tuple =['def ', 'class ', 'for ', 'while '] __UpperCamelCase : Optional[int] =example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A ( a_ ,a_=4 ) -> Tuple: __UpperCamelCase : Optional[int] =example['content'].splitlines() __UpperCamelCase : Union[str, Any] =0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A ( a_ ) -> List[Any]: __UpperCamelCase : Tuple =tokenizer(example['content'] ,truncation=_A )['input_ids'] __UpperCamelCase : Optional[Any] =len(example['content'] ) / len(_A ) return {"ratio": ratio} def A ( a_ ) -> List[str]: __UpperCamelCase : Optional[Any] ={} results.update(get_hash(_A ) ) results.update(line_stats(_A ) ) results.update(alpha_stats(_A ) ) results.update(char_token_ratio(_A ) ) results.update(is_autogenerated(_A ) ) results.update(is_config_or_test(_A ) ) results.update(has_no_keywords(_A ) ) results.update(has_few_assignments(_A ) ) return results def A ( a_ ,a_ ,a_ ) -> Optional[int]: if not check_uniques(_A ,_A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A ( a_ ) -> Optional[Any]: with open(_A ,'rb' ) as f_in: with gzip.open(str(_A ) + '.gz' ,'wb' ,compresslevel=6 ) as f_out: shutil.copyfileobj(_A ,_A ) os.unlink(_A ) # Settings A_ :Union[str, Any] = HfArgumentParser(PreprocessingArguments) A_ :Dict = parser.parse_args() if args.num_workers is None: A_ :Any = multiprocessing.cpu_count() A_ :Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A_ :Any = time.time() A_ :Union[str, Any] = load_dataset(args.dataset_name, split='''train''') print(f"Time to load dataset: {time.time()-t_start:.2f}") # Run preprocessing A_ :Tuple = time.time() A_ :List[str] = ds.map(preprocess, num_proc=args.num_workers) print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") # Deduplicate hashes A_ :int = set(ds.unique('''hash''')) A_ :str = len(uniques) / len(ds) print(f"Fraction of duplicates: {1-frac:.2%}") # Deduplicate data and apply heuristics A_ :Optional[Any] = time.time() A_ :List[str] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f"Time to filter dataset: {time.time()-t_start:.2f}") print(f"Size of filtered dataset: {len(ds_filter)}") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A_ :Union[str, Any] = time.time() A_ :List[Any] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}") print(f"Size of deduplicate dataset: {len(ds_filter)}") # Save data in batches of samples_per_file A_ :Optional[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) A_ :List[str] = output_dir / """data""" data_dir.mkdir(exist_ok=True) A_ :Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A_ :List[Any] = str(data_dir / f"file-{file_number+1:012}.json") A_ :List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"Time to save dataset: {time.time()-t_start:.2f}")
71
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
0
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _A : int = 299792458 # Symbols _A : Optional[int] = symbols('''ct x y z''') def UpperCamelCase_ ( snake_case_ : Dict ) -> float: '''simple docstring''' if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def UpperCamelCase_ ( snake_case_ : Dict ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(_A ) ** 2 ) def UpperCamelCase_ ( snake_case_ : Tuple ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Tuple = None ) -> np.ndarray: '''simple docstring''' if event is None: __lowerCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _A : List[Any] = transform(29979245) print('''Example of four vector: ''') print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values _A : List[Any] = {ct: c, x: 1, y: 1, z: 1} _A : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
229
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __lowerCamelCase ( a_ : Tuple , a_ : Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE :Union[str, Any] = args.log_outputs __SCREAMING_SNAKE_CASE :Optional[int] = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric __SCREAMING_SNAKE_CASE :List[Any] = load_metric('''wer''' ) __SCREAMING_SNAKE_CASE :Any = load_metric('''cer''' ) # compute metrics __SCREAMING_SNAKE_CASE :Union[str, Any] = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) __SCREAMING_SNAKE_CASE :List[str] = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results __SCREAMING_SNAKE_CASE :Union[str, Any] = f'''WER: {wer_result}\nCER: {cer_result}''' print(_A ) with open(f'''{dataset_id}_eval_results.txt''' , '''w''' ) as f: f.write(_A ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __SCREAMING_SNAKE_CASE :Union[str, Any] = f'''log_{dataset_id}_predictions.txt''' __SCREAMING_SNAKE_CASE :Optional[Any] = f'''log_{dataset_id}_targets.txt''' with open(_A , '''w''' ) as p, open(_A , '''w''' ) as t: # mapping function to write output def write_to_file(a_ : Any , a_ : Dict ): p.write(f'''{i}''' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f'''{i}''' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_A , with_indices=_A ) def __lowerCamelCase ( a_ : Any ) -> str: __SCREAMING_SNAKE_CASE :Optional[int] = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __SCREAMING_SNAKE_CASE :List[str] = re.sub(_A , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __SCREAMING_SNAKE_CASE :List[Any] = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: __SCREAMING_SNAKE_CASE :Dict = ''' '''.join(text.split(_A ) ) return text def __lowerCamelCase ( a_ : Dict ) -> Optional[Any]: __SCREAMING_SNAKE_CASE :Dict = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_A ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __SCREAMING_SNAKE_CASE :str = AutoFeatureExtractor.from_pretrained(args.model_id ) __SCREAMING_SNAKE_CASE :Tuple = feature_extractor.sampling_rate # resample audio __SCREAMING_SNAKE_CASE :str = dataset.cast_column('''audio''' , Audio(sampling_rate=_A ) ) # load eval pipeline if args.device is None: __SCREAMING_SNAKE_CASE :Any = 0 if torch.cuda.is_available() else -1 __SCREAMING_SNAKE_CASE :str = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(a_ : str ): __SCREAMING_SNAKE_CASE :Union[str, Any] = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) __SCREAMING_SNAKE_CASE :Tuple = prediction['''text'''] __SCREAMING_SNAKE_CASE :Tuple = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples __SCREAMING_SNAKE_CASE :int = dataset.map(_A , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_A , _A ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) lowerCamelCase_ = parser.parse_args() main(args)
191
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def A__ ( ): _UpperCamelCase : Optional[int] = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_A , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_A , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_A ) return parser.parse_args() def A__ ( ): _UpperCamelCase : Union[str, Any] = parse_args() # Import training_script as a module. _UpperCamelCase : int = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCamelCase : Any = script_fpath.stem _UpperCamelCase : str = importlib.import_module(_A ) # Patch sys.argv _UpperCamelCase : Optional[Any] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
83
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
def lowerCamelCase_ ( _a : str ): '''simple docstring''' if len(_A ) < 2: return collection def circle_sort_util(_a : Optional[int] , _a : Union[str, Any] , _a : Tuple ) -> bool: UpperCAmelCase_ : str = False if low == high: return swapped UpperCAmelCase_ : Optional[int] = low UpperCAmelCase_ : Union[str, Any] = high while left < right: if collection[left] > collection[right]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = ( collection[right], collection[left], ) UpperCAmelCase_ : Tuple = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = ( collection[right + 1], collection[left], ) UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : List[Any] = low + int((high - low) / 2 ) UpperCAmelCase_ : Optional[Any] = circle_sort_util(_A , _A , _A ) UpperCAmelCase_ : Tuple = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap UpperCAmelCase_ : Union[str, Any] = True while is_not_sorted is True: UpperCAmelCase_ : Dict = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": UpperCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
"""simple docstring""" import math def _A ( lowercase ): """simple docstring""" a =math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_A ) def _A ( lowercase = 1 / 1_23_45 ): """simple docstring""" a =0 a =0 a =3 while True: a =(integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_A ): a =int(_A ) total_partitions += 1 if check_partition_perfect(_A ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_A ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
81
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import os def lowercase ( )-> Tuple: '''simple docstring''' with open(os.path.dirname(_A ) + "/grid.txt" ) as f: a : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(_A ) for x in f.readline().split()] ) a : Union[str, Any] = 0 # right for i in range(20 ): for j in range(17 ): a : Union[str, Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a : Tuple = temp # down for i in range(17 ): for j in range(20 ): a : Optional[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a : Optional[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a : int = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a : Any = temp return maximum if __name__ == "__main__": print(solution())
40
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
0
"""simple docstring""" def _snake_case ( lowercase__ : Dict , lowercase__ : List[str] ) -> int: '''simple docstring''' if len(_A ) != len(_A ): raise ValueError("""String lengths must match!""" ) lowerCAmelCase_ :Dict = 0 for chara, chara in zip(_A , _A ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
84
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ = get_logger(__name__) def lowerCAmelCase_ ( __A, __A, __A, __A, __A=0 ) -> Tuple: '''simple docstring''' os.makedirs(_A, exist_ok=_A ) with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): UpperCAmelCase__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase__ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase__ = os.path.join(_A, _A ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_A, _A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase__ = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase__ = os.path.join(_A, _A ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(_A, _A ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase__ = os.path.join(_A, f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_A, exist_ok=_A ) logger.info(f"""Saving model to {ckpt_dir}""" ) UpperCAmelCase__ = {"model": state_dict} dist_cp.save_state_dict( state_dict=_A, storage_writer=dist_cp.FileSystemWriter(_A ), planner=DefaultSavePlanner(), ) logger.info(f"""Model saved to {ckpt_dir}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A=0 ) -> Tuple: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_A ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return UpperCAmelCase__ = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" UpperCAmelCase__ = os.path.join(_A, _A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase__ = torch.load(_A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCAmelCase__ = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCAmelCase__ = os.path.join(_A, _A ) logger.info(f"""Loading model from {input_model_file}""" ) UpperCAmelCase__ = torch.load(_A ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCAmelCase__ = ( os.path.join(_A, f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) UpperCAmelCase__ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_A, storage_reader=dist_cp.FileSystemReader(_A ), planner=DefaultLoadPlanner(), ) UpperCAmelCase__ = state_dict["model"] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_A ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A=0 ) -> Any: '''simple docstring''' os.makedirs(_A, exist_ok=_A ) with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): UpperCAmelCase__ = FSDP.optim_state_dict(_A, _A ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCAmelCase__ = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase__ = os.path.join(_A, _A ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_A, _A ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCAmelCase__ = os.path.join(_A, f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_A, exist_ok=_A ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state}, storage_writer=dist_cp.FileSystemWriter(_A ), planner=DefaultSavePlanner(), ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A=0 ) -> Optional[Any]: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _A, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCAmelCase__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCAmelCase__ = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCAmelCase__ = os.path.join(_A, _A ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCAmelCase__ = torch.load(_A ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCAmelCase__ = ( os.path.join(_A, f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) UpperCAmelCase__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key="optimizer", storage_reader=dist_cp.FileSystemReader(_A ), ) UpperCAmelCase__ = optim_state["optimizer"] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) UpperCAmelCase__ = FSDP.optim_state_dict_to_load(_A, _A, _A ) optimizer.load_state_dict(_A )
65
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _lowercase ( __snake_case ,__snake_case ,__snake_case = "x" ,__snake_case = 10**-10 ,__snake_case = 1 ,) -> complex: __lowerCAmelCase : int = symbols(_A ) __lowerCAmelCase : Union[str, Any] = lambdify(_A ,_A ) __lowerCAmelCase : Union[str, Any] = lambdify(_A ,diff(_A ,_A ) ) __lowerCAmelCase : Tuple = starting_point while True: if diff_function(_A ) != 0: __lowerCAmelCase : Tuple = prev_guess - multiplicity * func(_A ) / diff_function( _A ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowerCAmelCase : Dict = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}""") # Find value of e print( 'The root of log(y) - 1 = 0 is ', F"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( 'The root of exp(x) - 1 = 0 is', F"""{newton_raphson('exp(x) - 1', 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
269
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class lowercase_ ( a_ ): A__ : Optional[int] = """roberta-prelayernorm""" def __init__( self , __UpperCamelCase=5_0_2_6_5 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase="absolute" , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout class lowercase_ ( a_ ): @property def lowerCamelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
122
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
0
import functools def A ( a_ ,a_ ) -> int: # Validation if not isinstance(_A ,_A ) or not all(isinstance(_A ,_A ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(_A ) != 3 or not all(isinstance(_A ,_A ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(_A ) == 0: return 0 if min(_A ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(_A ) >= 366: raise ValueError('All days elements should be less than 366' ) __UpperCamelCase : int =set(_A ) @functools.cache def dynamic_programming(a_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 30 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
71
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _A : Optional[int] = logging.get_logger(__name__) class _lowercase ( a_ ): '''simple docstring''' def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Optional[int] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> None: warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
229
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class _SCREAMING_SNAKE_CASE( a_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = '''deta''' SCREAMING_SNAKE_CASE_ : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=9_00 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=6 ,SCREAMING_SNAKE_CASE__=20_48 ,SCREAMING_SNAKE_CASE__=8 ,SCREAMING_SNAKE_CASE__=6 ,SCREAMING_SNAKE_CASE__=10_24 ,SCREAMING_SNAKE_CASE__=8 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__="relu" ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__="sine" ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=3_00 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.2_5 ,**SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = backbone_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE :int = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = backbone_config __SCREAMING_SNAKE_CASE :List[Any] = num_queries __SCREAMING_SNAKE_CASE :Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :Union[str, Any] = d_model __SCREAMING_SNAKE_CASE :int = encoder_ffn_dim __SCREAMING_SNAKE_CASE :Any = encoder_layers __SCREAMING_SNAKE_CASE :Optional[int] = encoder_attention_heads __SCREAMING_SNAKE_CASE :Optional[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE :int = decoder_layers __SCREAMING_SNAKE_CASE :List[Any] = decoder_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = dropout __SCREAMING_SNAKE_CASE :List[Any] = attention_dropout __SCREAMING_SNAKE_CASE :Union[str, Any] = activation_dropout __SCREAMING_SNAKE_CASE :List[Any] = activation_function __SCREAMING_SNAKE_CASE :List[str] = init_std __SCREAMING_SNAKE_CASE :int = init_xavier_std __SCREAMING_SNAKE_CASE :str = encoder_layerdrop __SCREAMING_SNAKE_CASE :int = auxiliary_loss __SCREAMING_SNAKE_CASE :List[Any] = position_embedding_type # deformable attributes __SCREAMING_SNAKE_CASE :int = num_feature_levels __SCREAMING_SNAKE_CASE :Dict = encoder_n_points __SCREAMING_SNAKE_CASE :Any = decoder_n_points __SCREAMING_SNAKE_CASE :Any = two_stage __SCREAMING_SNAKE_CASE :List[str] = two_stage_num_proposals __SCREAMING_SNAKE_CASE :Any = with_box_refine __SCREAMING_SNAKE_CASE :Tuple = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __SCREAMING_SNAKE_CASE :Any = class_cost __SCREAMING_SNAKE_CASE :Any = bbox_cost __SCREAMING_SNAKE_CASE :List[Any] = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE :Optional[Any] = mask_loss_coefficient __SCREAMING_SNAKE_CASE :str = dice_loss_coefficient __SCREAMING_SNAKE_CASE :int = bbox_loss_coefficient __SCREAMING_SNAKE_CASE :Dict = giou_loss_coefficient __SCREAMING_SNAKE_CASE :Dict = eos_coefficient __SCREAMING_SNAKE_CASE :Tuple = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.d_model def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE :Any = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE :List[str] = self.__class__.model_type return output
191
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case_ : int = 16 snake_case_ : Tuple = 32 def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = 1_6 ): _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) _UpperCamelCase : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCamelCase : Tuple = datasets.map( _A , batched=_A , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Any = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCamelCase : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCamelCase : List[Any] = 1_6 elif accelerator.mixed_precision != "no": _UpperCamelCase : int = 8 else: _UpperCamelCase : Union[str, Any] = None return tokenizer.pad( _A , padding='longest' , max_length=_A , pad_to_multiple_of=_A , return_tensors='pt' , ) # Instantiate dataloaders. _UpperCamelCase : Dict = DataLoader( tokenized_datasets['train'] , shuffle=_A , collate_fn=_A , batch_size=_A ) _UpperCamelCase : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case_ : Optional[Any] = mocked_dataloaders # noqa: F811 def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , _A ) == "1": _UpperCamelCase : int = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _UpperCamelCase : Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: _UpperCamelCase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : List[Any] = config['lr'] _UpperCamelCase : Any = int(config['num_epochs'] ) _UpperCamelCase : str = int(config['seed'] ) _UpperCamelCase : int = int(config['batch_size'] ) set_seed(_A ) _UpperCamelCase , _UpperCamelCase : List[Any] = get_dataloaders(_A , _A ) _UpperCamelCase : Any = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _UpperCamelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCamelCase : List[Any] = batch_size // MAX_GPU_BATCH_SIZE _UpperCamelCase : Tuple = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCamelCase : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCamelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_A ) # Instantiate scheduler _UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=1_0_0 , num_training_steps=(len(_A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Tuple = accelerator.prepare( _A , _A , _A , _A , _A ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _UpperCamelCase : Optional[int] = os.path.split(_A )[-1].split('.' )[0] accelerator.init_trackers(_A , _A ) # Now we train the model for epoch in range(_A ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _UpperCamelCase : Tuple = 0 for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCamelCase : Optional[int] = model(**_A ) _UpperCamelCase : Dict = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _UpperCamelCase : str = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _UpperCamelCase : Any = model(**_A ) _UpperCamelCase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _UpperCamelCase , _UpperCamelCase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_A , references=_A , ) _UpperCamelCase : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _A ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(_A ), 'epoch': epoch, } , step=_A , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A__ ( ): _UpperCamelCase : Dict = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_A , default=_A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_A , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) _UpperCamelCase : List[str] = parser.parse_args() _UpperCamelCase : Any = {'lr': 2E-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(_A , _A ) if __name__ == "__main__": main()
83
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : int = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ) -> int: """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ) -> List[str]: """simple docstring""" snake_case__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ) -> Dict: """simple docstring""" snake_case__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def a_ ( ) -> Optional[int]: """simple docstring""" assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def a_ ( ) -> Optional[Any]: """simple docstring""" # laplace diagonals snake_case__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def a_ ( ) -> Dict: """simple docstring""" assert med.median_filter(_A , 3 ).any() def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = sp.make_sepia(_A , 20 ) assert sepia.all() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[int]: """simple docstring""" snake_case__ = bs.Burkes(imread(_A , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" snake_case__ = rs.NearestNeighbour(imread(_A , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def a_ ( ) -> Any: """simple docstring""" snake_case__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ = 0 snake_case__ = 0 snake_case__ = image[x_coordinate][y_coordinate] snake_case__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
307
0
from math import factorial UpperCamelCase_ = {str(digit): factorial(digit) for digit in range(10)} def lowerCamelCase_ ( _a : str ): '''simple docstring''' if not isinstance(_A , _A ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_A ) ) def lowerCamelCase_ ( _a : Any = 60 , _a : int = 100_0000 ): '''simple docstring''' if not isinstance(_A , _A ) or not isinstance(_A , _A ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length UpperCAmelCase_ : Dict = 0 # the cached sizes of the previous chains UpperCAmelCase_ : List[Any] = {} for start_chain_element in range(1 , _A ): # The temporary set will contain the elements of the chain UpperCAmelCase_ : Tuple = set() UpperCAmelCase_ : List[str] = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCAmelCase_ : Any = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_A ) chain_set_length += 1 UpperCAmelCase_ : Any = digit_factorial_sum(_A ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCAmelCase_ : Optional[int] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution()}")
345
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) def _A ( lowercase , lowercase=False ): """simple docstring""" a =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a =[(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _A ( lowercase , lowercase , lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a ='''''' else: a ='''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) a =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a =in_proj_weight[ : config.hidden_size, : ] a =in_proj_bias[: config.hidden_size] a =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a =in_proj_weight[ -config.hidden_size :, : ] a =in_proj_bias[-config.hidden_size :] def _A ( lowercase ): """simple docstring""" a =['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_A , _A ) def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =dct.pop(_A ) a =val def _A ( ): """simple docstring""" a ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a =Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def _A ( lowercase , lowercase ): """simple docstring""" a =ViTConfig() a =False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": a =True a =int(vit_name[-12:-10] ) a =int(vit_name[-9:-6] ) else: a =10_00 a ='''huggingface/label-files''' a ='''imagenet-1k-id2label.json''' a =json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) a ={int(_A ): v for k, v in idalabel.items()} a =idalabel a ={v: k for k, v in idalabel.items()} a =int(vit_name[-6:-4] ) a =int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): a =1_92 a =7_68 a =12 a =3 elif vit_name[9:].startswith('''small''' ): a =3_84 a =15_36 a =12 a =6 else: pass else: if vit_name[4:].startswith('''small''' ): a =7_68 a =23_04 a =8 a =8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): a =10_24 a =40_96 a =24 a =16 elif vit_name[4:].startswith('''huge''' ): a =12_80 a =51_20 a =32 a =16 # load original model from timm a =timm.create_model(_A , pretrained=_A ) timm_model.eval() # load state_dict of original model, remove and rename some keys a =timm_model.state_dict() if base_model: remove_classification_head_(_A ) a =create_rename_keys(_A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , _A ) # load HuggingFace model if vit_name[-5:] == "in21k": a =ViTModel(_A ).eval() else: a =ViTForImageClassification(_A ).eval() model.load_state_dict(_A ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: a =DeiTImageProcessor(size=config.image_size ) else: a =ViTImageProcessor(size=config.image_size ) a =image_processor(images=prepare_img() , return_tensors='''pt''' ) a =encoding['''pixel_values'''] a =model(_A ) if base_model: a =timm_model.forward_features(_A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_A , outputs.pooler_output , atol=1E-3 ) else: a =timm_model(_A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_A , outputs.logits , atol=1E-3 ) Path(_A ).mkdir(exist_ok=_A ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase_ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : List[str]=18 , __UpperCAmelCase : List[str]=30 , __UpperCAmelCase : Any=400 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , __UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , ): a : str = size if size is not None else {"height": 18, "width": 18} a : str = parent a : Dict = batch_size a : List[Any] = num_channels a : List[str] = image_size a : List[str] = min_resolution a : List[str] = max_resolution a : List[str] = do_resize a : List[str] = size a : Any = do_normalize a : int = image_mean a : Any = image_std def __snake_case ( self : Union[str, Any]): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _A ( a_ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Any = DPTImageProcessor if is_vision_available() else None def __snake_case ( self : List[str]): a : Any = DPTImageProcessingTester(self) @property def __snake_case ( self : Dict): return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any]): a : str = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__UpperCAmelCase , "image_mean")) self.assertTrue(hasattr(__UpperCAmelCase , "image_std")) self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize")) self.assertTrue(hasattr(__UpperCAmelCase , "do_resize")) self.assertTrue(hasattr(__UpperCAmelCase , "size")) def __snake_case ( self : Any): a : Any = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 18, "width": 18}) a : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {"height": 42, "width": 42}) def __snake_case ( self : List[str]): # Initialize image_processing a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image) # Test not batched input a : List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : List[Any] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : List[str]): # Initialize image_processing a : str = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray) # Test not batched input a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : Union[str, Any] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __snake_case ( self : str): # Initialize image_processing a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor) # Test not batched input a : List[str] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a : Union[str, Any] = image_processing(__UpperCAmelCase , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
40
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _SCREAMING_SNAKE_CASE ( a_ ): UpperCAmelCase_ :Any = "M-CLIP" def __init__( self , __A=1024 , __A=768 , **__A ) -> int: lowerCAmelCase_ :List[Any] = transformerDimSize lowerCAmelCase_ :int = imageDimSize super().__init__(**__A ) class _SCREAMING_SNAKE_CASE ( a_ ): UpperCAmelCase_ :Optional[Any] = MCLIPConfig def __init__( self , __A , *__A , **__A ) -> str: super().__init__(__A , *__A , **__A ) lowerCAmelCase_ :str = XLMRobertaModel(__A ) lowerCAmelCase_ :str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __lowerCAmelCase ( self , __A , __A ) -> int: lowerCAmelCase_ :List[Any] = self.transformer(input_ids=__A , attention_mask=__A )[0] lowerCAmelCase_ :Optional[int] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__A ), embs
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase__ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
0
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 @add_end_docstrings(a_ ) class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self: str , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: int) -> List[str]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase : Tuple = None if self.model.config.prefix is not None: __lowerCAmelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase : int = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params) __lowerCAmelCase : List[str] = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase : Tuple = {**self._forward_params, **forward_params} def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = {} if prefix is not None: __lowerCAmelCase : Optional[Any] = prefix if prefix: __lowerCAmelCase : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Any = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, \'hole\']") __lowerCAmelCase : Optional[int] = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = generate_kwargs __lowerCAmelCase : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`") if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") __lowerCAmelCase : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`") __lowerCAmelCase : Optional[Any] = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase : int = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase : Any = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase : Dict = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim.") __lowerCAmelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _SCREAMING_SNAKE_CASE ( self: Optional[int] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def __call__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: int) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any]="" , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : List[str] = prompt_text if handle_long_generation == "hole": __lowerCAmelCase : Optional[int] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase : str = generate_kwargs["max_new_tokens"] else: __lowerCAmelCase : Any = generate_kwargs.get("max_length" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected") if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase : List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length") __lowerCAmelCase : Optional[int] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase : Optional[Any] = inputs["attention_mask"][:, -keep_length:] return inputs def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = model_inputs["input_ids"] __lowerCAmelCase : List[Any] = model_inputs.get("attention_mask" , _SCREAMING_SNAKE_CASE) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase : Dict = None __lowerCAmelCase : Dict = None __lowerCAmelCase : int = 1 else: __lowerCAmelCase : Dict = input_ids.shape[0] __lowerCAmelCase : str = model_inputs.pop("prompt_text") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase : List[str] = generate_kwargs.pop("prefix_length" , 0) if prefix_length > 0: __lowerCAmelCase : Tuple = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase : Dict = generate_kwargs.get("max_length") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase : Optional[int] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase : Optional[int] = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase : Any = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": __lowerCAmelCase : str = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE: Optional[Any]=True) -> str: """simple docstring""" __lowerCAmelCase : Tuple = model_outputs["generated_sequence"][0] __lowerCAmelCase : Optional[int] = model_outputs["input_ids"] __lowerCAmelCase : Optional[Any] = model_outputs["prompt_text"] __lowerCAmelCase : Tuple = generated_sequence.numpy().tolist() __lowerCAmelCase : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase : int = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase : List[Any] = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase : Any = 0 else: __lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , )) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase : Optional[int] = prompt_text + text[prompt_length:] else: __lowerCAmelCase : Optional[Any] = text[prompt_length:] __lowerCAmelCase : List[str] = {"generated_text": all_text} records.append(_SCREAMING_SNAKE_CASE) return records
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowercase_ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes A__ : Tuple = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowerCamelCase__ ( ) -> Any: if os.name == "nt": UpperCamelCase_ = CursorInfo() UpperCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) UpperCamelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase__ ( ) -> Tuple: if os.name == "nt": UpperCamelCase_ = CursorInfo() UpperCamelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) UpperCamelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase__ ( ) -> str: try: hide_cursor() yield finally: show_cursor()
122
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A_ :str = trt.Logger(trt.Logger.WARNING) A_ :List[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A_ :Tuple = logging.getLogger(__name__) A_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) A_ :Optional[Any] = parser.parse_args() if args.tokenizer_name: A_ :int = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) A_ :Dict = args.per_device_eval_batch_size A_ :Optional[int] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A_ :Optional[int] = True A_ :Tuple = """temp_engine/bert-fp32.engine""" if args.fpaa: A_ :Union[str, Any] = """temp_engine/bert-fp16.engine""" if args.inta: A_ :List[str] = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') A_ :Dict = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A_ :Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] A_ :Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A_ :Tuple = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A_ :List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A_ :Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def A ( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Optional[int]: __UpperCamelCase : Union[str, Any] =np.asarray(inputs['input_ids'] ,dtype=np.intaa ) __UpperCamelCase : Union[str, Any] =np.asarray(inputs['attention_mask'] ,dtype=np.intaa ) __UpperCamelCase : List[str] =np.asarray(inputs['token_type_ids'] ,dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] ,input_ids.ravel() ,_A ) cuda.memcpy_htod_async(d_inputs[1] ,attention_mask.ravel() ,_A ) cuda.memcpy_htod_async(d_inputs[2] ,token_type_ids.ravel() ,_A ) # start time __UpperCamelCase : Any =time.time() # Run inference context.execute_async( bindings=[int(_A ) for d_inp in d_inputs] + [int(_A ), int(_A )] ,stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_A ,_A ,_A ) cuda.memcpy_dtoh_async(_A ,_A ,_A ) # Synchronize the stream and take time stream.synchronize() # end time __UpperCamelCase : str =time.time() __UpperCamelCase : int =end_time - start_time __UpperCamelCase : Tuple =(h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A_ :int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A_ :Optional[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A_ :Dict = raw_datasets["""validation"""].column_names A_ :List[str] = """question""" if """question""" in column_names else column_names[0] A_ :Any = """context""" if """context""" in column_names else column_names[1] A_ :Optional[Any] = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A_ :Any = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) A_ :Optional[int] = min(args.max_seq_length, tokenizer.model_max_length) def A ( a_ ) -> int: __UpperCamelCase : List[Any] =[q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __UpperCamelCase : Any =tokenizer( examples[question_column_name if pad_on_right else context_column_name] ,examples[context_column_name if pad_on_right else question_column_name] ,truncation='only_second' if pad_on_right else 'only_first' ,max_length=_A ,stride=args.doc_stride ,return_overflowing_tokens=_A ,return_offsets_mapping=_A ,padding='max_length' ,) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __UpperCamelCase : Union[str, Any] =tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __UpperCamelCase : Tuple =[] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __UpperCamelCase : Optional[int] =tokenized_examples.sequence_ids(_A ) __UpperCamelCase : List[str] =1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __UpperCamelCase : List[str] =sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __UpperCamelCase : Dict =[ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples A_ :List[str] = raw_datasets["""validation"""] # Validation Feature Creation A_ :List[Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) A_ :Optional[Any] = default_data_collator A_ :Any = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) A_ :int = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def A ( a_ ,a_ ,a_ ,a_="eval" ) -> str: __UpperCamelCase : Union[str, Any] =postprocess_qa_predictions( examples=_A ,features=_A ,predictions=_A ,version_2_with_negative=args.version_2_with_negative ,n_best_size=args.n_best_size ,max_answer_length=args.max_answer_length ,null_score_diff_threshold=args.null_score_diff_threshold ,output_dir=args.output_dir ,prefix=_A ,) # Format the result to the format the metric expects. if args.version_2_with_negative: __UpperCamelCase : List[Any] =[ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: __UpperCamelCase : List[Any] =[{'id': k, 'prediction_text': v} for k, v in predictions.items()] __UpperCamelCase : Any =[{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_A ,label_ids=_A ) A_ :Union[str, Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def A ( a_ ) -> int: return trt.volume(engine.get_binding_shape(_A ) ) * engine.get_binding_dtype(_A ).itemsize # Allocate device memory for inputs and outputs. A_ :Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A_ :str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A_ :Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A_ :str = cuda.mem_alloc(h_outputa.nbytes) A_ :List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A_ :Tuple = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") A_ :Optional[int] = 0.0 A_ :Tuple = 0 A_ :str = timeit.default_timer() A_ :str = None for step, batch in enumerate(eval_dataloader): A_ :List[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A_ :Any = outputs A_ :Union[str, Any] = torch.tensor(start_logits) A_ :List[Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A_ :Any = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) A_ :Any = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) A_ :Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A_ :List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: A_ :int = nested_truncate(all_preds, len(eval_dataset)) A_ :int = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) A_ :Tuple = post_processing_function(eval_examples, eval_dataset, all_preds) A_ :Tuple = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
71
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' def a ( self : List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def a ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowerCAmelCase = """xvjiarui/stable-diffusion-2-inpainting""" __lowerCAmelCase , __lowerCAmelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = 50 __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = num_samples * [init_image] __lowerCAmelCase = num_samples * [mask_image] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # shard inputs and rng __lowerCAmelCase = replicate(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = jax.random.split(SCREAMING_SNAKE_CASE__ , jax.device_count() ) __lowerCAmelCase = shard(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = shard(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = shard(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = pipeline( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , jit=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = output.images.reshape(SCREAMING_SNAKE_CASE__ , 5_12 , 5_12 , 3 ) __lowerCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCAmelCase = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
229
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
0
"""simple docstring""" def __lowerCamelCase ( a_ : Union[str, Any] ) -> bool: return str(_A ) == str(_A )[::-1] def __lowerCamelCase ( a_ : str ) -> int: return int(_A ) + int(str(_A )[::-1] ) def __lowerCamelCase ( a_ : int = 1_00_00 ) -> int: __SCREAMING_SNAKE_CASE :Any = [] for num in range(1 , _A ): __SCREAMING_SNAKE_CASE :List[str] = 0 __SCREAMING_SNAKE_CASE :Tuple = num while iterations < 50: __SCREAMING_SNAKE_CASE :Union[str, Any] = sum_reverse(_A ) iterations += 1 if is_palindrome(_A ): break else: lychrel_nums.append(_A ) return len(_A ) if __name__ == "__main__": print(f'{solution() = }')
191
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case_ : int = get_tests_dir('fixtures/dummy-config.json') class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : List[str] = 0 def UpperCamelCase_ ( self : str ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = AutoConfig.for_model('roberta' ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _UpperCamelCase : List[Any] = os.path.join(lowerCamelCase__ ,'fake-roberta' ) os.makedirs(lowerCamelCase__ ,exist_ok=lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ ,'config.json' ) ,'w' ) as f: f.write(json.dumps({} ) ) _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(type(lowerCamelCase__ ) ,lowerCamelCase__ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' try: AutoConfig.register('custom' ,lowerCamelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register('model' ,lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoConfig.register('bert' ,lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCamelCase : List[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : str = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def UpperCamelCase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'bert-base is not a local folder and is not a valid model identifier' ): _UpperCamelCase : str = AutoConfig.from_pretrained('bert-base' ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(lowerCamelCase__ ,revision='aaaaaa' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' ,): _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): _UpperCamelCase : str = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ,trust_remote_code=lowerCamelCase__ ) _UpperCamelCase : Any = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ ,'NewModelConfig' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' class lowercase__ ( a_ ): lowercase__ = """new-model""" try: AutoConfig.register('new-model' ,lowerCamelCase__ ) # If remote code is not set, the default is to use local _UpperCamelCase : Dict = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ ,'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. _UpperCamelCase : List[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub _UpperCamelCase : List[str] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ,trust_remote_code=lowerCamelCase__ ) self.assertEqual(config.__class__.__name__ ,'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
83
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
from numpy import exp, pi, sqrt def lowerCamelCase_ ( _a : str , _a : int = 0.0 , _a : Dict = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _A ( lowercase ): """simple docstring""" a , a =image.size a , a =(x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a =image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a =np.array(_A ).astype(np.floataa ) / 255.0 a =image[None].transpose(0 , 3 , 1 , 2 ) a =torch.from_numpy(_A ) return 2.0 * image - 1.0 class __A ( a_ ): """simple docstring""" def __init__( self , __A , __A , __A , ) -> Dict: super().__init__() self.register_modules(vqvae=__A , unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self , __A = None , __A = 1 , __A = 100 , __A = 0.0 , __A = None , __A = "pil" , __A = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__A , PIL.Image.Image ): a =1 elif isinstance(__A , torch.Tensor ): a =image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__A )}''' ) if isinstance(__A , PIL.Image.Image ): a =preprocess(__A ) a , a =image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a =(batch_size, self.unet.config.in_channels // 2, height, width) a =next(self.unet.parameters() ).dtype a =randn_tensor(__A , generator=__A , device=self.device , dtype=__A ) a =image.to(device=self.device , dtype=__A ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__A , device=self.device ) a =self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a ='''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a ={} if accepts_eta: a =eta for t in self.progress_bar(__A ): # concat latents and low resolution image in the channel dimension. a =torch.cat([latents, image] , dim=1 ) a =self.scheduler.scale_model_input(__A , __A ) # predict the noise residual a =self.unet(__A , __A ).sample # compute the previous noisy sample x_t -> x_t-1 a =self.scheduler.step(__A , __A , __A , **__A ).prev_sample # decode the image latents with the VQVAE a =self.vqvae.decode(__A ).sample a =torch.clamp(__A , -1.0 , 1.0 ) a =image / 2 + 0.5 a =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a =self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
81
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
0
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version __UpperCAmelCase = version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize __UpperCAmelCase = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ __UpperCAmelCase = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ __UpperCAmelCase = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def __lowerCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] , reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] , ) def __lowerCAmelCase ( self , __A ) -> Optional[int]: import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def __lowerCAmelCase ( self , __A , __A , __A=0.9 , __A=3 , __A=0.5 ) -> int: if NLTK_VERSION >= version.Version("""3.6.5""" ): lowerCAmelCase_ :List[Any] = [ meteor_score.single_meteor_score( word_tokenize(__A ) , word_tokenize(__A ) , alpha=__A , beta=__A , gamma=__A ) for ref, pred in zip(__A , __A ) ] else: lowerCAmelCase_ :Tuple = [ meteor_score.single_meteor_score(__A , __A , alpha=__A , beta=__A , gamma=__A ) for ref, pred in zip(__A , __A ) ] return {"meteor": np.mean(__A )}
84
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
from __future__ import annotations from typing import Any class A : def __init__(self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0 ) -> None: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = row, column UpperCAmelCase__ = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__(self : Tuple ) -> str: """simple docstring""" UpperCAmelCase__ = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier UpperCAmelCase__ = 0 for row_vector in self.array: for obj in row_vector: UpperCAmelCase__ = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) UpperCAmelCase__ = f"""%{max_element_length}s""" # Make string and return def single_line(__UpperCAmelCase : list[float] ) -> str: nonlocal string_format_identifier UpperCAmelCase__ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__(self : Dict ) -> str: """simple docstring""" return str(self ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : tuple[int, int] ) -> bool: """simple docstring""" if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__(self : Union[str, Any] , __UpperCAmelCase : tuple[int, int] ) -> Any: """simple docstring""" assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__(self : List[Any] , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : float ) -> None: """simple docstring""" assert self.validate_indicies(__UpperCAmelCase ) UpperCAmelCase__ = value def __add__(self : Dict , __UpperCAmelCase : Matrix ) -> Matrix: """simple docstring""" assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] + another[r, c] return result def __neg__(self : Optional[int] ) -> Matrix: """simple docstring""" UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = -self[r, c] return result def __sub__(self : Optional[int] , __UpperCAmelCase : Matrix ) -> Matrix: """simple docstring""" return self + (-another) def __mul__(self : Optional[Any] , __UpperCAmelCase : int | float | Matrix ) -> Matrix: """simple docstring""" if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication UpperCAmelCase__ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row UpperCAmelCase__ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: UpperCAmelCase__ = f"""Unsupported type given for another ({type(__UpperCAmelCase )})""" raise TypeError(__UpperCAmelCase ) def lowercase_ (self : str ) -> Matrix: """simple docstring""" UpperCAmelCase__ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): UpperCAmelCase__ = self[r, c] return result def lowercase_ (self : str , __UpperCAmelCase : Matrix , __UpperCAmelCase : Matrix ) -> Any: """simple docstring""" assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCAmelCase__ = v.transpose() UpperCAmelCase__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = Matrix(3, 3, 0 ) for i in range(3 ): UpperCAmelCase__ = 1 print(f"""a^(-1) is {ainv}""" ) # u, v UpperCAmelCase__ = Matrix(3, 1, 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 1, 2, -3 UpperCAmelCase__ = Matrix(3, 1, 0 ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(_A, _A )}""" ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() testa()
65
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'EncodecFeatureExtractor' SCREAMING_SNAKE_CASE = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str) -> Optional[int]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = self.feature_extractor __lowerCAmelCase : Any = False def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[str]=True) -> List[str]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_SCREAMING_SNAKE_CASE , language=_SCREAMING_SNAKE_CASE , no_timestamps=_SCREAMING_SNAKE_CASE) def __call__( self: Any , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: int) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = kwargs.pop("sampling_rate" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = kwargs.pop("text" , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: __lowerCAmelCase : Any = args[0] __lowerCAmelCase : int = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: __lowerCAmelCase : Optional[Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is not None: __lowerCAmelCase : List[Any] = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCAmelCase : Optional[Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __lowerCAmelCase : Any = audio_inputs["padding_mask"] return inputs def _SCREAMING_SNAKE_CASE ( self: Any , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = kwargs.pop("padding_mask" , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: __lowerCAmelCase : List[Any] = args[0] __lowerCAmelCase : List[Any] = args[1:] if audio_values is not None: return self._decode_audio(_SCREAMING_SNAKE_CASE , padding_mask=_SCREAMING_SNAKE_CASE) else: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional = None) -> List[np.ndarray]: """simple docstring""" __lowerCAmelCase : List[str] = to_numpy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = audio_values.shape if padding_mask is None: return list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = to_numpy(_SCREAMING_SNAKE_CASE) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCAmelCase : Union[str, Any] = seq_len - padding_mask.shape[-1] __lowerCAmelCase : Union[str, Any] = 1 - self.feature_extractor.padding_value __lowerCAmelCase : int = np.pad(_SCREAMING_SNAKE_CASE , ((0, 0), (0, difference)) , "constant" , constant_values=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = audio_values.tolist() for i in range(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Union[str, Any] = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCAmelCase : List[Any] = sliced_audio.reshape(_SCREAMING_SNAKE_CASE , -1) return audio_values
269
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
from __future__ import annotations def lowerCamelCase__ ( a__ : int , a__ : List[str] ) -> bool: UpperCamelCase_ = get_failure_array(_A ) # 2) Step through text searching for pattern UpperCamelCase_ , UpperCamelCase_ = 0, 0 # index into text, pattern while i < len(_A ): if pattern[j] == text[i]: if j == (len(_A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: UpperCamelCase_ = failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( a__ : List[str] ) -> list[int]: UpperCamelCase_ = [0] UpperCamelCase_ = 0 UpperCamelCase_ = 1 while j < len(_A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: UpperCamelCase_ = failure[i - 1] continue j += 1 failure.append(_A ) return failure if __name__ == "__main__": # Test 1) _A = """abc1abc12""" _A = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _A = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _A = """ABABX""" _A = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _A = """AAAB""" _A = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _A = """abcdabcy""" _A = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _A = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
122
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ :Any = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[int] = ["""ConditionalDetrFeatureExtractor"""] A_ :Dict = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Any = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys A_ :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _A : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
229
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( a_ ): def __init__( self ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' ,SCREAMING_SNAKE_CASE__ ,) super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
191
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case_ : int = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } snake_case_ : List[Any] = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } snake_case_ : Union[str, Any] = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class lowercase__ ( a_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = BertTokenizer def __init__( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : str=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : str="[UNK]" ,lowerCamelCase__ : int="[SEP]" ,lowerCamelCase__ : Any="[PAD]" ,lowerCamelCase__ : Tuple="[CLS]" ,lowerCamelCase__ : Dict="[MASK]" ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Optional[Any]=None ,**lowerCamelCase__ : int ,): '''simple docstring''' super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,tokenize_chinese_chars=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,lowerCamelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' ,lowerCamelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,lowerCamelCase__ ) != tokenize_chinese_chars ): _UpperCamelCase : Tuple = getattr(lowerCamelCase__ ,normalizer_state.pop('type' ) ) _UpperCamelCase : Any = do_lower_case _UpperCamelCase : List[Any] = strip_accents _UpperCamelCase : Union[str, Any] = tokenize_chinese_chars _UpperCamelCase : List[Any] = normalizer_class(**lowerCamelCase__ ) _UpperCamelCase : List[Any] = do_lower_case def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Any ,lowerCamelCase__ : Tuple=None ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' _UpperCamelCase : Tuple = [self.sep_token_id] _UpperCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' _UpperCamelCase : Optional[int] = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
83
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : int = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ) -> int: """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ) -> List[str]: """simple docstring""" snake_case__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ) -> Dict: """simple docstring""" snake_case__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def a_ ( ) -> Optional[int]: """simple docstring""" assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def a_ ( ) -> Optional[Any]: """simple docstring""" # laplace diagonals snake_case__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def a_ ( ) -> Dict: """simple docstring""" assert med.median_filter(_A , 3 ).any() def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = sp.make_sepia(_A , 20 ) assert sepia.all() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[int]: """simple docstring""" snake_case__ = bs.Burkes(imread(_A , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" snake_case__ = rs.NearestNeighbour(imread(_A , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def a_ ( ) -> Any: """simple docstring""" snake_case__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ = 0 snake_case__ = 0 snake_case__ = image[x_coordinate][y_coordinate] snake_case__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
307
0
UpperCamelCase_ = """Input must be a string of 8 numbers plus letter""" UpperCamelCase_ = """TRWAGMYFPDXBNJZSQVHLCKE""" def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' if not isinstance(_A , _A ): UpperCAmelCase_ : Dict = F'''Expected string as input, found {type(_A ).__name__}''' raise TypeError(_A ) UpperCAmelCase_ : List[str] = spanish_id.replace("""-""" , """""" ).upper() if len(_A ) != 9: raise ValueError(_A ) try: UpperCAmelCase_ : Any = int(spanish_id_clean[0:8] ) UpperCAmelCase_ : Optional[int] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_A ) from ex if letter.isdigit(): raise ValueError(_A ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
345
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" from __future__ import annotations def _A ( lowercase , lowercase ): """simple docstring""" a =0 a =len(_A ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: a =i + 1 else: a =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'{two_pointer([2, 7, 1_1, 1_5], 9) = }')
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
0
"""simple docstring""" import os import sys import unittest __lowercase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __lowercase = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") __lowercase = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int]): a : Union[str, Any] = get_test_to_tester_mapping(__UpperCAmelCase) a : Dict = get_test_to_tester_mapping(__UpperCAmelCase) a : List[str] = {"BertModelTest": "BertModelTester"} a : List[str] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__UpperCAmelCase) , __UpperCAmelCase) self.assertEqual(get_test_info.to_json(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : Optional[Any]): a : List[Any] = get_model_to_test_mapping(__UpperCAmelCase) a : int = get_model_to_test_mapping(__UpperCAmelCase) a : List[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } a : List[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase) , __UpperCAmelCase) self.assertEqual(get_test_info.to_json(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : Optional[int]): a : Optional[int] = get_model_to_tester_mapping(__UpperCAmelCase) a : Union[str, Any] = get_model_to_tester_mapping(__UpperCAmelCase) a : Dict = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } a : int = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase) , __UpperCAmelCase) self.assertEqual(get_test_info.to_json(__UpperCAmelCase) , __UpperCAmelCase)
40
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __UpperCAmelCase = None __UpperCAmelCase = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } __UpperCAmelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _snake_case ( lowercase__ : str , lowercase__ : Dict=1 , lowercase__ : Union[str, Any]=2_5_6 ) -> str: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _snake_case ( lowercase__ : Optional[Any] ) -> int: '''simple docstring''' with open(_A , """r""" ) as f: return json.load(_A ) def _snake_case ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' with open(_A , """w""" ) as f: json.dump(_A , _A ) def _snake_case ( lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=True ) -> List[str]: '''simple docstring''' os.makedirs(_A , exist_ok=_A ) lowerCAmelCase_ :int = os.path.join(_A , """tmp""" ) os.makedirs(_A , exist_ok=_A ) lowerCAmelCase_ :List[str] = read_json(os.path.join(_A , """params.json""" ) ) lowerCAmelCase_ :str = NUM_SHARDS[model_size] lowerCAmelCase_ :Union[str, Any] = params["""n_layers"""] lowerCAmelCase_ :Dict = params["""n_heads"""] lowerCAmelCase_ :Dict = n_heads // num_shards lowerCAmelCase_ :Tuple = params["""dim"""] lowerCAmelCase_ :List[str] = dim // n_heads lowerCAmelCase_ :List[str] = 10000.0 lowerCAmelCase_ :Tuple = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCAmelCase_ :str = params["""n_kv_heads"""] # for GQA / MQA lowerCAmelCase_ :Tuple = n_heads_per_shard // num_key_value_heads lowerCAmelCase_ :str = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCAmelCase_ :List[str] = n_heads lowerCAmelCase_ :Any = n_heads_per_shard lowerCAmelCase_ :Optional[int] = dim # permute for sliced rotary def permute(lowercase__ : Any , lowercase__ : List[Any]=n_heads , lowercase__ : Union[str, Any]=dim , lowercase__ : str=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCAmelCase_ :Union[str, Any] = torch.load(os.path.join(_A , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded lowerCAmelCase_ :Any = [ torch.load(os.path.join(_A , f"""consolidated.{i:02d}.pth""" ) , map_location="""cpu""" ) for i in range(_A ) ] lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :Dict = {"""weight_map""": {}} for layer_i in range(_A ): lowerCAmelCase_ :Tuple = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowerCAmelCase_ :Optional[Any] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCAmelCase_ :Union[str, Any] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } lowerCAmelCase_ :str = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) lowerCAmelCase_ :List[str] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) lowerCAmelCase_ :str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) lowerCAmelCase_ :Dict = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_A )] , dim=1 ) lowerCAmelCase_ :List[Any] = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_A )] , dim=0 ) lowerCAmelCase_ :Union[str, Any] = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_A )] , dim=1 ) lowerCAmelCase_ :str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_A )] , dim=0 ) lowerCAmelCase_ :Any = inv_freq for k, v in state_dict.items(): lowerCAmelCase_ :Any = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) lowerCAmelCase_ :int = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowerCAmelCase_ :List[str] = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: lowerCAmelCase_ :List[Any] = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_A )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): lowerCAmelCase_ :Any = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs lowerCAmelCase_ :Union[str, Any] = {"""total_size""": param_count * 2} write_json(_A , os.path.join(_A , """pytorch_model.bin.index.json""" ) ) lowerCAmelCase_ :Optional[int] = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 lowerCAmelCase_ :Tuple = params["""multiple_of"""] if """multiple_of""" in params else 2_5_6 lowerCAmelCase_ :List[str] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) lowerCAmelCase_ :str = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def _snake_case ( lowercase__ : Dict , lowercase__ : str ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) lowerCAmelCase_ :Dict = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def _snake_case ( ) -> str: '''simple docstring''' lowerCAmelCase_ :int = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_A , help="""Whether or not to save using `safetensors`.""" ) lowerCAmelCase_ :str = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCAmelCase_ :Optional[int] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A ( a_ ): __UpperCAmelCase : List[str] = 'perceiver' def __init__(self : Optional[Any] , __UpperCAmelCase : Union[str, Any]=2_5_6 , __UpperCAmelCase : Dict=1_2_8_0 , __UpperCAmelCase : Any=7_6_8 , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : Optional[int]=2_6 , __UpperCAmelCase : Union[str, Any]=8 , __UpperCAmelCase : Tuple=8 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : List[Any]="kv" , __UpperCAmelCase : Any=1 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : Tuple="gelu" , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Tuple=1E-12 , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=2_6_2 , __UpperCAmelCase : List[Any]=2_0_4_8 , __UpperCAmelCase : Any=5_6 , __UpperCAmelCase : Any=[3_6_8, 4_9_6] , __UpperCAmelCase : Any=1_6 , __UpperCAmelCase : Dict=1_9_2_0 , __UpperCAmelCase : int=1_6 , __UpperCAmelCase : Optional[Any]=[1, 1_6, 2_2_4, 2_2_4] , **__UpperCAmelCase : int , ) -> List[Any]: """simple docstring""" super().__init__(**__UpperCAmelCase ) UpperCAmelCase__ = num_latents UpperCAmelCase__ = d_latents UpperCAmelCase__ = d_model UpperCAmelCase__ = num_blocks UpperCAmelCase__ = num_self_attends_per_block UpperCAmelCase__ = num_self_attention_heads UpperCAmelCase__ = num_cross_attention_heads UpperCAmelCase__ = qk_channels UpperCAmelCase__ = v_channels UpperCAmelCase__ = cross_attention_shape_for_attention UpperCAmelCase__ = self_attention_widening_factor UpperCAmelCase__ = cross_attention_widening_factor UpperCAmelCase__ = hidden_act UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_query_residual # masked language modeling attributes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings # image classification attributes UpperCAmelCase__ = image_size # flow attributes UpperCAmelCase__ = train_size # multimodal autoencoding attributes UpperCAmelCase__ = num_frames UpperCAmelCase__ = audio_samples_per_frame UpperCAmelCase__ = samples_per_patch UpperCAmelCase__ = output_shape class A ( a_ ): @property def lowercase_ (self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase_ (self : Optional[Any] ) -> float: """simple docstring""" return 1E-4 def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , __UpperCAmelCase : int = 3 , __UpperCAmelCase : int = 4_0 , __UpperCAmelCase : int = 4_0 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = preprocessor.num_special_tokens_to_add(__UpperCAmelCase ) UpperCAmelCase__ = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [" ".join(["a"] ) * seq_length] * batch_size UpperCAmelCase__ = dict(preprocessor(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) UpperCAmelCase__ = inputs.pop("input_ids" ) return inputs elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension(__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ = self._generate_dummy_images(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = dict(preprocessor(images=__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) UpperCAmelCase__ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
65
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : Union[str, Any] = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'mctct' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: str=8065 , _SCREAMING_SNAKE_CASE: Optional[int]=1536 , _SCREAMING_SNAKE_CASE: Union[str, Any]=36 , _SCREAMING_SNAKE_CASE: Optional[int]=6144 , _SCREAMING_SNAKE_CASE: Any=4 , _SCREAMING_SNAKE_CASE: List[Any]=384 , _SCREAMING_SNAKE_CASE: Optional[Any]=920 , _SCREAMING_SNAKE_CASE: Any=1e-5 , _SCREAMING_SNAKE_CASE: Optional[int]=0.3 , _SCREAMING_SNAKE_CASE: str="relu" , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: str=0.3 , _SCREAMING_SNAKE_CASE: Dict=0.3 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=0 , _SCREAMING_SNAKE_CASE: Dict=2 , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: List[Any]=0.3 , _SCREAMING_SNAKE_CASE: List[str]=1 , _SCREAMING_SNAKE_CASE: List[Any]=(7,) , _SCREAMING_SNAKE_CASE: Optional[int]=(3,) , _SCREAMING_SNAKE_CASE: Union[str, Any]=80 , _SCREAMING_SNAKE_CASE: List[Any]=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: List[str]="sum" , _SCREAMING_SNAKE_CASE: Dict=False , **_SCREAMING_SNAKE_CASE: Dict , ) -> Optional[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : Union[str, Any] = hidden_size __lowerCAmelCase : Union[str, Any] = num_hidden_layers __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : Optional[Any] = num_attention_heads __lowerCAmelCase : str = attention_head_dim __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : Optional[int] = layerdrop __lowerCAmelCase : Any = hidden_act __lowerCAmelCase : int = initializer_range __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : Dict = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = pad_token_id __lowerCAmelCase : Optional[int] = bos_token_id __lowerCAmelCase : Union[str, Any] = eos_token_id __lowerCAmelCase : str = conv_glu_dim __lowerCAmelCase : List[str] = conv_dropout __lowerCAmelCase : Any = num_conv_layers __lowerCAmelCase : Dict = input_feat_per_channel __lowerCAmelCase : List[Any] = input_channels __lowerCAmelCase : Any = conv_channels __lowerCAmelCase : Optional[Any] = ctc_loss_reduction __lowerCAmelCase : int = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCAmelCase : Optional[Any] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""")
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowercase_ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = """ZinengTang/tvlt-base""" UpperCamelCase_ = tempfile.mkdtemp() def lowerCamelCase_ ( self , **__UpperCamelCase ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **__UpperCamelCase ) def lowerCamelCase_ ( self , **__UpperCamelCase ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_feature_extractor() UpperCamelCase_ = TvltProcessor(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __UpperCamelCase ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_feature_extractor() UpperCamelCase_ = TvltProcessor(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) UpperCamelCase_ = np.ones([1_2_0_0_0] ) UpperCamelCase_ = feature_extractor(__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = processor(audio=__UpperCamelCase , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_feature_extractor() UpperCamelCase_ = TvltProcessor(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) UpperCamelCase_ = np.ones([3, 2_2_4, 2_2_4] ) UpperCamelCase_ = image_processor(__UpperCamelCase , return_tensors="""np""" ) UpperCamelCase_ = processor(images=__UpperCamelCase , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_feature_extractor() UpperCamelCase_ = TvltProcessor(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) UpperCamelCase_ = np.ones([1_2_0_0_0] ) UpperCamelCase_ = np.ones([3, 2_2_4, 2_2_4] ) UpperCamelCase_ = processor(audio=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_feature_extractor() UpperCamelCase_ = TvltProcessor(image_processor=__UpperCamelCase , feature_extractor=__UpperCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
122
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": A_ :Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) A_ :Union[str, Any] = parser.parse_args() A_ :List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) A_ :int = CLIPImageProcessor() A_ :Optional[int] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') A_ :Dict = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
71
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
0
'''simple docstring''' _A : Union[str, Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCamelCase_ ( ) -> None: '''simple docstring''' __lowerCAmelCase = input("""Enter message: """ ) __lowerCAmelCase = input("""Enter key [alphanumeric]: """ ) __lowerCAmelCase = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowerCAmelCase = """encrypt""" __lowerCAmelCase = encrypt_message(_A , _A ) elif mode.lower().startswith("""d""" ): __lowerCAmelCase = """decrypt""" __lowerCAmelCase = decrypt_message(_A , _A ) print(f"""\n{mode.title()}ed message:""" ) print(_A ) def UpperCamelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' return translate_message(_A , _A , """encrypt""" ) def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Tuple ) -> str: '''simple docstring''' return translate_message(_A , _A , """decrypt""" ) def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Union[str, Any] ) -> str: '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = key.upper() for symbol in message: __lowerCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_A ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_A ): __lowerCAmelCase = 0 else: translated.append(_A ) return "".join(_A ) if __name__ == "__main__": main()
229
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
0
"""simple docstring""" def __lowerCamelCase ( a_ : List[str] ) -> bool: if num < 0: return False __SCREAMING_SNAKE_CASE :Optional[int] = num __SCREAMING_SNAKE_CASE :Tuple = 0 while num > 0: __SCREAMING_SNAKE_CASE :Optional[Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
191
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } snake_case_ : List[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): _UpperCamelCase : Tuple = getattr(_A , _A ) if weight_type is not None: _UpperCamelCase : Dict = getattr(_A , _A ).shape else: _UpperCamelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCamelCase : str = value elif weight_type == "weight_g": _UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_v": _UpperCamelCase : Union[str, Any] = value elif weight_type == "bias": _UpperCamelCase : List[Any] = value elif weight_type == "running_mean": _UpperCamelCase : Dict = value elif weight_type == "running_var": _UpperCamelCase : int = value elif weight_type == "num_batches_tracked": _UpperCamelCase : int = value elif weight_type == "inv_freq": _UpperCamelCase : Any = value else: _UpperCamelCase : Any = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = [] _UpperCamelCase : str = fairseq_model.state_dict() _UpperCamelCase : Dict = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) _UpperCamelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : str = name.split(_A )[0].split('.' )[-2] _UpperCamelCase : Dict = mapped_key.replace('*' , _A ) if "pos_bias_u" in name: _UpperCamelCase : List[Any] = None elif "pos_bias_v" in name: _UpperCamelCase : Union[str, Any] = None elif "weight_g" in name: _UpperCamelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: _UpperCamelCase : List[Any] = 'weight_v' elif "bias" in name: _UpperCamelCase : Any = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCamelCase : Dict = 'weight' elif "running_mean" in name: _UpperCamelCase : str = 'running_mean' elif "inv_freq" in name: _UpperCamelCase : List[str] = 'inv_freq' elif "running_var" in name: _UpperCamelCase : str = 'running_var' elif "num_batches_tracked" in name: _UpperCamelCase : List[str] = 'num_batches_tracked' else: _UpperCamelCase : Optional[Any] = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f'Unused weights: {unused_weights}' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = full_name.split('conv_layers.' )[-1] _UpperCamelCase : str = name.split('.' ) _UpperCamelCase : Tuple = int(items[0] ) _UpperCamelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCamelCase : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCamelCase : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCamelCase : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCamelCase : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_A ) @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True ): if config_path is not None: _UpperCamelCase : Tuple = WavaVecaConformerConfig.from_pretrained(_A , hidden_act='swish' ) else: _UpperCamelCase : Optional[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _UpperCamelCase : Tuple = 'rotary' if is_finetuned: if dict_path: _UpperCamelCase : Any = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : Optional[int] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Tuple = target_dict.eos_index _UpperCamelCase : Tuple = len(target_dict.symbols ) _UpperCamelCase : Union[str, Any] = os.path.join(_A , 'vocab.json' ) if not os.path.isdir(_A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) ) return os.makedirs(_A , exist_ok=_A ) _UpperCamelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Tuple = 1 with open(_A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_A , _A ) _UpperCamelCase : List[Any] = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , ) _UpperCamelCase : str = True if config.feat_extract_norm == 'layer' else False _UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) _UpperCamelCase : str = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) _UpperCamelCase : Union[str, Any] = WavaVecaConformerForCTC(_A ) else: _UpperCamelCase : Tuple = WavaVecaConformerForPreTraining(_A ) if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _UpperCamelCase : Optional[Any] = argparse.Namespace(task='audio_pretraining' ) _UpperCamelCase : Dict = fairseq.tasks.setup_task(_A ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_A ) _UpperCamelCase : Tuple = model[0].eval() recursively_load_weights(_A , _A , not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case_ : Tuple = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
83
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> List[Any]: UpperCAmelCase_ : str = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) UpperCAmelCase_ : Dict = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() UpperCAmelCase_ : str = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase_ ,env=os.environ.copy() )
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowerCamelCase_ : Any = TypeVar("""_T""") class __A ( Generic[_T] ): """simple docstring""" def __init__( self , __A = None ) -> None: a =list(iterable or [] ) a =[] def __len__( self ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self ) -> str: return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def SCREAMING_SNAKE_CASE ( self , __A ) -> None: self._stacka.append(__A ) def SCREAMING_SNAKE_CASE ( self ) -> _T: a =self._stacka.pop a =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
81
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" from __future__ import annotations from random import choice def lowercase ( A_ )-> Tuple: '''simple docstring''' return choice(_A ) def lowercase ( A_ , A_ )-> int: '''simple docstring''' a : List[Any] = random_pivot(_A ) # partition based on pivot # linear time a : Dict = [e for e in lst if e < pivot] a : Dict = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
40
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _SCREAMING_SNAKE_CASE ( a_ ): UpperCAmelCase_ :Union[str, Any] = ["image_processor", "tokenizer"] UpperCAmelCase_ :Optional[int] = "OwlViTImageProcessor" UpperCAmelCase_ :Any = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __A=None , __A=None , **__A ) -> Dict: lowerCAmelCase_ :str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) lowerCAmelCase_ :Union[str, Any] = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ :Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A="max_length" , __A="np" , **__A ) -> List[str]: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): lowerCAmelCase_ :str = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): lowerCAmelCase_ :Optional[int] = [] # Maximum number of queries across batch lowerCAmelCase_ :Optional[int] = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: lowerCAmelCase_ :Optional[Any] = t + [""" """] * (max_num_queries - len(__A )) lowerCAmelCase_ :Optional[Any] = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": lowerCAmelCase_ :Dict = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) lowerCAmelCase_ :int = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase_ :Optional[int] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) lowerCAmelCase_ :Optional[Any] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase_ :Dict = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) lowerCAmelCase_ :List[Any] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase_ :List[Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) lowerCAmelCase_ :Optional[Any] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) lowerCAmelCase_ :str = BatchEncoding() lowerCAmelCase_ :Optional[int] = input_ids lowerCAmelCase_ :str = attention_mask if query_images is not None: lowerCAmelCase_ :Optional[Any] = BatchEncoding() lowerCAmelCase_ :List[str] = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values lowerCAmelCase_ :List[Any] = query_pixel_values if images is not None: lowerCAmelCase_ :Any = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: lowerCAmelCase_ :Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase_ :Union[str, Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> Tuple: return self.image_processor.post_process(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> Tuple: return self.image_processor.post_process_object_detection(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> str: return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> Dict: return self.tokenizer.batch_decode(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> List[str]: return self.tokenizer.decode(*__A , **__A ) @property def __lowerCAmelCase ( self ) -> Dict: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def __lowerCAmelCase ( self ) -> List[str]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
84
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = np.argmax(_A, axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' with open(_A, encoding="utf_8" ) as f: UpperCAmelCase__ = csv.reader(_A ) UpperCAmelCase__ = [] next(_A ) # skip the first line for line in tqdm(_A ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = [] for dataset in encoded_datasets: UpperCAmelCase__ = len(_A ) UpperCAmelCase__ = np.zeros((n_batch, 2, input_len), dtype=np.intaa ) UpperCAmelCase__ = np.zeros((n_batch, 2), dtype=np.intaa ) UpperCAmelCase__ = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa ) UpperCAmelCase__ = np.zeros((n_batch,), dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_A ): UpperCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] UpperCAmelCase__ = with_conta UpperCAmelCase__ = with_conta UpperCAmelCase__ = len(_A ) - 1 UpperCAmelCase__ = len(_A ) - 1 UpperCAmelCase__ = with_conta UpperCAmelCase__ = with_conta UpperCAmelCase__ = mc_label UpperCAmelCase__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_A ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--model_name", type=_A, default="openai-gpt", help="pretrained model name" ) parser.add_argument("--do_train", action="store_true", help="Whether to run training." ) parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir", default=_A, type=_A, required=_A, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--train_dataset", type=_A, default="" ) parser.add_argument("--eval_dataset", type=_A, default="" ) parser.add_argument("--seed", type=_A, default=42 ) parser.add_argument("--num_train_epochs", type=_A, default=3 ) parser.add_argument("--train_batch_size", type=_A, default=8 ) parser.add_argument("--eval_batch_size", type=_A, default=16 ) parser.add_argument("--adam_epsilon", default=1e-8, type=_A, help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm", type=_A, default=1 ) parser.add_argument( "--max_steps", default=-1, type=_A, help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ), ) parser.add_argument( "--gradient_accumulation_steps", type=_A, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", type=_A, default=6.25e-5 ) parser.add_argument("--warmup_steps", default=0, type=_A, help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule", type=_A, default="warmup_linear" ) parser.add_argument("--weight_decay", type=_A, default=0.01 ) parser.add_argument("--lm_coef", type=_A, default=0.9 ) parser.add_argument("--n_valid", type=_A, default=374 ) parser.add_argument("--server_ip", type=_A, default="", help="Can be used for distant debugging." ) parser.add_argument("--server_port", type=_A, default="", help="Can be used for distant debugging." ) UpperCAmelCase__ = parser.parse_args() print(_A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=_A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) UpperCAmelCase__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase__ = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(_A, _A ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset UpperCAmelCase__ = ["_start_", "_delimiter_", "_classify_"] UpperCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_A ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_A ) UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_A ) ) model.to(_A ) # Load and encode the datasets def tokenize_and_encode(__A ): if isinstance(_A, _A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_A ) ) elif isinstance(_A, _A ): return obj return [tokenize_and_encode(_A ) for o in obj] logger.info("Encoding dataset..." ) UpperCAmelCase__ = load_rocstories_dataset(args.train_dataset ) UpperCAmelCase__ = load_rocstories_dataset(args.eval_dataset ) UpperCAmelCase__ = (train_dataset, eval_dataset) UpperCAmelCase__ = tokenize_and_encode(_A ) # Compute the max input length for the Transformer UpperCAmelCase__ = model.config.n_positions // 2 - 2 UpperCAmelCase__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) UpperCAmelCase__ = min(_A, model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders UpperCAmelCase__ = pre_process_datasets(_A, _A, _A, *_A ) UpperCAmelCase__ , UpperCAmelCase__ = tensor_datasets[0], tensor_datasets[1] UpperCAmelCase__ = TensorDataset(*_A ) UpperCAmelCase__ = RandomSampler(_A ) UpperCAmelCase__ = DataLoader(_A, sampler=_A, batch_size=args.train_batch_size ) UpperCAmelCase__ = TensorDataset(*_A ) UpperCAmelCase__ = SequentialSampler(_A ) UpperCAmelCase__ = DataLoader(_A, sampler=_A, batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: UpperCAmelCase__ = args.max_steps UpperCAmelCase__ = args.max_steps // (len(_A ) // args.gradient_accumulation_steps) + 1 else: UpperCAmelCase__ = len(_A ) // args.gradient_accumulation_steps * args.num_train_epochs UpperCAmelCase__ = list(model.named_parameters() ) UpperCAmelCase__ = ["bias", "LayerNorm.bias", "LayerNorm.weight"] UpperCAmelCase__ = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] UpperCAmelCase__ = AdamW(_A, lr=args.learning_rate, eps=args.adam_epsilon ) UpperCAmelCase__ = get_linear_schedule_with_warmup( _A, num_warmup_steps=args.warmup_steps, num_training_steps=_A ) if args.do_train: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ), desc="Epoch" ): UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = tqdm(_A, desc="Training" ) for step, batch in enumerate(_A ): UpperCAmelCase__ = tuple(t.to(_A ) for t in batch ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = batch UpperCAmelCase__ = model(_A, mc_token_ids=_A, lm_labels=_A, mc_labels=_A ) UpperCAmelCase__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() UpperCAmelCase__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 UpperCAmelCase__ = "Training loss: {:.2e} lr: {:.2e}".format(_A, scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer UpperCAmelCase__ = model.module if hasattr(_A, "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` UpperCAmelCase__ = os.path.join(args.output_dir, _A ) UpperCAmelCase__ = os.path.join(args.output_dir, _A ) torch.save(model_to_save.state_dict(), _A ) model_to_save.config.to_json_file(_A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) UpperCAmelCase__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_A ) if args.do_eval: model.eval() UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 for batch in tqdm(_A, desc="Evaluating" ): UpperCAmelCase__ = tuple(t.to(_A ) for t in batch ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = batch with torch.no_grad(): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model( _A, mc_token_ids=_A, lm_labels=_A, mc_labels=_A ) UpperCAmelCase__ = mc_logits.detach().cpu().numpy() UpperCAmelCase__ = mc_labels.to("cpu" ).numpy() UpperCAmelCase__ = accuracy(_A, _A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 UpperCAmelCase__ = eval_loss / nb_eval_steps UpperCAmelCase__ = eval_accuracy / nb_eval_examples UpperCAmelCase__ = tr_loss / nb_tr_steps if args.do_train else None UpperCAmelCase__ = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} UpperCAmelCase__ = os.path.join(args.output_dir, "eval_results.txt" ) with open(_A, "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s", _A, str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
65
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[str]: """simple docstring""" torch.manual_seed(0) __lowerCAmelCase : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model @property def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[int]: """simple docstring""" torch.manual_seed(0) __lowerCAmelCase : Any = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , ) return model @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" torch.manual_seed(0) __lowerCAmelCase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Any = self.dummy_uncond_unet __lowerCAmelCase : Dict = DDIMScheduler() __lowerCAmelCase : Tuple = self.dummy_vq_model __lowerCAmelCase : Optional[int] = LDMPipeline(unet=_SCREAMING_SNAKE_CASE , vqvae=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE) ldm.to(_SCREAMING_SNAKE_CASE) ldm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = torch.manual_seed(0) __lowerCAmelCase : Optional[Any] = ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy").images __lowerCAmelCase : List[str] = torch.manual_seed(0) __lowerCAmelCase : Optional[int] = ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="numpy" , return_dict=_SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : Any = image[0, -3:, -3:, -1] __lowerCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase : Any = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) __lowerCAmelCase : Any = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Tuple = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") ldm.to(_SCREAMING_SNAKE_CASE) ldm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = torch.manual_seed(0) __lowerCAmelCase : List[str] = ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type="numpy").images __lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCAmelCase : Any = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447]) __lowerCAmelCase : str = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
269
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _A = logging.get_logger(__name__) def lowerCamelCase__ ( a__ : Union[str, Any]=None , a__ : Optional[Any]=None ) -> List[str]: return field(default_factory=lambda: default , metadata=_A ) @dataclass class lowercase_ : A__ : str = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) A__ : List[Any] = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) A__ : Tuple = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) A__ : List[Any] = field( default=a_ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) A__ : int = field( default=a_ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) A__ : int = field( default=a_ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) A__ : Dict = field(default=a_ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) A__ : List[Any] = field(default=a_ , metadata={"""help""": """Benchmark training of model"""} ) A__ : Any = field(default=a_ , metadata={"""help""": """Verbose memory tracing"""} ) A__ : Union[str, Any] = field( default=a_ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) A__ : List[Any] = field( default=a_ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) A__ : int = field(default=a_ , metadata={"""help""": """Trace memory line by line"""} ) A__ : List[str] = field(default=a_ , metadata={"""help""": """Save result to a CSV file"""} ) A__ : Tuple = field(default=a_ , metadata={"""help""": """Save all print statements in a log file"""} ) A__ : Tuple = field(default=a_ , metadata={"""help""": """Whether to print environment information"""} ) A__ : Tuple = field( default=a_ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) A__ : Optional[Any] = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) A__ : int = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) A__ : Union[str, Any] = field( default=f'''train_time_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) A__ : Optional[int] = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) A__ : Tuple = field( default=f'''env_info_{round(time() )}.csv''' , metadata={"""help""": """CSV filename used if saving environment information."""} , ) A__ : str = field( default=f'''log_{round(time() )}.csv''' , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) A__ : str = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) A__ : Any = field( default=a_ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def lowerCamelCase_ ( self ): """simple docstring""" warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __UpperCamelCase , ) def lowerCamelCase_ ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCamelCase_ ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = [\'bert-base-cased\'].""" ) return self.models @property def lowerCamelCase_ ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
122
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
0
def A ( a_ ,a_ ) -> int: _enforce_args(_A ,_A ) if n == 0: return 0 __UpperCamelCase : List[Any] =float('-inf' ) for i in range(1 ,n + 1 ): __UpperCamelCase : Optional[int] =max( _A ,prices[i - 1] + naive_cut_rod_recursive(n - i ,_A ) ) return max_revue def A ( a_ ,a_ ) -> Optional[Any]: _enforce_args(_A ,_A ) __UpperCamelCase : List[str] =[float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A ,_A ,_A ) def A ( a_ ,a_ ,a_ ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __UpperCamelCase : str =float('-inf' ) for i in range(1 ,n + 1 ): __UpperCamelCase : Optional[int] =max( _A ,prices[i - 1] + _top_down_cut_rod_recursive(n - i ,_A ,_A ) ,) __UpperCamelCase : Tuple =max_revenue return max_rev[n] def A ( a_ ,a_ ) -> Optional[int]: _enforce_args(_A ,_A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __UpperCamelCase : List[Any] =[float('-inf' ) for _ in range(n + 1 )] __UpperCamelCase : Dict =0 for i in range(1 ,n + 1 ): __UpperCamelCase : List[str] =max_rev[i] for j in range(1 ,i + 1 ): __UpperCamelCase : Union[str, Any] =max(_A ,prices[j - 1] + max_rev[i - j] ) __UpperCamelCase : Optional[int] =max_revenue_i return max_rev[n] def A ( a_ ,a_ ) -> Dict: if n < 0: __UpperCamelCase : str =F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(_A ) if n > len(_A ): __UpperCamelCase : List[Any] =( 'Each integral piece of rod must have a corresponding price. ' F'Got n = {n} but length of prices = {len(_A )}' ) raise ValueError(_A ) def A ( ) -> Optional[int]: __UpperCamelCase : Dict =[6, 10, 12, 15, 20, 23] __UpperCamelCase : str =len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __UpperCamelCase : int =36 __UpperCamelCase : Union[str, Any] =top_down_cut_rod(_A ,_A ) __UpperCamelCase : str =bottom_up_cut_rod(_A ,_A ) __UpperCamelCase : List[str] =naive_cut_rod_recursive(_A ,_A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
71
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
0
'''simple docstring''' import os import pytest from attr import dataclass _A : Any = """us-east-1""" # defaults region @dataclass class _lowercase : '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = 42 _SCREAMING_SNAKE_CASE : Any = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" _SCREAMING_SNAKE_CASE : Any = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5500, } _SCREAMING_SNAKE_CASE : Any = {**hyperparameters, """max_steps""": 1000} @property def a ( self : str ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def a ( self : Dict ) -> str: return f"""{self.framework}-transfromers-test""" @property def a ( self : Tuple ) -> str: return f"""./tests/sagemaker/scripts/{self.framework}""" @property def a ( self : Union[str, Any] ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def UpperCamelCase_ ( snake_case_ : List[Any] ) -> Dict: '''simple docstring''' __lowerCAmelCase = SageMakerTestEnvironment(framework=request.cls.framework )
229
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp lowerCamelCase_ = 5 lowerCamelCase_ = 1_0 @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Dict = SpeechaTextTokenizer SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : str = True def _UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE :Dict = sp.SentencePieceProcessor() spm_model.Load(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(SCREAMING_SNAKE_CASE__ ) )] __SCREAMING_SNAKE_CASE :Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __SCREAMING_SNAKE_CASE :List[str] = Path(self.tmpdirname ) save_json(SCREAMING_SNAKE_CASE__ ,save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SCREAMING_SNAKE_CASE__ ,save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) __SCREAMING_SNAKE_CASE :Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = '''<pad>''' __SCREAMING_SNAKE_CASE :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''j''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) ,10_01 ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size ,10_01 ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE :List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) ,[2_89, 50, 14, 1_74, 3_86] ,) __SCREAMING_SNAKE_CASE :Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] ,) __SCREAMING_SNAKE_CASE :Optional[int] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,[12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ ,[SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] ,) @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :str = {'''input_ids''': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ ,model_name='''facebook/s2t-small-mustc-en-de-st''' ,revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' ,) @require_sentencepiece class _SCREAMING_SNAKE_CASE( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = '''valhalla/s2t_mustc_multilinguial_medium''' SCREAMING_SNAKE_CASE_ : Optional[Any] = '''C\'est trop cool''' SCREAMING_SNAKE_CASE_ : List[Any] = '''Esto es genial''' @classmethod def _UpperCamelCase ( cls ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :int = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] ,4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] ,6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] ,9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] ,11 ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size ,1_00_00 ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" self.assertIn(SCREAMING_SNAKE_CASE__ ,self.tokenizer.all_special_ids ) __SCREAMING_SNAKE_CASE :int = [ES_CODE, 4, 16_01, 47, 76_47, 2] __SCREAMING_SNAKE_CASE :Tuple = self.tokenizer.decode(SCREAMING_SNAKE_CASE__ ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) self.assertNotIn(self.tokenizer.eos_token ,SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = '''fr''' __SCREAMING_SNAKE_CASE :List[str] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] ,SCREAMING_SNAKE_CASE__ ) self.assertEqual(encoded[-1] ,self.tokenizer.eos_token_id ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens ,[FR_CODE] ) __SCREAMING_SNAKE_CASE :Tuple = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens ,[ES_CODE] )
191
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
0
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration snake_case_ : Any = HfArgumentParser(InitializationArguments) snake_case_ : Tuple = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks snake_case_ : str = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) snake_case_ : List[Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config snake_case_ : str = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
83
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : int = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ) -> int: """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ) -> List[str]: """simple docstring""" snake_case__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ) -> Dict: """simple docstring""" snake_case__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def a_ ( ) -> Optional[int]: """simple docstring""" assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def a_ ( ) -> Optional[Any]: """simple docstring""" # laplace diagonals snake_case__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def a_ ( ) -> Dict: """simple docstring""" assert med.median_filter(_A , 3 ).any() def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = sp.make_sepia(_A , 20 ) assert sepia.all() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[int]: """simple docstring""" snake_case__ = bs.Burkes(imread(_A , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" snake_case__ = rs.NearestNeighbour(imread(_A , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def a_ ( ) -> Any: """simple docstring""" snake_case__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ = 0 snake_case__ = 0 snake_case__ = image[x_coordinate][y_coordinate] snake_case__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
307
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase_ = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase_ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase_ = dict(zip(vocab, range(len(vocab)))) UpperCamelCase_ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = Path(tmpdirname) UpperCamelCase_ = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase_ = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase_ = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) UpperCamelCase_ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase_ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase_ = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase_ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') UpperCamelCase_ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
345
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __A ( a_, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WavaVecaPhonemeCTCTokenizer __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self ) -> List[str]: super().setUp() a =( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) a =dict(zip(__A , range(len(__A ) ) ) ) a ={'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) def SCREAMING_SNAKE_CASE ( self , __A , __A=False , __A=20 , __A=5 ) -> Tuple[str, list]: a =[(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__A )) for i in range(len(__A ) )] a =list(filter(lambda __A : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__A ) , __A ) ) if max_length is not None and len(__A ) > max_length: a =toks[:max_length] if min_length is not None and len(__A ) < min_length and len(__A ) > 0: while len(__A ) < min_length: a =toks + toks # toks_str = [t[1] for t in toks] a =[t[0] for t in toks] # Ensure consistency a =tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) if " " not in output_txt and len(__A ) > 1: a =( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__A ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__A ) ) if with_prefix_space: a =''' ''' + output_txt a =tokenizer.encode(__A , add_special_tokens=__A ) return output_txt, output_ids def SCREAMING_SNAKE_CASE ( self , **__A ) -> Tuple: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) a =tokenizer('''m xxx ɪ''' , do_phonemize=__A ).input_ids self.assertEqual(__A , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) a =tokenizer('''m aaa ɪ ccc''' , do_phonemize=__A ).input_ids self.assertEqual(__A , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa a =tokenizer('''maɪ c''' , do_phonemize=__A ).input_ids self.assertEqual(__A , [3, 200] ) # mai should be <unk> (=3) def SCREAMING_SNAKE_CASE ( self ) -> Any: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) self.assertEqual(__A , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__A ).input_ids , tokenizer(__A , do_phonemize=__A ).input_ids ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) a =tokenizer.decode(tokenizer(__A ).input_ids ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a =[ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] a =tokenizer.decode(sample_ids[0] ) a =tokenizer.batch_decode(__A ) self.assertEqual(__A , batch_tokens[0] ) self.assertEqual(__A , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) self.assertEqual(__A , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(__A ).input_ids , tokenizer(__A , do_phonemize=__A ).input_ids ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off a =[ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter a =tokenizer.decode(sample_ids[0] ) a =tokenizer.batch_decode(__A ) self.assertEqual(__A , batch_tokens[0] ) self.assertEqual(__A , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter a =tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__A ) a =tokenizer.batch_decode(__A , filter_word_delimiter_token=__A ) self.assertEqual(__A , batch_tokens[0] ) self.assertEqual(__A , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) a =tokenizer.decode(tokenizer(__A ).input_ids , filter_word_delimiter_token=__A ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) a ='''Hello how are you''' a =tokenizer.phonemize(__A , phonemizer_lang='''en-us''' ) a =tokenizer.decode(tokenizer(__A ).input_ids , filter_word_delimiter_token=__A ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=__A ) a ='''Hello how are you''' a =tokenizer(__A , phonemizer_lang='''en-us''' ).input_ids a =tokenizer(__A , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(__A , __A ) a =tokenizer.decode(__A ) a =tokenizer.decode(__A ) self.assertEqual(__A , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(__A , '''ɛ l o h aʊ a ʁ j u''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) a ='''Hello how Are you''' a ='''hello how are you''' a =tokenizer(__A ).input_ids a =tokenizer(__A ).input_ids self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off a =[ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on a =tokenizer.batch_decode(__A ) self.assertEqual(__A , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def SCREAMING_SNAKE_CASE ( __A , __A ) -> Dict: a =[d[key] for d in offsets] return retrieved_list def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a =self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" a =[11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on a =tokenizer.decode(__A , output_char_offsets=__A , filter_word_delimiter_token=__A ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(__A , __A ): self.assertTrue(isinstance(__A , __A ) ) self.assertTrue(isinstance(outputs_list[0] , __A ) ) # transform list to ModelOutput a =WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(__A , __A ): if isinstance(__A , __A ): [recursive_check(__A , __A ) for la, la in zip(__A , __A )] self.assertEqual(__A , __A ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off a =[ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char a =tokenizer.batch_decode(__A , output_char_offsets=__A ) a =[tokenizer.decode(__A , output_char_offsets=__A ) for ids in sample_ids] check_list_tuples_equal(__A , __A ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a =tokenizer.vocab_size a =len(__A ) self.assertNotEqual(__A , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a =['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] a =tokenizer.add_tokens(__A ) a =tokenizer.vocab_size a =len(__A ) self.assertNotEqual(__A , 0 ) self.assertEqual(__A , __A ) self.assertEqual(__A , len(__A ) ) self.assertEqual(__A , all_size + len(__A ) ) a =tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=__A ) self.assertGreaterEqual(len(__A ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a ={'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} a =tokenizer.add_special_tokens(__A ) a =tokenizer.vocab_size a =len(__A ) self.assertNotEqual(__A , 0 ) self.assertEqual(__A , __A ) self.assertEqual(__A , len(__A ) ) self.assertEqual(__A , all_size_a + len(__A ) ) a =tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=__A ) self.assertGreaterEqual(len(__A ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: pass def SCREAMING_SNAKE_CASE ( self ) -> str: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. a =self.get_tokenizers(fast=__A , do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a =['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] a =tokenizer.convert_tokens_to_string(__A ) self.assertIsInstance(output['''text'''] , __A )
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _A ( a_ ,a_ ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = IFPipeline UpperCAmelCase : Optional[int] = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase : str = PipelineTesterMixin.required_optional_params - {"""latents"""} def __snake_case ( self : Tuple): return self._get_dummy_components() def __snake_case ( self : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=0): if str(__UpperCAmelCase).startswith("mps"): a : Any = torch.manual_seed(__UpperCAmelCase) else: a : Tuple = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self : List[str]): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA") def __snake_case ( self : int): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def __snake_case ( self : Any): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def __snake_case ( self : List[str]): self._test_save_load_local() def __snake_case ( self : Tuple): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Optional[int]): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Union[str, Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int]): # if a : str = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa) a : Tuple = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda") a , a : Optional[int] = pipe_a.encode_prompt("anime turtle" , device="cuda") del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() a : List[str] = None a : List[str] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img a : Tuple = IFImgaImgPipeline(**pipe_a.components) a : Union[str, Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting a : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components) a : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[str]): # pipeline 1 _start_torch_memory_measurement() a : Tuple = torch.Generator(device="cpu").manual_seed(0) a : str = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type="np" , ) a : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) a : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 a : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy") assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) # pipeline 2 _start_torch_memory_measurement() a : List[str] = torch.Generator(device="cpu").manual_seed(0) a : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(__UpperCAmelCase) a : Union[str, Any] = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) a : str = output.images[0] assert image.shape == (256, 256, 3) a : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy") assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int]): # pipeline 1 _start_torch_memory_measurement() a : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(__UpperCAmelCase) a : List[str] = torch.Generator(device="cpu").manual_seed(0) a : Dict = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type="np" , ) a : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) a : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 a : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy") assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) # pipeline 2 _start_torch_memory_measurement() a : Optional[Any] = torch.Generator(device="cpu").manual_seed(0) a : str = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(__UpperCAmelCase) a : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(__UpperCAmelCase) a : Dict = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , original_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) a : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) a : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy") assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Dict): # pipeline 1 _start_torch_memory_measurement() a : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(__UpperCAmelCase) a : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(__UpperCAmelCase) a : Dict = torch.Generator(device="cpu").manual_seed(0) a : Union[str, Any] = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , num_inference_steps=2 , generator=__UpperCAmelCase , output_type="np" , ) a : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) a : str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 a : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy") assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) # pipeline 2 _start_torch_memory_measurement() a : Tuple = torch.Generator(device="cpu").manual_seed(0) a : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(__UpperCAmelCase) a : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(__UpperCAmelCase) a : Any = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(__UpperCAmelCase) a : int = pipe_a( prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , original_image=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) a : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) a : int = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 a : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy") assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase) def lowercase ( )-> Any: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } lowerCAmelCase_ :Dict = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__A ) , x.transpose() ) ) lowerCAmelCase_ :Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = np.random.randn(3 , 4 ) lowerCAmelCase_ :Optional[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(transpose(__A ) , transpose(__A ).numpy() ) ) lowerCAmelCase_ :Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :Union[str, Any] = torch.tensor(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , transpose(__A , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Tuple = np.random.randn(3 , 4 ) lowerCAmelCase_ :Any = tf.constant(__A ) self.assertTrue(np.allclose(transpose(__A ) , transpose(__A ).numpy() ) ) lowerCAmelCase_ :Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :Optional[int] = tf.constant(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , transpose(__A , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Any = np.random.randn(3 , 4 ) lowerCAmelCase_ :Optional[int] = jnp.array(__A ) self.assertTrue(np.allclose(transpose(__A ) , np.asarray(transpose(__A ) ) ) ) lowerCAmelCase_ :int = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :int = jnp.array(__A ) self.assertTrue(np.allclose(transpose(__A , axes=(1, 2, 0) ) , np.asarray(transpose(__A , axes=(1, 2, 0) ) ) ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , np.reshape(__A , (4, 3) ) ) ) lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , np.reshape(__A , (12, 5) ) ) ) @require_torch def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Dict = np.random.randn(3 , 4 ) lowerCAmelCase_ :Optional[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , reshape(__A , (4, 3) ).numpy() ) ) lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :List[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , reshape(__A , (12, 5) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 ) lowerCAmelCase_ :List[str] = tf.constant(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , reshape(__A , (4, 3) ).numpy() ) ) lowerCAmelCase_ :Optional[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :Any = tf.constant(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , reshape(__A , (12, 5) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[int] = np.random.randn(3 , 4 ) lowerCAmelCase_ :Union[str, Any] = jnp.array(__A ) self.assertTrue(np.allclose(reshape(__A , (4, 3) ) , np.asarray(reshape(__A , (4, 3) ) ) ) ) lowerCAmelCase_ :List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase_ :List[Any] = jnp.array(__A ) self.assertTrue(np.allclose(reshape(__A , (12, 5) ) , np.asarray(reshape(__A , (12, 5) ) ) ) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__A ) , np.squeeze(__A ) ) ) lowerCAmelCase_ :Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , np.squeeze(__A , axis=2 ) ) ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase_ :List[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(squeeze(__A ) , squeeze(__A ).numpy() ) ) lowerCAmelCase_ :Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase_ :Optional[Any] = torch.tensor(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , squeeze(__A , axis=2 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = np.random.randn(1 , 3 , 4 ) lowerCAmelCase_ :Optional[int] = tf.constant(__A ) self.assertTrue(np.allclose(squeeze(__A ) , squeeze(__A ).numpy() ) ) lowerCAmelCase_ :Dict = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase_ :Union[str, Any] = tf.constant(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , squeeze(__A , axis=2 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Tuple = np.random.randn(1 , 3 , 4 ) lowerCAmelCase_ :str = jnp.array(__A ) self.assertTrue(np.allclose(squeeze(__A ) , np.asarray(squeeze(__A ) ) ) ) lowerCAmelCase_ :Any = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase_ :Optional[int] = jnp.array(__A ) self.assertTrue(np.allclose(squeeze(__A , axis=2 ) , np.asarray(squeeze(__A , axis=2 ) ) ) ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , np.expand_dims(__A , axis=1 ) ) ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :int = np.random.randn(3 , 4 ) lowerCAmelCase_ :str = torch.tensor(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , expand_dims(__A , axis=1 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :str = np.random.randn(3 , 4 ) lowerCAmelCase_ :Any = tf.constant(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , expand_dims(__A , axis=1 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = np.random.randn(3 , 4 ) lowerCAmelCase_ :int = jnp.array(__A ) self.assertTrue(np.allclose(expand_dims(__A , axis=1 ) , np.asarray(expand_dims(__A , axis=1 ) ) ) )
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
from __future__ import annotations UpperCamelCase__ = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def lowerCAmelCase_ ( __A ) -> list[float]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = len(_A ) for i in range(_A ): UpperCAmelCase__ = -1 for j in range(i + 1, _A ): if arr[i] < arr[j]: UpperCAmelCase__ = arr[j] break result.append(_A ) return result def lowerCAmelCase_ ( __A ) -> list[float]: '''simple docstring''' UpperCAmelCase__ = [] for i, outer in enumerate(_A ): UpperCAmelCase__ = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCAmelCase__ = inner break result.append(_A ) return result def lowerCAmelCase_ ( __A ) -> list[float]: '''simple docstring''' UpperCAmelCase__ = len(_A ) UpperCAmelCase__ = [] UpperCAmelCase__ = [-1] * arr_size for index in reversed(range(_A ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCAmelCase__ = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
65
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "LayoutLMv2ImageProcessor" _UpperCAmelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: int , UpperCamelCase: Optional[int]=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Union[str, Any] ) -> int: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCamelCase: Union[List[List[int]], List[List[List[int]]]] = None , UpperCamelCase: Optional[Union[List[int], List[List[int]]]] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[bool, str, PaddingStrategy] = False , UpperCamelCase: Union[bool, str, TruncationStrategy] = None , UpperCamelCase: Optional[int] = None , UpperCamelCase: int = 0 , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[str, TensorType]] = None , **UpperCamelCase: Any , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor snake_case__ = self.image_processor(images=UpperCamelCase , return_tensors=UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case__ = features['words'] snake_case__ = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCamelCase , add_special_tokens=UpperCamelCase , padding=UpperCamelCase , truncation=UpperCamelCase , max_length=UpperCamelCase , stride=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_token_type_ids=UpperCamelCase , return_attention_mask=UpperCamelCase , return_overflowing_tokens=UpperCamelCase , return_special_tokens_mask=UpperCamelCase , return_offsets_mapping=UpperCamelCase , return_length=UpperCamelCase , verbose=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase , ) # add pixel values snake_case__ = features.pop('pixel_values' ) if return_overflowing_tokens is True: snake_case__ = self.get_overflowing_images(UpperCamelCase , encoded_inputs['overflow_to_sample_mapping'] ) snake_case__ = images return encoded_inputs def lowerCAmelCase_ ( self: Any , UpperCamelCase: Optional[int] , UpperCamelCase: Any ) -> Tuple: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCamelCase )} and {len(UpperCamelCase )}''' ) return images_with_overflow def lowerCAmelCase_ ( self: Dict , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , *UpperCamelCase: Optional[Any] , **UpperCamelCase: int ) -> Optional[Any]: return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCAmelCase_ ( self: str ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase_ ( self: Any ) -> List[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase , ) return self.image_processor
307
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __snake_case : Dict = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case : str = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } __snake_case : List[str] = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } __snake_case : Any = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ElectraTokenizer def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: List[str]="[UNK]" , _SCREAMING_SNAKE_CASE: Tuple="[SEP]" , _SCREAMING_SNAKE_CASE: Union[str, Any]="[PAD]" , _SCREAMING_SNAKE_CASE: Union[str, Any]="[CLS]" , _SCREAMING_SNAKE_CASE: Any="[MASK]" , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: List[str]=None , **_SCREAMING_SNAKE_CASE: Any , ) -> Optional[int]: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , _SCREAMING_SNAKE_CASE) != do_lower_case or normalizer_state.get("strip_accents" , _SCREAMING_SNAKE_CASE) != strip_accents or normalizer_state.get("handle_chinese_chars" , _SCREAMING_SNAKE_CASE) != tokenize_chinese_chars ): __lowerCAmelCase : Tuple = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("type")) __lowerCAmelCase : str = do_lower_case __lowerCAmelCase : Tuple = strip_accents __lowerCAmelCase : List[str] = tokenize_chinese_chars __lowerCAmelCase : Union[str, Any] = normalizer_class(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Any=None) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None) -> List[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = [self.sep_token_id] __lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None) -> Tuple[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE) return tuple(_SCREAMING_SNAKE_CASE)
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowercase_ ( unittest.TestCase ): @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) UpperCamelCase_ = load_dataset("""ashraq/esc50""" ) UpperCamelCase_ = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_ = audio_classifier(__UpperCamelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @slow @require_torch def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog UpperCamelCase_ = load_dataset("""ashraq/esc50""" ) UpperCamelCase_ = dataset["""train"""]["""audio"""][-1]["""array"""] UpperCamelCase_ = audio_classifier(__UpperCamelCase , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ] , ) UpperCamelCase_ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) UpperCamelCase_ = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(__UpperCamelCase ) , [ [ {"""score""": 0.999, """label""": """Sound of a dog"""}, {"""score""": 0.001, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def lowerCamelCase_ ( self ): """simple docstring""" pass
122
import os def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = os.path.join(os.path.dirname(_A ) , 'num.txt' ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
307
0
# using dfs for finding eulerian path traversal def A ( a_ ,a_ ,a_ ,a_=None ) -> Any: __UpperCamelCase : int =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __UpperCamelCase , __UpperCamelCase : Optional[Any] =True, True __UpperCamelCase : Optional[Any] =dfs(_A ,_A ,_A ,_A ) return path def A ( a_ ,a_ ) -> Any: __UpperCamelCase : Dict =0 __UpperCamelCase : List[Any] =-1 for i in range(_A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __UpperCamelCase : Optional[Any] =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def A ( a_ ,a_ ) -> Dict: __UpperCamelCase : Union[str, Any] =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __UpperCamelCase , __UpperCamelCase : List[Any] =check_circuit_or_path(_A ,_A ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return __UpperCamelCase : int =1 if check == 2: __UpperCamelCase : str =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) __UpperCamelCase : Union[str, Any] =dfs(_A ,_A ,_A ) print(_A ) def A ( ) -> int: __UpperCamelCase : int ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __UpperCamelCase : int ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __UpperCamelCase : str ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __UpperCamelCase : Union[str, Any] ={1: [2, 3], 2: [1, 3], 3: [1, 2]} __UpperCamelCase : Tuple ={ 1: [], 2: [] # all degree is zero } __UpperCamelCase : List[str] =10 check_euler(_A ,_A ) check_euler(_A ,_A ) check_euler(_A ,_A ) check_euler(_A ,_A ) check_euler(_A ,_A ) if __name__ == "__main__": main()
71
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __SCREAMING_SNAKE_CASE( ctypes.Structure ): # _fields is a specific attr expected by ctypes _UpperCAmelCase = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ) -> Any: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def a_ ( ) -> Tuple: """simple docstring""" if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_A , ctypes.byref(_A ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_A , ctypes.byref(_A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def a_ ( ) -> str: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
307
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase_ ( ) -> Tuple: '''simple docstring''' __lowerCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=_A ) __lowerCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_A ) env_command_parser(subparsers=_A ) launch_command_parser(subparsers=_A ) tpu_command_parser(subparsers=_A ) test_command_parser(subparsers=_A ) # Let's go __lowerCAmelCase = parser.parse_args() if not hasattr(_A , """func""" ): parser.print_help() exit(1 ) # Run args.func(_A ) if __name__ == "__main__": main()
229
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Any = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } __UpperCamelCase : Optional[Any] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def a_ ( _A , _A=1 , _A=256 ) -> str: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a_ ( _A ) -> int: """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def a_ ( _A , _A ) -> int: """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def a_ ( _A , _A , _A , _A=True ) -> List[str]: """simple docstring""" os.makedirs(_A , exist_ok=_A ) snake_case__ = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) snake_case__ = read_json(os.path.join(_A , 'params.json' ) ) snake_case__ = NUM_SHARDS[model_size] snake_case__ = params['n_layers'] snake_case__ = params['n_heads'] snake_case__ = n_heads // num_shards snake_case__ = params['dim'] snake_case__ = dim // n_heads snake_case__ = 10000.0 snake_case__ = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: snake_case__ = params['n_kv_heads'] # for GQA / MQA snake_case__ = n_heads_per_shard // num_key_value_heads snake_case__ = dim // num_key_value_heads else: # compatibility with other checkpoints snake_case__ = n_heads snake_case__ = n_heads_per_shard snake_case__ = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) snake_case__ = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded snake_case__ = [ torch.load(os.path.join(_A , f'''consolidated.{i:02d}.pth''' ) , map_location='cpu' ) for i in range(_A ) ] snake_case__ = 0 snake_case__ = {'weight_map': {}} for layer_i in range(_A ): snake_case__ = f'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { f'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wq.weight'''] ), f'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[f'''layers.{layer_i}.attention.wk.weight'''] ), f'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[f'''layers.{layer_i}.attention.wv.weight'''], f'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[f'''layers.{layer_i}.attention.wo.weight'''], f'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w1.weight'''], f'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w2.weight'''], f'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[f'''layers.{layer_i}.feed_forward.w3.weight'''], f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[f'''layers.{layer_i}.attention_norm.weight'''], f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[f'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. snake_case__ = { f'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.attention_norm.weight''' ].clone(), f'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ f'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wq.weight'''].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) snake_case__ = permute( torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wk.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) snake_case__ = torch.cat( [ loaded[i][f'''layers.{layer_i}.attention.wv.weight'''].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.attention.wo.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_A )] , dim=1 ) snake_case__ = torch.cat( [loaded[i][f'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_A )] , dim=0 ) snake_case__ = inv_freq for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) snake_case__ = f'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded snake_case__ = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: snake_case__ = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): snake_case__ = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs snake_case__ = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) snake_case__ = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 snake_case__ = params['multiple_of'] if 'multiple_of' in params else 256 snake_case__ = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) snake_case__ = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" # Initialize the tokenizer based on the `spm` model snake_case__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) snake_case__ = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def a_ ( ) -> str: """simple docstring""" snake_case__ = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) snake_case__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) snake_case__ = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
307
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE( metaclass=a_ ): SCREAMING_SNAKE_CASE_ : List[Any] = ['''torch''', '''scipy'''] def __init__( self ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" requires_backends(self ,['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" requires_backends(cls ,['''torch''', '''scipy'''] ) @classmethod def _UpperCamelCase ( cls ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''torch''', '''scipy'''] )
191
import os import string import sys __UpperCamelCase : List[Any] = 1 << 8 __UpperCamelCase : Union[str, Any] = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } __UpperCamelCase : Optional[Any] = KEYMAP["""up"""] __UpperCamelCase : Tuple = KEYMAP["""left"""] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : int = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def a_ ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": import msvcrt snake_case__ = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_A ) == 0: # Read the keystroke snake_case__ = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case__ = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case__ = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_A ) if ord(_A ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) snake_case__ = chr(KEYMAP['esc'] ) except KeyError: snake_case__ = cha[1] else: snake_case__ = ch.decode(_A ) else: snake_case__ = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case__ = sys.stdin.fileno() snake_case__ = termios.tcgetattr(_A ) try: tty.setraw(_A ) snake_case__ = sys.stdin.read(1 ) finally: termios.tcsetattr(_A , termios.TCSADRAIN , _A ) return ch def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = get_raw_chars() if ord(_A ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_A ) == KEYMAP["esc"]: snake_case__ = get_raw_chars() if ord(_A ) == KEYMAP["mod_int"]: snake_case__ = get_raw_chars() if ord(_A ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_A ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_A ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case_ : Any = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ : Union[str, Any] = concatenate_datasets snake_case_ : Optional[Any] = DownloadConfig snake_case_ : str = DownloadManager snake_case_ : List[str] = DownloadMode snake_case_ : Optional[Any] = DownloadConfig snake_case_ : Any = DownloadMode snake_case_ : List[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
83
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCamelCase_ = logging.get_logger(__name__) @dataclass class _snake_case : '''simple docstring''' A__ : Any = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) A__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) A__ : Tuple = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ : Optional[Any] = field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def A__ ( self: Dict ) -> str: UpperCAmelCase_ : List[Any] = self.task_name.lower() class _snake_case ( a_ ): '''simple docstring''' A__ : str = "train" A__ : Tuple = "dev" A__ : List[str] = "test" class _snake_case ( a_ ): '''simple docstring''' A__ : str = 42 A__ : Union[str, Any] = 42 A__ : Optional[Any] = 42 def __init__( self: List[Any] ,lowerCamelCase_: GlueDataTrainingArguments ,lowerCamelCase_: PreTrainedTokenizerBase ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Union[str, Split] = Split.train ,lowerCamelCase_: Optional[str] = None ,) -> str: warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ,lowerCamelCase_ ,) UpperCAmelCase_ : Tuple = args UpperCAmelCase_ : Union[str, Any] = glue_processors[args.task_name]() UpperCAmelCase_ : Any = glue_output_modes[args.task_name] if isinstance(lowerCamelCase_ ,lowerCamelCase_ ): try: UpperCAmelCase_ : Union[str, Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file UpperCAmelCase_ : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' ,) UpperCAmelCase_ : Dict = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = label_list[2], label_list[1] UpperCAmelCase_ : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : List[str] = cached_features_file + """.lock""" with FileLock(lowerCamelCase_ ): if os.path.exists(lowerCamelCase_ ) and not args.overwrite_cache: UpperCAmelCase_ : Union[str, Any] = time.time() UpperCAmelCase_ : List[Any] = torch.load(lowerCamelCase_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: UpperCAmelCase_ : Optional[int] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase_ : Union[str, Any] = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase_ : int = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase_ : str = examples[:limit_length] UpperCAmelCase_ : Union[str, Any] = glue_convert_examples_to_features( lowerCamelCase_ ,lowerCamelCase_ ,max_length=args.max_seq_length ,label_list=lowerCamelCase_ ,output_mode=self.output_mode ,) UpperCAmelCase_ : Any = time.time() torch.save(self.features ,lowerCamelCase_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self: List[str] ) -> int: return len(self.features ) def __getitem__( self: Tuple ,lowerCamelCase_: Optional[int] ) -> InputFeatures: return self.features[i] def A__ ( self: int ) -> Union[str, Any]: return self.label_list
345
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : int = 299792458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = symbols("""ct x y z""") def a_ ( _A ) -> float: """simple docstring""" if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def a_ ( _A ) -> float: """simple docstring""" return 1 / sqrt(1 - beta(_A ) ** 2 ) def a_ ( _A ) -> np.ndarray: """simple docstring""" return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def a_ ( _A , _A = None ) -> np.ndarray: """simple docstring""" # Ensure event is not empty if event is None: snake_case__ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(29979245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values __UpperCamelCase : List[Any] = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
307
0
"""simple docstring""" import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase_ : List[Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase_ : int = """cuda""" if torch.cuda.is_available() else """cpu""" def _A ( lowercase , lowercase=1_00 , lowercase=" " ): """simple docstring""" a =text.split(_A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_A ) , _A )] def _A ( lowercase ): """simple docstring""" a , a =[], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(_A ): titles.append(title if title is not None else '''''' ) texts.append(_A ) return {"title": titles, "text": texts} def _A ( lowercase , lowercase , lowercase ): """simple docstring""" a =ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=_A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] a =ctx_encoder(input_ids.to(device=_A ) , return_dict=_A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _A ( lowercase , lowercase , lowercase , ): """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a =load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a =dataset.map(_A , batched=_A , num_proc=processing_args.num_proc ) # And compute the embeddings a =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_A ) a =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a =Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space a =dataset.map( partial(_A , ctx_encoder=_A , ctx_tokenizer=_A ) , batched=_A , batch_size=processing_args.batch_size , features=_A , ) # And finally save your dataset a =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(_A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=_A ) # And save the index a =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(_A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=str(Path(a_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ), metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"}, ) __lowerCAmelCase = field( default=a_, metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."}, ) __lowerCAmelCase = field( default="facebook/rag-sequence-nq", metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"}, ) __lowerCAmelCase = field( default="facebook/dpr-ctx_encoder-multiset-base", metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) }, ) __lowerCAmelCase = field( default=str(Path(a_ ).parent / "test_run" / "dummy-kb" ), metadata={"help": "Path to a directory where the dataset passages and the index will be saved"}, ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=a_, metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." }, ) __lowerCAmelCase = field( default=16, metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." }, ) @dataclass class __A : """simple docstring""" __lowerCAmelCase = field( default=768, metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."}, ) __lowerCAmelCase = field( default=128, metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase_ : Optional[int] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase_ : str = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase_ : List[str] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
81
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" def lowercase ( A_ , A_ , A_ )-> int: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(_A , n - 1 , _A ) * a) % mod else: a : Optional[int] = binary_exponentiation(_A , n / 2 , _A ) return (b * b) % mod # a prime number __lowercase = 701 __lowercase = 1000000000 __lowercase = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
40
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : int = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Any = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Tuple = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCamelCase : Optional[Any] = """▁""" class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any]="</s>" , UpperCamelCase: Tuple="<unk>" , UpperCamelCase: Optional[int]="<pad>" , UpperCamelCase: List[str]=1_00 , UpperCamelCase: Dict=None , UpperCamelCase: Optional[Dict[str, Any]] = None , UpperCamelCase: Tuple=True , **UpperCamelCase: Dict , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda UpperCamelCase : bool('extra_id' in str(UpperCamelCase ) ) , UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) snake_case__ = legacy snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , extra_ids=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=UpperCamelCase , **UpperCamelCase , ) snake_case__ = vocab_file snake_case__ = extra_ids snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[Any] ) -> Any: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , UpperCamelCase , ) return max_model_length @property def lowerCAmelCase_ ( self: Tuple ) -> List[str]: return self.sp_model.get_piece_size() + self._extra_ids def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: snake_case__ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None , UpperCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: return list( set(filter(lambda UpperCamelCase : bool(re.search(R'<extra_id_\d+>' , UpperCamelCase ) ) is not None , self.additional_special_tokens ) ) ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: return [self._convert_token_to_id(UpperCamelCase ) for token in self.get_sentinel_tokens()] def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[int] ) -> List[int]: if len(UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self: str , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[int] , UpperCamelCase: Optional[List[int]] = None ) -> List[int]: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(UpperCamelCase ) return token_ids_a + token_ids_a def __getstate__( self: Union[str, Any] ) -> List[str]: snake_case__ = self.__dict__.copy() snake_case__ = None return state def __setstate__( self: Optional[int] , UpperCamelCase: int ) -> List[str]: snake_case__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self: str , UpperCamelCase: "TextInput" , **UpperCamelCase: Dict ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ = SPIECE_UNDERLINE + text.replace(UpperCamelCase , ' ' ) return super().tokenize(UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , **UpperCamelCase: str ) -> str: if not self.legacy: snake_case__ = text.startswith(UpperCamelCase ) if is_first: snake_case__ = text[1:] snake_case__ = self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(UpperCamelCase ): snake_case__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[int] ) -> Dict: if token.startswith('<extra_id_' ): snake_case__ = re.match(R'<extra_id_(\d+)>' , UpperCamelCase ) snake_case__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(UpperCamelCase ) def lowerCAmelCase_ ( self: Dict , UpperCamelCase: str ) -> Tuple: if index < self.sp_model.get_piece_size(): snake_case__ = self.sp_model.IdToPiece(UpperCamelCase ) else: snake_case__ = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> Dict: snake_case__ = [] snake_case__ = '' snake_case__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token snake_case__ = True snake_case__ = [] else: current_sub_tokens.append(UpperCamelCase ) snake_case__ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string.strip() def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ = os.path.join( UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , 'wb' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,)
307
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): UpperCAmelCase_ :List[Any] = UnCLIPImageVariationPipeline UpperCAmelCase_ :Optional[Any] = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"} UpperCAmelCase_ :Union[str, Any] = IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase_ :List[str] = [ "generator", "return_dict", "decoder_num_inference_steps", "super_res_num_inference_steps", ] UpperCAmelCase_ :str = False @property def __lowerCAmelCase ( self ) -> Tuple: return 32 @property def __lowerCAmelCase ( self ) -> List[Any]: return 32 @property def __lowerCAmelCase ( self ) -> List[str]: return self.time_input_dim @property def __lowerCAmelCase ( self ) -> str: return self.time_input_dim * 4 @property def __lowerCAmelCase ( self ) -> Optional[int]: return 100 @property def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def __lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__A ) @property def __lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ :str = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } lowerCAmelCase_ :Union[str, Any] = UnCLIPTextProjModel(**__A ) return model @property def __lowerCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase_ :str = { """sample_size""": 32, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } lowerCAmelCase_ :int = UNetaDConditionModel(**__A ) return model @property def __lowerCAmelCase ( self ) -> Optional[int]: return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __lowerCAmelCase ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ :str = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __lowerCAmelCase ( self ) -> str: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) lowerCAmelCase_ :Tuple = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Tuple = self.dummy_decoder lowerCAmelCase_ :Optional[int] = self.dummy_text_proj lowerCAmelCase_ :Tuple = self.dummy_text_encoder lowerCAmelCase_ :Optional[Any] = self.dummy_tokenizer lowerCAmelCase_ :Tuple = self.dummy_super_res_first lowerCAmelCase_ :List[str] = self.dummy_super_res_last lowerCAmelCase_ :Any = UnCLIPScheduler( variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) lowerCAmelCase_ :Dict = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , ) lowerCAmelCase_ :Optional[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase_ :str = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __lowerCAmelCase ( self , __A , __A=0 , __A=True ) -> Any: lowerCAmelCase_ :List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :List[str] = torch.manual_seed(__A ) else: lowerCAmelCase_ :int = torch.Generator(device=__A ).manual_seed(__A ) if pil_image: lowerCAmelCase_ :Dict = input_image * 0.5 + 0.5 lowerCAmelCase_ :Optional[int] = input_image.clamp(0 , 1 ) lowerCAmelCase_ :Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase_ :List[Any] = DiffusionPipeline.numpy_to_pil(__A )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Any = """cpu""" lowerCAmelCase_ :Optional[Any] = self.get_dummy_components() lowerCAmelCase_ :Tuple = self.pipeline_class(**__A ) lowerCAmelCase_ :str = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :str = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :Any = pipe(**__A ) lowerCAmelCase_ :Optional[Any] = output.images lowerCAmelCase_ :List[str] = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :Any = pipe( **__A , return_dict=__A , )[0] lowerCAmelCase_ :Dict = image[0, -3:, -3:, -1] lowerCAmelCase_ :int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ :Optional[Any] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Dict = """cpu""" lowerCAmelCase_ :Union[str, Any] = self.get_dummy_components() lowerCAmelCase_ :Any = self.pipeline_class(**__A ) lowerCAmelCase_ :Optional[int] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :Optional[Any] = pipe(**__A ) lowerCAmelCase_ :Tuple = output.images lowerCAmelCase_ :Tuple = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :Dict = pipe( **__A , return_dict=__A , )[0] lowerCAmelCase_ :Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase_ :str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ :List[Any] = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Union[str, Any] = """cpu""" lowerCAmelCase_ :Dict = self.get_dummy_components() lowerCAmelCase_ :List[Any] = self.pipeline_class(**__A ) lowerCAmelCase_ :Tuple = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :Optional[Any] = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] lowerCAmelCase_ :Optional[Any] = pipe(**__A ) lowerCAmelCase_ :Optional[Any] = output.images lowerCAmelCase_ :Optional[int] = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :Tuple = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] lowerCAmelCase_ :int = pipe( **__A , return_dict=__A , )[0] lowerCAmelCase_ :Dict = image[0, -3:, -3:, -1] lowerCAmelCase_ :Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase_ :List[Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Optional[int] = torch.device("""cpu""" ) class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :Optional[int] = 1 lowerCAmelCase_ :Optional[int] = self.get_dummy_components() lowerCAmelCase_ :Optional[Any] = self.pipeline_class(**__A ) lowerCAmelCase_ :Union[str, Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Dict = torch.Generator(device=__A ).manual_seed(0 ) lowerCAmelCase_ :Dict = pipe.decoder.dtype lowerCAmelCase_ :Dict = 1 lowerCAmelCase_ :Tuple = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase_ :Any = pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) lowerCAmelCase_ :List[Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase_ :Optional[Any] = pipe.prepare_latents( __A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() ) lowerCAmelCase_ :Optional[Any] = self.get_dummy_inputs(__A , pil_image=__A ) lowerCAmelCase_ :str = pipe( **__A , decoder_latents=__A , super_res_latents=__A ).images lowerCAmelCase_ :int = self.get_dummy_inputs(__A , pil_image=__A ) # Don't pass image, instead pass embedding lowerCAmelCase_ :int = pipeline_inputs.pop("""image""" ) lowerCAmelCase_ :str = pipe.image_encoder(__A ).image_embeds lowerCAmelCase_ :Union[str, Any] = pipe( **__A , decoder_latents=__A , super_res_latents=__A , image_embeddings=__A , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :Any = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase_ :str = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=__A , expected_max_diff=__A ) @skip_mps def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[str] = torch_device == """cpu""" lowerCAmelCase_ :Union[str, Any] = True lowerCAmelCase_ :Tuple = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=__A , relax_max_difference=__A , additional_params_copy_to_batched_inputs=__A , ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Any = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase_ :Tuple = [2, 3] self._test_inference_batch_consistent( batch_sizes=__A , additional_params_copy_to_batched_inputs=__A , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__A ) @skip_mps def __lowerCAmelCase ( self ) -> Optional[Any]: return super().test_dict_tuple_outputs_equivalent() @skip_mps def __lowerCAmelCase ( self ) -> Optional[Any]: return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self ) -> Dict: return super().test_save_load_optional_components() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" ) lowerCAmelCase_ :int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" ) lowerCAmelCase_ :Tuple = UnCLIPImageVariationPipeline.from_pretrained( """kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa ) lowerCAmelCase_ :Optional[Any] = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ :List[Any] = pipeline( __A , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Dict = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__A , __A , 15 )
84
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: List[str] , UpperCamelCase: str=13 , UpperCamelCase: int=7 , UpperCamelCase: Any=True , UpperCamelCase: Dict=True , UpperCamelCase: Dict=False , UpperCamelCase: Optional[int]=True , UpperCamelCase: Dict=99 , UpperCamelCase: Dict=32 , UpperCamelCase: Optional[Any]=5 , UpperCamelCase: Union[str, Any]=4 , UpperCamelCase: List[str]=37 , UpperCamelCase: List[str]="gelu" , UpperCamelCase: Optional[Any]=0.1 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Union[str, Any]=5_12 , UpperCamelCase: str=16 , UpperCamelCase: int=2 , UpperCamelCase: Optional[int]=0.02 , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: Dict=4 , UpperCamelCase: List[str]=None , ) -> List[str]: snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def lowerCAmelCase_ ( self: List[str] ) -> Dict: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Any , UpperCamelCase: List[Any] , UpperCamelCase: str ) -> Dict: snake_case__ = LlamaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) snake_case__ = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: List[str] , UpperCamelCase: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any] , ) -> str: snake_case__ = True snake_case__ = LlamaModel(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , ) snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: Any , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Any , UpperCamelCase: int , UpperCamelCase: Optional[Any] , ) -> Any: snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: List[str] , UpperCamelCase: int , UpperCamelCase: str , UpperCamelCase: List[str] , ) -> Union[str, Any]: snake_case__ = True snake_case__ = True snake_case__ = LlamaForCausalLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() # first forward pass snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , use_cache=UpperCamelCase , ) snake_case__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] snake_case__ = model( UpperCamelCase , attention_mask=UpperCamelCase , encoder_hidden_states=UpperCamelCase , encoder_attention_mask=UpperCamelCase , past_key_values=UpperCamelCase , output_hidden_states=UpperCamelCase , )['hidden_states'][0] # select random slice snake_case__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-3 ) ) def lowerCAmelCase_ ( self: int ) -> Dict: snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE( a_ , a_ , a_ , unittest.TestCase ): _UpperCAmelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase = (LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = LlamaModelTester(self ) snake_case__ = ConfigTester(self , config_class=UpperCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self: int ) -> int: snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] ) -> str: snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: str ) -> Union[str, Any]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'single_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCAmelCase_ ( self: Dict ) -> int: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = 3 snake_case__ = 'multi_label_classification' snake_case__ = input_dict['input_ids'] snake_case__ = input_ids.ne(1 ).to(UpperCamelCase ) snake_case__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case__ = LlamaForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def lowerCAmelCase_ ( self: Dict ) -> Any: pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ , snake_case__ = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ = ids_tensor([1, 10] , config.vocab_size ) snake_case__ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = LlamaModel(UpperCamelCase ) original_model.to(UpperCamelCase ) original_model.eval() snake_case__ = original_model(UpperCamelCase ).last_hidden_state snake_case__ = original_model(UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights snake_case__ = {'type': scaling_type, 'factor': 10.0} snake_case__ = LlamaModel(UpperCamelCase ) scaled_model.to(UpperCamelCase ) scaled_model.eval() snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state snake_case__ = scaled_model(UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> str: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def lowerCAmelCase_ ( self: int ) -> List[Any]: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) # Expected mean on dim = -1 snake_case__ = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off snake_case__ = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def lowerCAmelCase_ ( self: List[str] ) -> Tuple: snake_case__ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] snake_case__ = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) snake_case__ = model(torch.tensor(UpperCamelCase ) ) snake_case__ = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off snake_case__ = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case__ = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' snake_case__ = 'Simply put, the theory of relativity states that ' snake_case__ = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) snake_case__ = tokenizer.encode(UpperCamelCase , return_tensors='pt' ) snake_case__ = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=UpperCamelCase ) # greedy generation outputs snake_case__ = model.generate(UpperCamelCase , max_new_tokens=64 , top_p=UpperCamelCase , temperature=1 , do_sample=UpperCamelCase ) snake_case__ = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
307
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( __A, __A, __A, __A, __A = None, __A = None, __A = None, ) -> Dict: '''simple docstring''' if config_name_or_path is None: UpperCAmelCase__ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCAmelCase__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCAmelCase__ = question_encoder_name_or_path UpperCAmelCase__ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCAmelCase__ = RagConfig.from_pretrained(_A ) UpperCAmelCase__ = AutoConfig.from_pretrained(_A ) UpperCAmelCase__ = AutoConfig.from_pretrained(_A ) UpperCAmelCase__ = gen_config UpperCAmelCase__ = question_encoder_config UpperCAmelCase__ = model_class.from_pretrained_question_encoder_generator( _A, _A, config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. UpperCAmelCase__ = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
65
from math import isclose, sqrt def a_ ( _A , _A , _A ) -> tuple[float, float, float]: """simple docstring""" snake_case__ = point_y / 4 / point_x snake_case__ = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case__ = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case__ = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case__ = outgoing_gradient**2 + 4 snake_case__ = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case__ = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case__ = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case__ = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case__ = x_minus if isclose(_A , _A ) else x_plus snake_case__ = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def a_ ( _A = 1.4 , _A = -9.6 ) -> int: """simple docstring""" snake_case__ = 0 snake_case__ = first_x_coord snake_case__ = first_y_coord snake_case__ = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case__ , snake_case__ , snake_case__ = next_point(_A , _A , _A ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
import re def lowerCamelCase__ ( a__ : List[Any] ) -> bool: UpperCamelCase_ = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(_A , _A ) ) if __name__ == "__main__": _A = """0094702343221""" print(is_sri_lankan_phone_number(phone))
122
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ :Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __A ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[Any] =XLMRobertaTokenizer UpperCamelCase__ : Union[str, Any] =XLMRobertaTokenizerFast UpperCamelCase__ : Optional[Any] =True UpperCamelCase__ : Tuple =True def __lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : List[str] =XLMRobertaTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] ='<pad>' __UpperCamelCase : Tuple =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCamelCase__ ) , 1002 ) def __lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XLMRobertaTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) __UpperCamelCase : Dict =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCamelCase : Tuple =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __UpperCamelCase : str =tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __UpperCamelCase : List[Any] =tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __lowercase ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCamelCase : List[str] =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase : Optional[int] =self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : int =self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Tuple =tempfile.mkdtemp() __UpperCamelCase : int =tokenizer_r.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Dict =tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __UpperCamelCase : str =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way __UpperCamelCase : List[str] =tokenizer_r.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Dict =tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True __UpperCamelCase : Tuple =tempfile.mkdtemp() __UpperCamelCase : List[Any] =tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way __UpperCamelCase : Any =tokenizer_r.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Any =tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False __UpperCamelCase : int =tempfile.mkdtemp() __UpperCamelCase : str =tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) __UpperCamelCase : List[str] =tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCamelCase : List[str] =tokenizer_r.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @cached_property def __lowercase ( self ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def __lowercase ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) __UpperCamelCase : Any =XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return __UpperCamelCase : Dict =self.get_tokenizer() __UpperCamelCase : Tuple =self.get_rust_tokenizer() __UpperCamelCase : List[Any] ='I was born in 92000, and this is falsé.' __UpperCamelCase : Any =tokenizer.tokenize(lowerCamelCase__ ) __UpperCamelCase : Any =rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =self.get_rust_tokenizer() __UpperCamelCase : Tuple =tokenizer.encode(lowerCamelCase__ ) __UpperCamelCase : Dict =rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='Hello World!' __UpperCamelCase : int =[0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) __UpperCamelCase : Union[str, Any] =[ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ={'input_ids': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
71
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a_ ( _A , _A=0.999 , _A="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_A ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) snake_case__ = [] for i in range(_A ): snake_case__ = i / num_diffusion_timesteps snake_case__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_A ) / alpha_bar_fn(_A ) , _A ) ) return torch.tensor(_A , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE( a_ , a_ ): _UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase = 2 @register_to_config def __init__( self: Dict , UpperCamelCase: int = 10_00 , UpperCamelCase: float = 0.00_085 , UpperCamelCase: float = 0.012 , UpperCamelCase: str = "linear" , UpperCamelCase: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase: str = "epsilon" , UpperCamelCase: Optional[bool] = False , UpperCamelCase: Optional[bool] = False , UpperCamelCase: float = 1.0 , UpperCamelCase: str = "linspace" , UpperCamelCase: int = 0 , ) -> str: if trained_betas is not None: snake_case__ = torch.tensor(UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case__ = torch.linspace(UpperCamelCase , UpperCamelCase , UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case__ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='cosine' ) elif beta_schedule == "exp": snake_case__ = betas_for_alpha_bar(UpperCamelCase , alpha_transform_type='exp' ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) snake_case__ = 1.0 - self.betas snake_case__ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase , UpperCamelCase , UpperCamelCase ) snake_case__ = use_karras_sigmas def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: Optional[int]=None ) -> str: if schedule_timesteps is None: snake_case__ = self.timesteps snake_case__ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case__ = 1 if len(UpperCamelCase ) > 1 else 0 else: snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep snake_case__ = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase_ ( self: Optional[Any] ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: snake_case__ = self.index_for_timestep(UpperCamelCase ) snake_case__ = self.sigmas[step_index] snake_case__ = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None , UpperCamelCase: Optional[int] = None , ) -> str: snake_case__ = num_inference_steps snake_case__ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case__ = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase , dtype=UpperCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case__ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case__ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case__ = (np.arange(UpperCamelCase , 0 , -step_ratio )).round().copy().astype(UpperCamelCase ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) snake_case__ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case__ = np.log(UpperCamelCase ) snake_case__ = np.interp(UpperCamelCase , np.arange(0 , len(UpperCamelCase ) ) , UpperCamelCase ) if self.config.use_karras_sigmas: snake_case__ = self._convert_to_karras(in_sigmas=UpperCamelCase , num_inference_steps=self.num_inference_steps ) snake_case__ = np.array([self._sigma_to_t(UpperCamelCase , UpperCamelCase ) for sigma in sigmas] ) snake_case__ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case__ = torch.from_numpy(UpperCamelCase ).to(device=UpperCamelCase ) snake_case__ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) snake_case__ = torch.from_numpy(UpperCamelCase ) snake_case__ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase ).startswith('mps' ): # mps does not support float64 snake_case__ = timesteps.to(UpperCamelCase , dtype=torch.floataa ) else: snake_case__ = timesteps.to(device=UpperCamelCase ) # empty dt and derivative snake_case__ = None snake_case__ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case__ = defaultdict(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: List[str] , UpperCamelCase: Dict ) -> Tuple: # get log sigma snake_case__ = np.log(UpperCamelCase ) # get distribution snake_case__ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range snake_case__ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) snake_case__ = low_idx + 1 snake_case__ = log_sigmas[low_idx] snake_case__ = log_sigmas[high_idx] # interpolate sigmas snake_case__ = (low - log_sigma) / (low - high) snake_case__ = np.clip(UpperCamelCase , 0 , 1 ) # transform interpolation to time range snake_case__ = (1 - w) * low_idx + w * high_idx snake_case__ = t.reshape(sigma.shape ) return t def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Dict ) -> torch.FloatTensor: snake_case__ = in_sigmas[-1].item() snake_case__ = in_sigmas[0].item() snake_case__ = 7.0 # 7.0 is the value used in the paper snake_case__ = np.linspace(0 , 1 , UpperCamelCase ) snake_case__ = sigma_min ** (1 / rho) snake_case__ = sigma_max ** (1 / rho) snake_case__ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def lowerCAmelCase_ ( self: Dict ) -> Optional[Any]: return self.dt is None def lowerCAmelCase_ ( self: int , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: Union[float, torch.FloatTensor] , UpperCamelCase: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: snake_case__ = self.index_for_timestep(UpperCamelCase ) # advance index counter by 1 snake_case__ = timestep.cpu().item() if torch.is_tensor(UpperCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case__ = self.sigmas[step_index] snake_case__ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method snake_case__ = self.sigmas[step_index - 1] snake_case__ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case__ = 0 snake_case__ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case__ = sigma_hat if self.state_in_first_order else sigma_next snake_case__ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": snake_case__ = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: snake_case__ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case__ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case__ = sigma_next - sigma_hat # store for 2nd order step snake_case__ = derivative snake_case__ = dt snake_case__ = sample else: # 2. 2nd order / Heun's method snake_case__ = (sample - pred_original_sample) / sigma_next snake_case__ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample snake_case__ = self.dt snake_case__ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" snake_case__ = None snake_case__ = None snake_case__ = None snake_case__ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case__ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase ): # mps does not support float64 snake_case__ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case__ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case__ = self.timesteps.to(original_samples.device ) snake_case__ = timesteps.to(original_samples.device ) snake_case__ = [self.index_for_timestep(UpperCamelCase , UpperCamelCase ) for t in timesteps] snake_case__ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case__ = sigma.unsqueeze(-1 ) snake_case__ = original_samples + noise * sigma return noisy_samples def __len__( self: List[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
307
0
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=13 , SCREAMING_SNAKE_CASE__ : Dict=30 , SCREAMING_SNAKE_CASE__ : List[Any]=2 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : int=5 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : List[Any]=37 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=2 , ) -> Optional[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 1 def a ( self : Dict ) -> Dict: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Tuple ) -> Tuple: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any ) -> int: __lowerCAmelCase = ViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ) -> List[str]: __lowerCAmelCase = ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Tuple: __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : List[str] ) -> List[str]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( a_ , a_ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Optional[int] = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = ViTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def a ( self : List[str] ) -> Dict: pass def a ( self : Any ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def a ( self : Union[str, Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Any: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[int] ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : int ) -> Optional[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase_ ( ) -> List[str]: '''simple docstring''' __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def a ( self : int ) -> Optional[Any]: return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def a ( self : Optional[int] ) -> Dict: __lowerCAmelCase = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @slow def a ( self : Union[str, Any] ) -> Tuple: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __lowerCAmelCase = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=4_80 ) __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __lowerCAmelCase = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def a ( self : int ) -> int: __lowerCAmelCase = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) __lowerCAmelCase = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ )
229
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" class _SCREAMING_SNAKE_CASE( a_ ): pass class _SCREAMING_SNAKE_CASE( a_ ): pass class _SCREAMING_SNAKE_CASE: def __init__( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = [ [], [], [], ] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(SCREAMING_SNAKE_CASE__ ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def _UpperCamelCase ( self ) -> int: """simple docstring""" for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self ) -> str: """simple docstring""" return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class _SCREAMING_SNAKE_CASE: def __init__( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = [] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" if len(self.queue ) == 1_00: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: __SCREAMING_SNAKE_CASE :List[Any] = min(self.queue ) self.queue.remove(SCREAMING_SNAKE_CASE__ ) return data def __str__( self ) -> str: """simple docstring""" return str(self.queue ) def __lowerCamelCase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE :Any = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 1_00 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 1_28 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __lowerCamelCase ( ) -> List[Any]: __SCREAMING_SNAKE_CASE :str = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
191
def a_ ( _A , _A ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def a_ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
0
'''simple docstring''' from __future__ import annotations class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : int = data _UpperCamelCase : Optional[Any] = None _UpperCamelCase : str = None def A__ ( UpperCAmelCase_ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A__ ( UpperCAmelCase_ ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A__ ( UpperCAmelCase_ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A__ ( ): # Main function for testing. _UpperCamelCase : Dict = Node(1 ) _UpperCamelCase : Optional[int] = Node(2 ) _UpperCamelCase : Optional[int] = Node(3 ) _UpperCamelCase : Union[str, Any] = Node(4 ) _UpperCamelCase : Optional[int] = Node(5 ) _UpperCamelCase : Union[str, Any] = Node(6 ) _UpperCamelCase : List[Any] = Node(7 ) _UpperCamelCase : List[Any] = Node(8 ) _UpperCamelCase : List[str] = Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print('Tree is: ' ) display(_A ) if __name__ == "__main__": main()
83
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCamelCase : int = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __UpperCamelCase : List[Any] = cvtColor(img, COLOR_BGR2GRAY) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = cn.convert_to_negative(_A ) # assert negative_img array for at least one True assert negative_img.any() def a_ ( ) -> int: """simple docstring""" with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(_A , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def a_ ( ) -> List[str]: """simple docstring""" snake_case__ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a_ ( ) -> Dict: """simple docstring""" snake_case__ = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ = canny.canny(_A ) # assert canny array for at least one True assert canny_array.any() def a_ ( ) -> Optional[int]: """simple docstring""" assert gg.gaussian_filter(_A , 5 , sigma=0.9 ).all() def a_ ( ) -> Optional[Any]: """simple docstring""" # laplace diagonals snake_case__ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ = conv.img_convolve(_A , _A ).astype(_A ) assert res.any() def a_ ( ) -> Dict: """simple docstring""" assert med.median_filter(_A , 3 ).any() def a_ ( ) -> Dict: """simple docstring""" snake_case__ , snake_case__ = sob.sobel_filter(_A ) assert grad.any() and theta.any() def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case__ = sp.make_sepia(_A , 20 ) assert sepia.all() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[int]: """simple docstring""" snake_case__ = bs.Burkes(imread(_A , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def a_ ( _A = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: """simple docstring""" snake_case__ = rs.NearestNeighbour(imread(_A , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def a_ ( ) -> Any: """simple docstring""" snake_case__ = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. snake_case__ = imread(_A , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ = 0 snake_case__ = 0 snake_case__ = image[x_coordinate][y_coordinate] snake_case__ = lbp.get_neighbors_pixel( _A , _A , _A , _A ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ = lbp.local_binary_value(_A , _A , _A ) assert lbp_image.any()
307
0
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCamelCase_ = TypeVar('''T''') class _snake_case ( Generic[T] ): '''simple docstring''' def __init__( self: List[str] ,lowerCamelCase_: list[T] ,lowerCamelCase_: Callable[[T, T], T] ) -> None: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Tuple = len(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = [any_type for _ in range(self.N )] + arr UpperCAmelCase_ : Optional[int] = fnc self.build() def A__ ( self: int ) -> None: for p in range(self.N - 1 ,0 ,-1 ): UpperCAmelCase_ : List[str] = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def A__ ( self: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: T ) -> None: p += self.N UpperCAmelCase_ : List[str] = v while p > 1: UpperCAmelCase_ : str = p // 2 UpperCAmelCase_ : str = self.fn(self.st[p * 2] ,self.st[p * 2 + 1] ) def A__ ( self: Dict ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> T | None: # noqa: E741 UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = l + self.N, r + self.N UpperCAmelCase_ : Optional[Any] = None while l <= r: if l % 2 == 1: UpperCAmelCase_ : Optional[int] = self.st[l] if res is None else self.fn(lowerCamelCase_ ,self.st[l] ) if r % 2 == 0: UpperCAmelCase_ : Optional[Any] = self.st[r] if res is None else self.fn(lowerCamelCase_ ,self.st[r] ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCamelCase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCamelCase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCamelCase_ = SegmentTree(test_array, min) UpperCamelCase_ = SegmentTree(test_array, max) UpperCamelCase_ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase_ ( ): '''simple docstring''' for i in range(len(_A ) ): for j in range(_A , len(_A ) ): UpperCAmelCase_ : Tuple = reduce(_A , test_array[i : j + 1] ) UpperCAmelCase_ : List[Any] = reduce(_A , test_array[i : j + 1] ) UpperCAmelCase_ : Optional[Any] = reduce(lambda _a , _a : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_A , _A ) assert max_range == max_segment_tree.query(_A , _A ) assert sum_range == sum_segment_tree.query(_A , _A ) test_all_segments() for index, value in test_updates.items(): UpperCamelCase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
345
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
"""simple docstring""" import argparse import json import subprocess def _A ( lowercase , lowercase ): """simple docstring""" a =[] a =( f'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) a =subprocess.run(_A , shell=_A , stdout=subprocess.PIPE ) a =output.stdout.decode('''utf-8''' ) a =json.loads(_A ) a =status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_A ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(_A ) ) if len(_A ) > 0: a ='''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def _A ( lowercase ): """simple docstring""" return values.split(''',''' ) lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowerCamelCase_ : Dict = parser.parse_args() get_runner_status(args.target_runners, args.token)
81
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["pixel_values"] def __init__( self: List[Any] , UpperCamelCase: bool = True , UpperCamelCase: Optional[Dict[str, int]] = None , UpperCamelCase: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase: bool = True , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: bool = True , UpperCamelCase: Union[int, float] = 1 / 2_55 , UpperCamelCase: bool = True , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , **UpperCamelCase: Optional[int] , ) -> None: super().__init__(**UpperCamelCase ) snake_case__ = size if size is not None else {'shortest_edge': 2_56} snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) snake_case__ = get_resize_output_image_size(UpperCamelCase , size=size['shortest_edge'] , default_to_square=UpperCamelCase ) return resize(UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Dict[str, int] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: List[Any] , ) -> np.ndarray: snake_case__ = get_size_dict(UpperCamelCase ) return center_crop(UpperCamelCase , size=(size['height'], size['width']) , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: np.ndarray , UpperCamelCase: float , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Dict ) -> np.ndarray: return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: np.ndarray , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Union[float, List[float]] , UpperCamelCase: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase: Any , ) -> np.ndarray: return normalize(UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: ImageInput , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: PILImageResampling = None , UpperCamelCase: bool = None , UpperCamelCase: Dict[str, int] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[float] = None , UpperCamelCase: Optional[bool] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[float, List[float]]] = None , UpperCamelCase: Optional[Union[str, TensorType]] = None , UpperCamelCase: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase: Any , ) -> Optional[Any]: snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(UpperCamelCase , default_to_square=UpperCamelCase ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(UpperCamelCase ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ = [self.resize(image=UpperCamelCase , size=UpperCamelCase , resample=UpperCamelCase ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=UpperCamelCase , size=UpperCamelCase ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=UpperCamelCase , mean=UpperCamelCase , std=UpperCamelCase ) for image in images] snake_case__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images] snake_case__ = {'pixel_values': images} return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
307
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""YolosFeatureExtractor"""] __lowercase = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
40
import random from typing import Any def a_ ( _A ) -> list[Any]: """simple docstring""" for _ in range(len(_A ) ): snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ = random.randint(0 , len(_A ) - 1 ) snake_case__ , snake_case__ = data[b], data[a] return data if __name__ == "__main__": __UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] __UpperCamelCase : Any = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
307
0